Beispiel #1
0
int nl_spectrum( Real vmass, field_offset temp1, field_offset temp2 ) { 
  /* return the C.G. iteration number */
  double *piprop,*pi2prop,*rhoprop,*rho2prop,*barprop;
  double *nlpiprop,*nlpi2prop,*ckpiprop,*ckpi2prop;
  double *delprop,*ckbarprop;
  Real vmass_x2;
  site* s;
  register complex cc;
  Real finalrsq;
  register int i,x,y,z,t,icol,cgn;
  register int t_source,t_off;
  int dir,isrc;

  msg_tag *mtag[16];

  piprop = (double *)malloc( nt*sizeof(double) );
  pi2prop = (double *)malloc( nt*sizeof(double) );
  rhoprop = (double *)malloc( nt*sizeof(double) );
  rho2prop = (double *)malloc( nt*sizeof(double) );
  barprop = (double *)malloc( nt*sizeof(double) );
  nlpiprop = (double *)malloc( nt*sizeof(double) );
  nlpi2prop = (double *)malloc( nt*sizeof(double) );
  ckpiprop = (double *)malloc( nt*sizeof(double) );
  ckpi2prop = (double *)malloc( nt*sizeof(double) );
  delprop = (double *)malloc( nt*sizeof(double) );
  ckbarprop = (double *)malloc( nt*sizeof(double) );

  for( t=0; t<nt; t++ ){
    piprop[t]=0.0; pi2prop[t]=0.0; rhoprop[t]=0.0; rho2prop[t]=0.0;
    nlpiprop[t]=0.0; nlpi2prop[t]=0.0;
    ckpiprop[t]=0.0; ckpi2prop[t]=0.0;
    barprop[t]=0.0; delprop[t]=0.0; ckbarprop[t]=0.0;
  }

  vmass_x2 = 2.*vmass;
  cgn=0;

  /* Fix TUP Coulomb gauge - gauge links only*/
  rephase( OFF );
  gaugefix(TUP,(Real)1.8,500,(Real)GAUGE_FIX_TOL);
  rephase( ON );
#ifdef FN
  invalidate_all_ferm_links(&fn_links);
#endif

  /* Unlike spectrum.c, here we calculate only with wall sources */
  for(t_source=source_start, isrc=0; t_source<2*nt && isrc < n_sources;
        ++isrc, t_source += source_inc ) {
      
      /* Only work for even source slices */
      if( t_source%2 != 0 ){
	printf("DUMMY:  Use even time slices for nl_spectrum()\n");
	terminate(0);
      }

      /* Compute propagator from even wall sites */
      /* Sources are normalized to 1/8 to make them comparable to */
      /* propagators from a wall with ones on the cube origin. */
      /* Put result in propmat */
      
      for(icol=0; icol<3; icol++) {
	  
	  /* initialize temp1 and temp2 */
	  clear_latvec( temp1, EVEN);
	  clear_latvec( temp2, EVEN);
	  
	  for(x=0;x<nx;x++)for(y=0;y<ny;y++)for(z=0;z<nz;z++) {
	      if((x+y+z) % 2 == 0) {
		  if( node_number(x,y,z,t_source) != mynode() )continue;
		  i=node_index(x,y,z,t_source);
		  ((su3_vector *)(F_PT(&lattice[i],temp1)))->c[icol].real = 
		    -0.25;
		}
	    }
	  
	  /* do a C.G. */
	  load_ferm_links(&fn_links);
	  cgn += congrad(niter,rsqprop,EVEN,&finalrsq, &fn_links);
	  /* Multiply by -Madjoint */
	  dslash_site( temp2, temp2, ODD, &fn_links);
	  scalar_mult_latvec( temp2, -vmass_x2, temp2, EVEN);
	  
	  /* fill the hadron matrix */
	  copy_latvec( temp2, F_OFFSET(propmat[icol]), EVENANDODD);
	} /* end loop on icol */
      
      
      /* Compute propagator from odd wall sites */
      /* Put result in propmat2 */
      
      for(icol=0; icol<3; icol++) {
	  
	  /* initialize temp1 and temp2 */
	  clear_latvec( temp1, ODD);
	  clear_latvec( temp2, ODD);
	  for(x=0;x<nx;x++)for(y=0;y<ny;y++)for(z=0;z<nz;z++) {
	      if((x+y+z) % 2 == 1) {
		  if( node_number(x,y,z,t_source) != mynode() )continue;
		  i=node_index(x,y,z,t_source);
		  ((su3_vector *)(F_PT(&lattice[i],temp1)))->c[icol].real = 
		    -0.25;
		}
	    }
	  
	  /* do a C.G. */
	  load_ferm_links(&fn_links);
	  cgn += congrad(niter,rsqprop,ODD,&finalrsq,&fn_links);
	  /* Multiply by -Madjoint */
	  dslash_site( temp2, temp2, EVEN, &fn_links);
	  scalar_mult_latvec( temp2, -vmass_x2, temp2, ODD);
	  
	  /* fill the hadron matrix */
	  copy_latvec( temp2, F_OFFSET(propmat2[icol]), EVENANDODD);
	} /* end loop on icol */
      
      /* cgn now gives the sum for both inversions */
      
      
      /* measure the meson propagator for the E wall source */
      for(t=0; t<nt; t++) {
	  /* define the time value offset t from t_source */
	  t_off = (t+t_source)%nt;
	  
	  for(x=0;x<nx;x++)for(y=0;y<ny;y++)for(z=0;z<nz;z++)
	    for(icol=0;icol<3;icol++) {
		if( node_number(x,y,z,t_off) != mynode() )continue;
		i=node_index(x,y,z,t_off);
		cc = su3_dot( &lattice[i].propmat[icol],
			     &lattice[i].propmat[icol] );
		
		piprop[t] += cc.real;
		/* (rhoprop and rho2prop are not generated by this source) */
		
		if( (x+y+z)%2==0)pi2prop[t] += cc.real;
		else	     pi2prop[t] -= cc.real;
		
	      }
	  
	} /* nt-loop */
      
      /* measure the baryon propagator for the E wall source */
      for(t=0; t<nt; t++) {
	  /* define the time value offset t from t_source */
	  t_off = (t+t_source)%nt;
	  
	  for(x=0;x<nx;x+=2)for(y=0;y<ny;y+=2)for(z=0;z<nz;z+=2) {
	      if( node_number(x,y,z,t_off) != mynode() )continue;
	      i=node_index(x,y,z,t_off);
	      cc = det_su3( (su3_matrix *)(lattice[i].propmat) );
	      barprop[t] += cc.real;
	  }
	  
	  /* must get sign right.  This looks to see if we have
	     wrapped around the lattice.  "t" is the distance
	     from the source to the measurement, so we are
	     trying to find out if t_source+t is greater than
	     or equal to nt. */
	  if( (((t+t_source)/nt-t_source/nt)%2) == 1 )barprop[t] *= -1.0;
	  /* change sign because antiperiodic b.c.  sink point
	     should really be in a copy of the lattice */
	} /* nt-loop */
      
      
      /* Measure nonlocal (and some local for checking) propagators    */
      /* These propagators include the delta and some nonlocal mesons  */
      /* The method for the delta is described in M.F.L. Golterman and */
      /* J. Smit, Nucl. Phys. B 255, 328 (1985)                        */
      /* Equation (6.3) defines the sink operator for the delta        */
      /* The method for the mesons is described in M.F.L. Golterman    */
      /* Nucl. Phys. B 273, 663 (1986)                                 */
      /* The treatment of the source wall is described in Gupta,       */
      /* Guralnik, Kilcup, and Sharpe, (GGKS) NSF-ITP-90-172 (1990)    */
      /* To get the delta propagator, we take the "q" propagator       */
      /* matrices for each of the wall colors and antisymmetrize over  */
      /* wall color as well as s                    */
      
      /* First construct the "q" and "o" propagators                   */
      /* Put q = E + O in propmat and o = E - O in propmat2 */
      
      FORALLSITES(i,s) {
	  for(icol=0; icol<3; icol++) {
	      add_su3_vector (&(s->propmat[icol]), &(s->propmat2[icol]), 
			      (su3_vector *)(s->tempmat1.e[icol]) );
	      sub_su3_vector (&(s->propmat[icol]), &(s->propmat2[icol]), 
			      &(s->propmat2[icol]) );
	      su3vec_copy( (su3_vector *)(s->tempmat1.e[icol]),
		&(s->propmat[icol]) );
	    }
	}
      
      
      
      /* Next gather the propagators in preparation for calculating   */
      /* shifted propagators Dq and Do                                */
      
      FORALLUPDIRBUT(TUP,dir) {
	  /* Start bringing "q" = propmat from forward sites    */
	  
	  mtag[dir] = start_gather_site(F_OFFSET(propmat[0]), 
		   sizeof(su3_matrix), dir, EVENANDODD, gen_pt[dir]);
	  
	  /* Start bringing "q" from backward neighbors       */
	  
	  mtag[dir+4] = start_gather_site(F_OFFSET(propmat[0]), 
		   sizeof(su3_matrix), OPP_DIR(dir), EVENANDODD,
		   gen_pt[dir+4]);
	  wait_gather(mtag[dir]);
	  wait_gather(mtag[dir+4]);
	  
	  /* Start bringing "o" = propmat2 from forward sites   */
	  
	  mtag[8+dir] = start_gather_site(F_OFFSET(propmat2[0]), 
		   sizeof(su3_matrix), dir, EVENANDODD, gen_pt[8+dir]);
	  
	      /* Start bringing "o" from backward neighbors       */
	  
	  mtag[8+dir+4] = start_gather_site(F_OFFSET(propmat2[0]), 
		    sizeof(su3_matrix), OPP_DIR(dir), EVENANDODD,
		    gen_pt[8+dir+4]);
	  wait_gather(mtag[8+dir]);
	  wait_gather(mtag[8+dir+4]);
	  
	}
      
      
      /* Calculate and dump delta propagator */
      for(t=0; t<nt; t++) {
	  /* define the time value offset t from t_source */
	  t_off = (t+t_source)%nt;
	  
	  /* Calculate contribution for each permutation of source color */
	  delta_prop (0,1,2, 1, t_off, &delprop[t]);
	  delta_prop (1,2,0, 1, t_off, &delprop[t]);
	  delta_prop (2,0,1, 1, t_off, &delprop[t]);
	  delta_prop (1,0,2,-1, t_off, &delprop[t]);
	  delta_prop (0,2,1,-1, t_off, &delprop[t]);
	  delta_prop (2,1,0,-1, t_off, &delprop[t]);
	  
	  if( (((t+t_source)/nt-t_source/nt)%2) == 1 ) delprop[t] *= -1;
	} /* nt-loop */
      
      /* Calculate the "q" source nucleon as a check */
      
      /* Calculate and dump nucleon check propagator */
      for(t=0; t<nt; t++) {
	  /* define the time value offset t from t_source */
	  t_off = (t+t_source)%nt;
	  
	  for(x=0;x<nx;x+=2)for(y=0;y<ny;y+=2)for(z=0;z<nz;z+=2) {
	      if( node_number(x,y,z,t_off) != mynode() )continue;
	      i=node_index(x,y,z,t_off);
	      /* The q propagator is in propmat */
	      cc = det_su3( (su3_matrix *)(lattice[i].propmat) );
	      ckbarprop[t] += cc.real;
	    }
	  
	  if( (((t+t_source)/nt-t_source/nt)%2) == 1 )ckbarprop[t]*= -1.0;
	  /* change sign because antiperiodic b.c.  sink point
	     should really be in a copy of the lattice */
	} /* nt-loop */
      
      /* Calculate nonlocal meson propagators and local check */
      for(t=0; t<nt; t++) {
	  /* Calculate two nonlocal pion propagators */
	  /* These are pi_1 and pi_1 tilde of Gupta et al */
	  /* Also calculate two local propagators as a check */
	  
	  /* define the time value offset t from t_source */
	  t_off = (t+t_source)%nt;
	  
	  nl_meson_prop(t_off,&nlpiprop[t],&nlpi2prop[t],&ckpiprop[t],
	     &ckpi2prop[t]);
	  
	} /* nt-loop */
      
      /* Clean up gathers */
      FORALLUPDIRBUT(TUP,dir) {
	  cleanup_gather(mtag[dir]);
	  cleanup_gather(mtag[dir+4]);
	  cleanup_gather(mtag[8+dir]);
	  cleanup_gather(mtag[8+dir+4]);
	}
Beispiel #2
0
int main(int argc, char *argv[])  {
int meascount,todo;
int prompt;
double dssplaq,dstplaq;
int m_iters,s_iters,avm_iters,avs_iters,avspect_iters;
#ifdef SPECTRUM
int spect_iters;
#endif
complex plp;
double dtime;

 initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);

 g_sync();
    /* set up */
    prompt = setup();

    /* loop over input sets */
    while( readin(prompt) == 0){

/* set up loop tables */
        make_loop_table2();

	/* perform warmup trajectories */
	dtime = -dclock();

	/* call plaquette measuring process */
/* Check: compute initial plaquette (T. D.) */
                d_plaquette(&dssplaq,&dstplaq);
                if(this_node==0)printf("START %e %e %e\n",
                    dssplaq,dstplaq, 
                        dssplaq+dstplaq);

	for(todo=warms; todo > 0; --todo ){
	    update();
	}
	if(this_node==0)printf("WARMUPS COMPLETED\n");

	/* perform measuring trajectories, reunitarizing and measuring 	*/
	meascount=0;		/* number of measurements 		*/
	plp = cmplx(99.9,99.9);
	avspect_iters = avm_iters = avs_iters = 0;
	for(todo=trajecs; todo > 0; --todo ){ 

	    /* do the trajectories */
	    s_iters=update();

	    /* Do "local" measurements every trajectory! */
            /* The action from the RG trans */
            gauge_action(&dssplaq);
            if(this_node==0)printf("ACTION_V  %e  %e\n",
                dssplaq,(dssplaq)/(double)(volume*6));

	    /* call plaquette measuring process */
	    d_plaquette(&dssplaq,&dstplaq);

	    /* call the Polyakov loop measuring program */
	    plp = ploop();

            /* generate a pseudofermion configuration */
	    boundary_flip(MINUS);
	    m_iters = f_measure_cl();
	    boundary_flip(PLUS);

	    ++meascount;
	    avm_iters += m_iters;
	    avs_iters += s_iters;
	           
	    if(this_node==0)printf("GMES %e %e %e %e %e\n",
		(double)plp.real,(double)plp.imag,(double)m_iters,
		dssplaq,dstplaq);
	    /* Re(Polyakov) Im(Poyakov) cg_iters ss_plaq st_plaq */

	    /* measure other stuff every "propinterval" trajectories */
	    if(((todo-1)%propinterval) == 0){

	      fixflag = NO_GAUGE_FIX;
#ifdef SPECTRUM 
#ifdef SCREEN 
	      gaugefix(ZUP,(Real)1.5,500,(Real)GAUGE_FIX_TOL);
	      invalidate_this_clov(gen_clov);
		fixflag = COULOMB_GAUGE_FIX;
		boundary_flip(MINUS);
		spect_iters = s_props_cl();
		avspect_iters += spect_iters;
		boundary_flip(PLUS);
#else	/* spectrum in time direction */
		gaugefix(TUP,(Real)1.5,500,(Real)GAUGE_FIX_TOL);
		invalidate_this_clov(gen_clov);
		fixflag = COULOMB_GAUGE_FIX;
/* commented 15 OCT 95, MBW....we'll use periodic b.c. for spect. */
/*		boundary_flip(MINUS); */
/* Don't need t_props if we are doing w_spectrum  - C. DeTar */
/*		spect_iters = t_props_cl();
		avspect_iters += spect_iters; */
		spect_iters = w_spectrum_cl();
		avspect_iters += spect_iters;
/*		boundary_flip(PLUS); */
#endif	/* end ifndef SCREEN */
#endif	/* end ifdef SPECTRUM */

	    }
	    fflush(stdout);

	}	/* end loop over trajectories */

	if(this_node==0)printf("RUNNING COMPLETED\n");
/* Check: compute final plaquette (T. D.) */
                d_plaquette(&dssplaq,&dstplaq);
                if(this_node==0)printf("STOP %e %e %e\n",
                    dssplaq,dstplaq,
                        dssplaq+dstplaq);

	if(meascount>0)  {
	    if(this_node==0)printf("average cg iters for step= %e\n",
		(double)avs_iters/meascount);
	    if(this_node==0)printf("average cg iters for measurement= %e\n",
		(double)avm_iters/meascount);
#ifdef SPECTRUM
	    if(this_node==0)printf("average cg iters for spectrum = %e\n",
		(double)avspect_iters/meascount);
#endif
	}

	dtime += dclock();
	if(this_node==0){
	    printf("Time = %e seconds\n",dtime);
	    printf("total_iters = %d\n",total_iters);
	}
	fflush(stdout);
	dtime = -dclock();

	/* save lattice if requested */
        if( saveflag != FORGET ){
	  save_lattice( saveflag, savefile, stringLFN );
        }
    }
    return 0;
}
Beispiel #3
0
int main(int argc, char *argv[])  {
int meascount,todo;
int prompt;
double dssplaq,dstplaq;
complex plp;
double dtime;

initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);

 g_sync();
    /* set up */
    prompt = setup();

#ifdef GBALL
    make_glueball_ops();
#endif

    /* loop over input sets */
    while( readin(prompt) == 0){

        /* perform warmup trajectories */
        dtime = -dclock();
 
#ifdef FUZZ
if(this_node==0)printf("Fat Polyakov loop parameter %f\n",ALPHA_FUZZ);
#endif

        for(todo=warms; todo > 0; --todo ){
            update();
        }
        if(this_node==0)printf("WARMUPS COMPLETED\n");

        /* perform measuring trajectories, reunitarizing and measuring  */
        meascount=0;            /* number of measurements               */
        plp = cmplx(99.9,99.9);
        for(todo=trajecs; todo > 0; --todo ){ 

            /* do the trajectories */
            update();

            /* measure every "propinterval" trajectories */
            if((todo%propinterval) == 0){
            
                /* call plaquette measuring process */
                d_plaquette(&dssplaq,&dstplaq);

                /* don't bother to */
                /* call the Polyakov loop measuring program */
                /* plp = ploop(); */
#ifdef FUZZ
                plp_fuzzy = ploop_staple((Real)ALPHA_FUZZ);
#endif

                ++meascount;
                if(this_node==0)printf("GMES %e %e %e %e %e\n",
                    (double)plp.real,(double)plp.imag,99.9,dssplaq,dstplaq);
                /* Re(Polyakov) Im(Poyakov) cg_iters ss_plaq st_plaq */

#ifdef FUZZ
		if(this_node==0)printf("GFUZZ %e %e\n",
		    (double)plp_fuzzy.real,(double)plp_fuzzy.imag);
#endif
#ifdef GBALL
		measure_glueball_ops();
#endif

                fflush(stdout);
            }
        }       /* end loop over trajectories */

#ifdef ORA_ALGORITHM
       /* gaugefix if requested */
       if( fixflag == COULOMB_GAUGE_FIX){
	 gaugefix(TUP,(Real)1.8,600,(Real)GAUGE_FIX_TOL);
           if(this_node==0)printf("FIXED TO COULOMB GAUGE\n");
           fflush(stdout);
       }
       else if( fixflag == LANDAU_GAUGE_FIX){
	 gaugefix(8,(Real)1.8,600,(Real)GAUGE_FIX_TOL);
           if(this_node==0)printf("FIXED TO LANDAU GAUGE\n");
           fflush(stdout);
       }
#endif


        if(this_node==0)printf("RUNNING COMPLETED\n");

        dtime += dclock();
        if(this_node==0){
            printf("Time = %e seconds\n",dtime);
        }
        fflush(stdout);
	dtime = -dclock();

        /* save lattice if requested */
        if( saveflag != FORGET ){
	  save_lattice( saveflag, savefile, stringLFN );
        }
    }
    return 0;
}
Beispiel #4
0
/* Hadron wave functions. */
void wavefunc_t() {
register int i,j,n;
register site *s;
register complex cc;
msg_tag *tag;
Real finalrsq,scale,x;
int tmin,tmax,cgn,color;
/* for baryon code */
int ca,ca1,ca2,cb,cb1,cb2;
void symmetry_combine(field_offset src,field_offset space,int size,int dir);
void block_fourier(
 field_offset src,	/* src is field to be transformed */
 field_offset space,	/* space is working space, same size as src */
 int size,		/* Size of field in bytes.  The field must
			   consist of size/sizeof(complex) consecutive
			   complex numbers.  For example, an su3_vector
			   is 3 complex numbers. */
 int isign);		/* 1 for x -> k, -1 for k -> x */
void fourier(
field_offset src,	/* src is field to be transformed */
field_offset space,	/* space is working space, same size as src */
int size,		/* Size of field in bytes.  The field must
			   consist of size/sizeof(complex) consecutive
			   complex numbers.  For example, an su3_vector
			   is 3 complex numbers. */
int isign);		/* 1 for x -> k, -1 for k -> x */
void write_wf(field_offset src,char *string,int tmin,int tmax);

    /* Fix TUP Coulomb gauge - gauge links only*/
    rephase( OFF );
    gaugefix(TUP,(Real)1.8,500,(Real)GAUGE_FIX_TOL);
    rephase( ON );

    for(color=0;color<3;color++){ /* Make wall source */
        FORALLSITES(i,s){
	    for(j=0;j<3;j++)s->phi.c[j]=cmplx(0.0,0.0);
	    if( s->x%2==0 && s->y%2==0 && s->z%2==0 && s->t==0 ){
                s->phi.c[color] = cmplx(-1.0,0.0);
	    }
        }
        /* do a C.G. (source in phi, result in xxx) */
	load_ferm_links(&fn_links);
        cgn = ks_congrad(F_OFFSET(phi),F_OFFSET(xxx),mass,
			 niter, rsqprop, PRECISION, EVEN, &finalrsq, 
			 &fn_links);
        /* Multiply by -Madjoint, result in propmat[color] */
        dslash_site( F_OFFSET(xxx), F_OFFSET(propmat[color]), ODD, &fn_links);
        scalar_mult_latvec( F_OFFSET(xxx), (Real)(-2.0*mass),
	    F_OFFSET(propmat[color]), EVEN);
    }


    /* construct the diquark propagator--uses tempmat1 and do this before
you fft the quark propagator */

    FORALLSITES(i,s){
	for(ca=0;ca<3;ca++)for(cb=0;cb<3;cb++){
		ca1= (ca+1)%3; ca2= (ca+2)%3;
		cb1= (cb+1)%3; cb2= (cb+2)%3;
		CMUL((s->propmat[ca1].c[cb1]),(s->propmat[ca2].c[cb2]),
			(s->tempmat1.e[ca][cb]));

	CMUL((s->propmat[ca1].c[cb2]),(s->propmat[ca2].c[cb1]),
			cc);


		CSUB((s->tempmat1.e[ca][cb]),cc,(s->tempmat1.e[ca][cb]));
	}
    }
/* complex conjugate the diquark prop */
    FORALLSITES(i,s){
	for(ca=0;ca<3;ca++)for(cb=0;cb<3;cb++){
		CONJG((s->tempmat1.e[ca][cb]),(s->tempmat1.e[ca][cb]));
	}
    }
    /* Transform the diquark propagator.  */
   block_fourier( F_OFFSET(tempmat1), F_OFFSET(tempvec[0]),
	3*sizeof(su3_vector), FORWARDS);
/* complex conjugate the diquark prop. Now we have D(-k) for convolution */
    FORALLSITES(i,s){
	for(ca=0;ca<3;ca++)for(cb=0;cb<3;cb++){
		CONJG((s->tempmat1.e[ca][cb]),(s->tempmat1.e[ca][cb]));
	}
    }

    /* Transform the propagator.  */
    block_fourier( F_OFFSET(propmat[0]), F_OFFSET(tempvec[0]),
	3*sizeof(su3_vector), FORWARDS);

/* CODE SPECIFIC TO PARTICULAR PARTICLES */

/* MESON CODE */


    /* Square the result, component by component, sum over source and
	sink colors, result in ttt.c[0] */
    FORALLSITES(i,s){
	s->ttt.c[0].real = s->ttt.c[0].imag = 0.0;
	for(color=0;color<3;color++){
	    s->ttt.c[0].real += magsq_su3vec( &(s->propmat[color]) );
	}
    }
Beispiel #5
0
int main(int argc,char *argv[])
{
  int meascount;
  int prompt;
  Real avm_iters,avs_iters;
  
  double starttime,endtime,dclock();
  double dtime;
  
  int MinCG,MaxCG;
  Real RsdCG;
  
  register int i;
  register site *s;
  
  int spinindex,spin,color,j,k,t,t_off;
  int kh,kl;
  int nr_fb;
  char nr_fb_label[3][2] = { "0", "F", "B" };
  int flag;
  int kprop;
  int num_prop;
  Real space_vol;

  int status;

  propagator hdibar_prop[MAX_KAP][MAX_KAP][HDIPROPS];
  propagator nrbar_prop[MAX_KAP][MAX_KAP][NRPROPS];
  
  char scratch_file[MAX_KAP][MAXFILENAME];
  
  Real norm_fac[10];
  static char *mes_kind[10] = {"PION","PS505","PS055","PS0505",
			       "RHO33","RHO0303","SCALAR","SCALA0","PV35","B12"};

  complex *pmes_prop[MAX_KAP][MAX_KAP][10];
  int pmes_prop_done[MAX_KAP][MAX_KAP];

  w_prop_file *fp_in_w[MAX_KAP];  /* For reading binary propagator files */
  w_prop_file *fp_out_w[MAX_KAP]; /* For writing binary propagator files */
  w_prop_file *fp_scr[MAX_KAP];
  
  initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  /* set up */
  prompt = setup_H_cl();
  

  /* loop over input sets */
  
  while( readin(prompt) == 0)
    {

      MaxCG = niter;
      starttime=dclock();

      avm_iters=0.0;
      meascount=0;
      
      /* Allocate space for relativistic meson propagator */
      for(num_prop=0;num_prop<10;num_prop++)
	for(i=0;i<num_kap;i++)for(j=0;j<=i;j++){
	  pmes_prop[i][j][num_prop] = (complex *)malloc(nt*sizeof(complex));
	  for(t=0;t<nt;t++){
	    pmes_prop[i][j][num_prop][t] = cmplx(0.0,0.0); 
	  }
	  pmes_prop_done[i][j] = 0;
	}

      /* Allocate space for non relativistic baryon propagators */
      for(kprop=0;kprop<NRPROPS;kprop++)
	for(i=0;i<num_kap;i++)for(j=0;j<num_kap;j++){
	  nrbar_prop[i][j][kprop].c
	    = (complex *)malloc(nt*sizeof(complex));
	  if(nrbar_prop[i][j][kprop].c == NULL)
	    {
	      printf("control_H_cl: Can't malloc nrbar prop %d %d %d\n",
		     i,j,kprop);
	      terminate(1);
	    }
	  for(t=0;t<nt;t++)nrbar_prop[i][j][kprop].c[t] 
	    = cmplx(0.0,0.0); 
	  nrbar_prop[i][j][kprop].label
	    = (char *)malloc(10*sizeof(char));
	  if(nrbar_prop[i][j][kprop].c == NULL)
	    {
	      printf("control_H_cl: Can't malloc nrbar prop label %d %d %d\n",
		     i,j,kprop);
	      terminate(1);
	    }
	}
      
      /* Allocate space for H-dibaryon channel propagators */
      for(kprop=0;kprop<HDIPROPS;kprop++)
	for(kh=0;kh<num_kap_heavy;kh++)for(kl=0;kl<num_kap_light;kl++){
	  /* kappa indexing scheme is consistent with baryon propagator
	     even though we compute only the propagators with
	     one heavy (s) quark and two light (u,d) quarks */
	  i = kh; j = kl + num_kap_heavy;
	  hdibar_prop[i][j][kprop].c
	    = (complex *)malloc(nt*sizeof(complex));
	  if(hdibar_prop[i][j][kprop].c == NULL)
	    {
	      printf("control_H_cl: Can't malloc baryon prop %d %d %d\n",
		     i,j,kprop);
	      terminate(1);
	    }
	  for(t=0;t<nt;t++)hdibar_prop[i][j][kprop].c[t] 
	    = cmplx(0.0,0.0); 
	  hdibar_prop[i][j][kprop].label
	    = (char *)malloc(10*sizeof(char));
	  if(hdibar_prop[i][j][kprop].label == NULL)
	    {
	      printf("control_H_cl: Can't malloc baryon prop label %d %d %d\n",
		     i,j,kprop);
	      terminate(1);
	    }
	}
      
      if( fixflag == COULOMB_GAUGE_FIX)
	{
	  if(this_node == 0) 
	    printf("Fixing to Coulomb gauge\n");
	  STARTIOTIME;
	  gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);
	  STOPIOTIME("gauge fix");
	  invalidate_this_clov(gen_clov);
	}
      else
	if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");
      
      /* save lattice if requested */
      if( saveflag != FORGET ){
	/* Note: beta, kappa are kept only for save_old_binary */
	STARTIOTIME;
	savelat_p = save_lattice( saveflag, savefile, stringLFN );
	STOPIOTIME("save lattice");
      }

      if(this_node==0)printf("END OF HEADER\n");
      
      /* Loop over all kappas to compute and store quark propagator */
      for(k=0;k<num_kap;k++){
	
	kappa = kap[k];
	source_r0=wqs[k].r0;
	RsdCG=resid[k];
	if(this_node==0)printf("Kappa=%e r0=%e residue=%e\n",
			       (double)kappa,(double)source_r0,(double)RsdCG);
	
	/* open file for kth wilson propagator */
	
	fp_in_w[k]  = r_open_wprop(startflag_w[k], startfile_w[k]);
	fp_out_w[k] = w_open_wprop(saveflag_w[k],  savefile_w[k],
				   wqs[k].type);
	
	/* Open scratch file and write header */
	sprintf(scratch_file[k],"%s_%02d",scratchstem_w,k);
	if(scratchflag == SAVE_CHECKPOINT)
	  {
	    fp_scr[k] = w_checkpoint_w_i(scratch_file[k]);
	    /* Close, temporarily */
	    w_checkpoint_w_c(fp_scr[k]);
	  }
	else
	  /* If serial, write header and leave it open */
	  fp_scr[k] = w_serial_w_i(scratch_file[k]);
	
	/* Loop over source colors */
	for(color=0;color<3;color++){
	  
	  for(spinindex=0;spinindex<n_spins;spinindex++){
	    spin = spins[spinindex];
	    
	    meascount ++;
	    if(this_node==0)printf("color=%d spin=%d\n",color,spin);

	    if(startflag_w[k] == CONTINUE)
	      {
		if(k == 0)
		  {
		    node0_printf("Can not continue propagator here! Zeroing it instead\n");
		    startflag_w[k] = FRESH;
		  }
		else
		  {
		    FORALLSITES(i,s)
		      copy_wvec(&(s->quark_propagator.c[color].d[spin]),
				&(s->psi));
		  }
	      }

	    /* Saves one multiplication by zero in cgilu */
	    if(startflag_w[k] == FRESH)flag = 0;
	    else 
	      flag = 1;      
	    
	    /* load psi if requested */
#ifdef IOTIME
	    status = reload_wprop_sc_to_site( startflag_w[k], fp_in_w[k], 
			       spin, color, F_OFFSET(psi),1);
#else
	    status = reload_wprop_sc_to_site( startflag_w[k], fp_in_w[k], 
			       spin, color, F_OFFSET(psi),0);
#endif	    
	    if(status != 0)
	      {
		node0_printf("control_H_cl: Recovering from error by resetting initial guess to zero\n");
		reload_wprop_sc_to_site( FRESH, fp_in_w[k], 
			       spin, color, F_OFFSET(psi),0);
		flag = 0;
	      }

	    
	    /* Invert to find propagator */

	    /* Complete the source structure */
	    wqs[k].color = color;
	    wqs[k].spin = spin;

	    /* For clover_info */
	    wqstmp = wqs[k];

	   /* If we are starting afresh, we set a minimum number
	      of iterations */
	   if(startflag_w[k] == FRESH || status != 0)MinCG = nt; 
	   else MinCG = 0;

	    /* Load inversion control structure */
	    qic.prec = PRECISION;
	    qic.min = MinCG;
	    qic.max = MaxCG;
	    qic.nrestart = nrestart;
	    qic.resid = RsdCG;
	    qic.start_flag = flag;
	    
	    /* Load Dirac matrix parameters */
	    dcp.Kappa = kappa;
	    dcp.Clov_c = clov_c;
	    dcp.U0 = u0;

#ifdef BI
	    /* compute the propagator.  Result in psi. */
	    avs_iters 
	      = (Real)wilson_invert_site_wqs(F_OFFSET(chi),F_OFFSET(psi),
					  w_source,&wqs[k],
					  bicgilu_cl_site,&qic,(void *)&dcp);
#else
	    /* compute the propagator.  Result in psi. */
	    avs_iters = 
	      (Real)wilson_invert_site_wqs(F_OFFSET(chi),F_OFFSET(psi),
					w_source,&wqs[k],
					cgilu_cl_site,&qic,(void *)&dcp);
#endif
	    avm_iters += avs_iters;
	    
	    FORALLSITES(i,s)
	      copy_wvec(&(s->psi),
			&(s->quark_propagator.c[color].d[spin]));
	    
	    STARTIOTIME;
	    /* Write psi to scratch disk */
	    if(scratchflag == SAVE_CHECKPOINT)
	      {
		w_checkpoint_w_o(fp_scr[k]);
		w_checkpoint_w(fp_scr[k],spin,color,F_OFFSET(psi));
		w_checkpoint_w_c(fp_scr[k]);
	      }
	    else
	      w_serial_w(fp_scr[k],spin,color,F_OFFSET(psi));
	    STOPIOTIME("do fast quark dump");
	    /* save psi if requested */
#ifdef IOTIME
	    save_wprop_sc_from_site( saveflag_w[k],fp_out_w[k],
			     spin,color,F_OFFSET(psi),1);
#else
	    save_wprop_sc_from_site( saveflag_w[k],fp_out_w[k],
			     spin,color,F_OFFSET(psi),0);
#endif
	  } /* source spins */
	} /* source colors */
	
	/* Close and release scratch file */
	if(scratchflag == SAVE_CHECKPOINT)
	  w_checkpoint_w_f(fp_scr[k]);
	else
	  w_serial_w_f(fp_scr[k]);

	if(this_node==0)printf("Saved binary wilson_vector in file  %s\n",
			       scratch_file[k]);
	
	/* close files for wilson propagators */
	r_close_wprop(startflag_w[k],fp_in_w[k]);
	w_close_wprop(saveflag_w[k],fp_out_w[k]);
	
      } /* kappas */
      
      
      /* Loop over choice forward - backward for NR source and sink */

      for(nr_fb = 1; nr_fb <= 2; nr_fb++)if(nr_fb & nr_forw_back)
	{
	  
	  /* Reset completion flags */
	    for(i=0;i<num_kap;i++)for(j=0;j<num_kap;j++){
	      for(kprop=0;kprop<NRPROPS;kprop++)
		nrbar_prop[i][j][kprop].done = 0;
	      for(kprop=0;kprop<HDIPROPS;kprop++)
		hdibar_prop[i][j][kprop].done = 0;
	    }

	  /* Loop over heavy kappas for the point sink spectrum */
	  for(k=0;k<num_kap_heavy;k++){
	    
	    /* Read the kth heavy kappa propagator from the scratch file */
	    kappa = kappa_heavy = kap[k];
	    if(scratchflag == SAVE_CHECKPOINT)
	      fp_scr[k] = r_parallel_w_i(scratch_file[k]);
	    else
	      fp_scr[k] = r_serial_w_i(scratch_file[k]);
	    
	    STARTIOTIME;
	    for(color=0;color<3;color++) for(spin=0;spin<4;spin++){
	      if(scratchflag == SAVE_CHECKPOINT)
		r_parallel_w(fp_scr[k], spin, color,
			     F_OFFSET(quark_propagator.c[color].d[spin])); 
	      else
		r_serial_w(fp_scr[k], spin, color,
			   F_OFFSET(quark_propagator.c[color].d[spin])); 
	    }
	    STOPIOTIME("to read 12 spin-color combinations");

	    if(scratchflag == SAVE_CHECKPOINT)
	      r_parallel_w_f(fp_scr[k]); 
	    else
	      r_serial_w_f(fp_scr[k]); 
	    
	    /* Convert to NR propagator */
	    
	    STARTPRTIME;
	    nr_propagator(F_OFFSET(quark_propagator),
			  F_OFFSET(nr_prop1), nr_fb);
	    diquarkprop(F_OFFSET(nr_prop1),
			F_OFFSET(diquark_prop1));
	    STOPPRTIME("make nr and diquark");
	    
	    /* Diagonal spectroscopy - not needed */
	    
/**	    w_nrbaryon(F_OFFSET(nr_prop1), F_OFFSET(nr_prop1),
		       F_OFFSET(diquark_prop1), nrbar_prop[k][k]); **/
	    
/**	    w_hdibaryon(F_OFFSET(diquark_prop1),
			F_OFFSET(diquark_prop1), hdibar_prop[k][k]); **/
	    
	    /* Heavy-light spectroscopy */
	    /* Loop over light kappas for the point sink spectrum */
	    for(j=num_kap_heavy;j<num_kap;j++){

	      /* Read the propagator from the scratch file */
	      kappa = kappa_light = kap[j];
	      if(scratchflag == SAVE_CHECKPOINT)
		fp_scr[j] = r_parallel_w_i(scratch_file[j]);
	      else
		fp_scr[j] = r_serial_w_i(scratch_file[j]);
	      
	      STARTIOTIME;
	      for(color=0;color<3;color++) for(spin=0;spin<4;spin++){
		if(scratchflag == SAVE_CHECKPOINT)
		  r_parallel_w(fp_scr[j], spin, color,
			       F_OFFSET(quark_prop2.c[color].d[spin])); 
		else
		  r_serial_w(fp_scr[j], spin, color,
			     F_OFFSET(quark_prop2.c[color].d[spin])); 
	      }
	      STOPIOTIME("do fast quark read");
	      if(scratchflag == SAVE_CHECKPOINT)
		r_parallel_w_f(fp_scr[j]);
	      else
		r_serial_w_f(fp_scr[j]);
	      
	      /* Convert to NR propagator */
	      
	      STARTPRTIME;
	      nr_propagator(F_OFFSET(quark_prop2),
			    F_OFFSET(nr_prop2),nr_fb);
	      diquarkprop(F_OFFSET(nr_prop2),
			  F_OFFSET(diquark_prop2));
	      STOPPRTIME("make nr and diquark propagators");
	      
	      /* Diagonal spectroscopy - baryons only - done if
		 any of them was not previously done */
	    
	      for(kprop=0;kprop<NRPROPS;kprop++)
		{
		  if(nrbar_prop[j][j][kprop].done == 0)
		    {
		      STARTPRTIME;
		      w_nrbaryon(F_OFFSET(nr_prop2), F_OFFSET(nr_prop2),
				 F_OFFSET(diquark_prop2), nrbar_prop[j][j]);
		      STOPPRTIME("do diagonal baryons");
		      break;
		    }
		}
	    
	      /* Heavy-light spectroscopy - baryons and H */

	      /* We don't do baryon heavy-light if the kappa values
		 are the same, since the result is the same as the
		 diagonal light propagator */
	      
	      if(kappa_heavy != kappa_light)
		{
		  /* Relativistic meson propagator: Do only once */		  
		  if(pmes_prop_done[j][k] == 0) {
		    STARTPRTIME;
		    for(color=0;color<3;color++){
		      w_meson_site(F_OFFSET(quark_propagator.c[color]),
			      F_OFFSET(quark_prop2.c[color]), pmes_prop[j][k]);
		    }
		    pmes_prop_done[j][k] = 1;
		    STOPPRTIME("do off-diagonal relativistic meson");
		  }

		  STARTPRTIME;
		  w_nrbaryon(F_OFFSET(nr_prop2),
			     F_OFFSET(nr_prop1),F_OFFSET(diquark_prop1),  
			     nrbar_prop[j][k]);
		  
		  w_nrbaryon(F_OFFSET(nr_prop1),
			     F_OFFSET(nr_prop2),F_OFFSET(diquark_prop2),  
			     nrbar_prop[k][j]);
		  STOPPRTIME("do two sets of hl baryons");
		}
	      
	      /* For H we do only the case prop2 = u (light) index j
		 and prop1 = s (heavy) index k */

	      STARTPRTIME;
	      w_hdibaryon(F_OFFSET(diquark_prop2),
			  F_OFFSET(diquark_prop1), hdibar_prop[k][j]);
	      STOPPRTIME("do one set of hl H dibaryons");
	      
	    } /* light kappas */
	  } /* heavy kappas */

	  /* Stick with same convention as clover_invert/control_cl_hl.c */
	  space_vol = (Real)(nx*ny*nz);
	  for(num_prop=0;num_prop<10;num_prop++) norm_fac[num_prop] = space_vol;
	  norm_fac[4] *= 3.0;
	  norm_fac[5] *= 3.0;
	  norm_fac[8] *= 3.0;
	  norm_fac[9] *= 3.0;

	  /* print relativistic meson propagators */
	  for(num_prop=0;num_prop<10;num_prop++)
	    for(i=0;i<num_kap;i++)
	      for(j=0;j<=i;j++)
		if(pmes_prop_done[i][j] == 1){
		  for(t = 0; t < nt; t++){
		    t_off = (t + source_time)%nt;
		    g_floatsum( &pmes_prop[i][j][num_prop][t_off].real );
		    pmes_prop[i][j][num_prop][t_off].real  /= norm_fac[num_prop];
		    g_floatsum( &pmes_prop[i][j][num_prop][t_off].imag );
		    pmes_prop[i][j][num_prop][t_off].imag  /= norm_fac[num_prop];
		    if(this_node == 0)
		      printf("POINT%s %d %d %d  %e %e\n",
			     mes_kind[num_prop],i,j,t,
			     (double)pmes_prop[i][j][num_prop][t_off].real,
			     (double)pmes_prop[i][j][num_prop][t_off].imag);
		  }
		}

	  /* Once printed, this propagator should be neither
             calculated nor printed again */
	  for(i=0;i<num_kap;i++)
	    for(j=0;j<=i;j++)
	      if(pmes_prop_done[i][j] == 1)
		pmes_prop_done[i][j] = 2;
	  

	  /* print non-relativistic baryon propagators */
	  if(this_node == 0)
	    for(kprop=0;kprop<NRPROPS;kprop++)
	      for(i=0;i<num_kap;i++){
		for(j=0;j<i;j++)
		  if(nrbar_prop[i][j][kprop].done==1){
		    for(t = 0; t < nt; t++){
		      t_off = (t + source_time)%nt;
		      /* Periodic boundary conditions - no wraparound sign */
		      printf("%s_NR%s %d %d %d %d  %e %e\n",
			     nr_fb_label[nr_fb],
			     nrbar_prop[i][j][kprop].label,i,j,j,t,
			     (double)nrbar_prop[i][j][kprop].c[t_off].real,
			     (double)nrbar_prop[i][j][kprop].c[t_off].imag);
		    }
		  }
		
		if(nrbar_prop[i][i][kprop].done==1)
		  for(t = 0; t < nt; t++){
		    t_off = (t + source_time)%nt;
		    printf("%s_NR%s %d %d %d %d  %e %e\n",
			   nr_fb_label[nr_fb],
			   nrbar_prop[i][j][kprop].label,i,i,i,t,
			   (double)nrbar_prop[i][i][kprop].c[t_off].real,
			   (double)nrbar_prop[i][i][kprop].c[t_off].imag);
		  }
		
		for(j=i+1;j<num_kap;j++)
		  if(nrbar_prop[i][j][kprop].done==1)
		    for(t = 0; t < nt; t++){
		      t_off = (t + source_time)%nt;
		      printf("%s_NR%s %d %d %d %d  %e %e\n",
			     nr_fb_label[nr_fb],
			     nrbar_prop[i][j][kprop].label,j,j,i,t,
			     (double)nrbar_prop[i][j][kprop].c[t_off].real,
			     (double)nrbar_prop[i][j][kprop].c[t_off].imag);
		    }
	      }

	  
	  /* print H-dibaryon mixed channel propagators */
	  if(this_node == 0)
	    for(kprop=0;kprop<HDIPROPS;kprop++)
	      for(i=0;i<num_kap;i++){
		for(j=0;j<num_kap;j++)if(hdibar_prop[i][j][kprop].done==1){
		  for(t = 0; t < nt; t++){
		    t_off = (t + source_time)%nt;
		    printf("%s_%s %d %d %d %d %e %e\n",
			   nr_fb_label[nr_fb],
			   hdibar_prop[i][j][kprop].label,i,j,j,t,
			   (double)hdibar_prop[i][j][kprop].c[t_off].real,
			   (double)hdibar_prop[i][j][kprop].c[t_off].imag);
		  }
		}
	      }
	} /* Loop over nr forward - backward */

      /* Cleanup */
      for(kprop=0;kprop<NRPROPS;kprop++)
	for(i=0;i<num_kap;i++)for(j=0;j<num_kap;j++){
	  free(nrbar_prop[i][j][kprop].c);
	  free(nrbar_prop[i][j][kprop].label);
	}
      
      for(kprop=0;kprop<HDIPROPS;kprop++)
	for(kh=0;kh<num_kap_heavy;kh++)for(kl=0;kl<num_kap_light;kl++){
	  i = kh; j = kl + num_kap_heavy;
	  free(hdibar_prop[i][j][kprop].c);
	  free(hdibar_prop[i][j][kprop].label);
	}
      
      if(this_node==0)printf("RUNNING COMPLETED\n");
      if(meascount>0){
	if(this_node==0)printf("total cg iters for measurement= %e\n",
			       (double)avm_iters);
	if(this_node==0)printf("cg iters for measurement= %e\n",
			       (double)avm_iters/(double)meascount);
      }
      
      endtime=dclock();
      if(this_node==0){
	printf("Time = %e seconds\n",(double)(endtime-starttime));
	printf("total_iters = %d\n",total_iters);
      }
      fflush(stdout);
      
    }
    return 0;
} /* control_H_cl */
Beispiel #6
0
int main(int argc, char *argv[])
{
  int prompt;
  int i, j, iq0, iq1;
#ifdef CLOV_LEAN
  int oldiq0, oldiq1, oldip0;
#endif
  double starttime, endtime;
#ifdef PRTIME
  double dtime;
#endif
  wilson_prop_field *prop[MAX_PROP];
  wilson_prop_field *quark[MAX_QK];
  
  initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  
  starttime=dclock();
    
  /* set up */
  STARTTIME;
  prompt = setup();
  ENDTIME("setup");

  /* loop over input sets */

  while( readin(prompt) == 0){

    if(prompt == 2)continue;
    
    total_iters=0;
    
#ifdef HISQ_SVD_COUNTER
    hisq_svd_counter = 0;
#endif
    
    /**************************************************************/
    /* Set up gauge field */
    
    if( param.fixflag == COULOMB_GAUGE_FIX)
      {
	if(this_node == 0) 
	  printf("Fixing to Coulomb gauge\n");

	STARTTIME;
	gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);
	ENDTIME("gauge fix");

	/* (Re)construct APE smeared links after gauge fixing.  
	   No KS phases here! */
	destroy_ape_links_3D(ape_links);
	ape_links = ape_smear_3D( param.staple_weight, param.ape_iter );

	invalidate_this_clov(gen_clov);
      }
    else
      if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");
    
    /* save lattice if requested */
    if( param.saveflag != FORGET ){
      savelat_p = save_lattice( param.saveflag, param.savefile, 
				param.stringLFN );
    } else {
      savelat_p = NULL;
    }

    if(this_node==0)printf("END OF HEADER\n");
    
    /**************************************************************/


    /* Loop over the propagators */

    STARTTIME;
    for(i=0; i<param.num_prop; i++){
      node0_printf("******* Creating propagator %d ********\n",i);fflush(stdout);
      
      /**************************************************************/
      /* Read and/or generate quark propagator */

      if(param.prop_type[i] == CLOVER_TYPE)
	{
	  int ncolor = convert_ksource_to_color(param.src_qs[i].nsource);
	  
	  prop[i] = create_wp_field(ncolor);
      
	  node0_printf("Generate Dirac propagator\n");
	  node0_printf("Kappa= %g source %s residue= %g rel= %g\n",
		       (double)param.dcp[i].Kappa,
		       param.src_qs[i].descrp,
		       (double)param.qic[i].resid,
		       (double)param.qic[i].relresid);
	  
	  /* For clover_info */
	  wqstmp = param.src_qs[i];
	  dcptmp = param.dcp[i];

	  total_iters += get_wprop_to_wp_field(param.prop_type[i],
					       param.startflag_w[i], 
					       param.startfile_w[i], 
					       param.saveflag_w[i], 
					       param.savefile_w[i],
					       prop[i], 
					       &param.src_qs[i],
					       &param.qic[i], 
					       (void *)&param.dcp[i],
					       param.bdry_phase[i],
					       param.coord_origin,
					       param.check[i]);
#ifdef CLOV_LEAN
	  /* Free clover prop memory if we have saved the prop to disk */
	  if(param.saveflag_w[i] != FORGET){
	    free_wp_field(prop[i]);
	    clear_qs(&param.src_qs[i]);
	    node0_printf("destroy prop[%d]\n",i);
	  }
#endif
	}
	
      /* ------------------------------------------- */
      else if(param.prop_type[i] == IFLA_TYPE)
	{
	  int ncolor = convert_ksource_to_color(param.src_qs[i].nsource);
	  

	  prop[i] = create_wp_field(ncolor);
      
	  node0_printf("Generate Dirac IFLA propagator\n");
	  if(this_node==0)printf("Kappa= %g source %s residue= %g rel= %g\n",
				 (double)param.nap[i].kapifla,
				 param.src_qs[i].descrp,
				 (double)param.qic[i].resid,
				 (double)param.qic[i].relresid);
	 
	  /* For clover_info */
	  wqstmp = param.src_qs[i];
	  naptmp = param.nap[i];
	  
	  total_iters += get_wprop_to_wp_field(param.prop_type[i],
					       param.startflag_w[i], 
					       param.startfile_w[i], 
					       param.saveflag_w[i], 
					       param.savefile_w[i],
					       prop[i], 
					       &param.src_qs[i], 
					       &param.qic[i], 
					       (void *)&param.nap[i],
					       param.bdry_phase[i],
					       param.coord_origin,
					       param.check[i]);
#ifdef CLOV_LEAN
	  /* Free clover prop memory if we have saved the prop to disk */
	  if(param.saveflag_w[i] != FORGET){
	    free_wp_field(prop[i]);
	    clear_qs(&param.src_qs[i]);
	    node0_printf("destroy prop[%d]\n",i);
	  }
#endif
	}
      else if(param.prop_type[i] == KS_TYPE || param.prop_type[i] == KS0_TYPE ) /* KS_TYPE */
	{
	  prop[i] = create_wp_field(param.src_qs[i].ncolor);

	  if(this_node==0)printf("Mass= %g source %s residue= %g rel= %g\n",
				 (double)param.ksp[i].mass,
				 param.src_qs[i].descrp,
				 (double)param.qic[i].resid,
				 (double)param.qic[i].relresid);
	  
	  total_iters += get_ksprop_to_wp_field(param.startflag_ks[i], 
						param.startfile_ks[i], 
						param.saveflag_ks[i], 
						param.savefile_ks[i],
						prop[i], 
						&param.src_qs[i],
						&param.qic[i], 
						&param.ksp[i],
						param.bdry_phase[i],
						param.coord_origin,
						param.check[i],
						param.prop_type[i] == KS0_TYPE);
#ifdef CLOV_LEAN
	  /* (We don't free naive prop memory, since we don't save it
	     as a clover prop in get_ksprop_to_wp_field) */
#endif
	}
      else /* KS4_TYPE */
	{
	  prop[i] = create_wp_field(param.src_qs[i].ncolor);

	  if(this_node==0)printf("Mass= %g source %s residue= %g rel= %g\n",
				 (double)param.ksp[i].mass,
				 param.src_qs[i].descrp,
				 (double)param.qic[i].resid,
				 (double)param.qic[i].relresid);
	  
	  total_iters += get_ksprop4_to_wp_field(param.startflag_w[i], 
						 param.startfile_w[i], 
						 param.saveflag_w[i], 
						 param.savefile_w[i],
						 prop[i], 
						 &param.src_qs[i],
						 &param.qic[i], 
						 &param.ksp[i],
						 param.bdry_phase[i],
						 param.coord_origin,
						 param.check[i]);
	}
      
    } /* propagators */
    ENDTIME("compute propagators");

    /*****************************************************************/
    /* Complete the quark propagators by applying the sink operators
       to either the raw propagator or by building on an existing quark
       propagator */
    
    STARTTIME;
#ifdef CLOV_LEAN
    oldip0 = -1;
    oldiq0 = -1;
    oldiq1 = -1;
#endif
    for(j=0; j<param.num_qk; j++){
      node0_printf("******* Creating quark %d ********\n",j); fflush(stdout);
      i = param.prop_for_qk[j];

      if(param.parent_type[j] == PROP_TYPE){
#ifdef CLOV_LEAN
	/* Restore clover prop[i] from file. */
	/* But first destroy the old one, unless we still need it */
	if(oldip0 >= 0 && oldip0 != i)
	  if(param.prop_type[oldip0] == CLOVER_TYPE &&
	     param.saveflag_w[oldip0] != FORGET){
	    free_wp_field(prop[oldip0]);
	    node0_printf("destroy prop[%d]\n",oldip0);
	  }
	
	/* In this case we won't need any old quarks */
	if(oldiq0 >= 0)
	  if(param.saveflag_q[oldiq0] != FORGET){
	    free_wp_field(quark[oldiq0]);
	    node0_printf("destroy quark[%d]\n",oldiq0);
	  }

	if(oldiq1 >= 0)
	  if(param.saveflag_q[oldiq1] != FORGET){
	    free_wp_field(quark[oldiq1]);
	    node0_printf("destroy quark[%d]\n",oldiq1);
	  }

	if(prop[i]->swv[0] == NULL)
	  reread_wprop_to_wp_field(param.saveflag_w[i], param.savefile_w[i], prop[i]);
#endif
	/* Before applying operator, apply momentum twist to
	   ape_links.  Use the momentum twist of the parent
	   propagator */
	momentum_twist_ape_links(i, +1);
	/* Apply sink operator quark[j] <- Op[j] prop[i] */
	quark[j] = create_wp_field_copy(prop[i]);
	wp_sink_op(&param.snk_qs_op[j], quark[j]);
	/* Remove twist */
	momentum_twist_ape_links(i, -1);
#ifdef CLOV_LEAN
	oldip0 = i;
	oldiq0 = -1;
#endif
      }
      else if(param.parent_type[j] == QUARK_TYPE) { /* QUARK_TYPE */
#ifdef CLOV_LEAN
	/* Restore quark[i] from file */
	/* But first destroy the old ones, unless we still need one of them */
	
	/* In this case we won't need the old prop */
	if(oldip0 >= 0)
	   if(param.prop_type[oldip0] == CLOVER_TYPE &&
	      param.saveflag_w[oldip0] != FORGET){
	     free_wp_field(prop[oldip0]);
	     node0_printf("destroy prop[%d]\n",oldip0);
	   }

	if(oldiq0 >= 0 && oldiq0 != i)
	  if(param.saveflag_q[oldiq0] != FORGET){
	    free_wp_field(quark[oldiq0]);
	    node0_printf("destroy quark[%d]\n",oldiq0);
	  }

	if(oldiq1 >= 0 && oldiq1 != i)
	  if(param.saveflag_q[oldiq1] != FORGET){
	    free_wp_field(quark[oldiq1]);
	    node0_printf("destroy quark[%d]\n",oldiq1);
	  }

	if(quark[i]->swv[0] == NULL)
	  reread_wprop_to_wp_field(param.saveflag_q[i], param.savefile_q[i], quark[i]);
	
#endif
	/* Apply sink operator quark[j] <- Op[j] quark[i] */
	momentum_twist_ape_links(i, +1);
	quark[j] = create_wp_field_copy(quark[i]);
	wp_sink_op(&param.snk_qs_op[j], quark[j]);
	momentum_twist_ape_links(i, -1);
#ifdef CLOV_LEAN
	oldip0 = -1;
	oldiq0 = i;
#endif
      } else { /* COMBO_TYPE */
	int k;
	int nc = quark[param.combo_qk_index[j][0]]->nc;
	/* Create a zero field */
	quark[j] = create_wp_field(nc);
	/* Compute the requested linear combination */
	for(k = 0; k < param.num_combo[j]; k++){
	  wilson_prop_field *q = quark[param.combo_qk_index[j][k]];
	  if(nc != q->nc){
	    printf("Error: Attempting to combine an inconsistent number of colors: %d != %d\n",nc, q->nc);
	    terminate(1);
	  }
	  scalar_mult_add_wprop_field(quark[j], q, param.combo_coeff[j][k], quark[j]);
	}
      }
	
      /* Save the resulting quark[j] if requested */
      dump_wprop_from_wp_field( param.saveflag_q[j], param.savetype_q[j],
				param.savefile_q[j], quark[j]);

      /* Can we delete any props and quarks now? */
      /* If nothing later depends on a prop or quark, free it up. */
      for(i = 0; i < param.num_prop; i++)
	if( prop[i]->swv[0] != NULL  &&  param.prop_dep_qkno[i] < j ){
	  free_wp_field(prop[i]);
	  node0_printf("free prop[%d]\n",i);
	}
      
      for(i = 0; i < j; i++)
	if( quark[i]->swv[0] != NULL  &&  param.quark_dep_qkno[i] < j ){
	  free_wp_field(quark[i]);
	  node0_printf("free quark[%d]\n",i);
	}
#ifdef CLOV_LEAN
      oldiq1 = j;
#endif
    }

#ifdef CLOV_LEAN
    /* Free remaining memory */
    if(oldip0 >= 0)
       if(param.prop_type[oldip0] == CLOVER_TYPE &&
	  param.saveflag_w[oldip0] != FORGET){
	 free_wp_field(prop[oldip0]);
	 node0_printf("destroy prop[%d]\n",oldip0);
       }
    
    if(oldiq0 >= 0)
      if(param.saveflag_q[oldiq0] != FORGET){
	free_wp_field(quark[oldiq0]);
	node0_printf("destroy quark[%d]\n",oldiq0);
      }
    
    if(oldiq1 >= 0)
      if(param.saveflag_q[oldiq1] != FORGET){
	free_wp_field(quark[oldiq1]);
	node0_printf("destroy quark[%d]\n",oldiq1);
      }
#endif

    /* Now destroy all remaining propagator fields */

    for(i = 0; i < param.num_prop; i++){
      if(prop[i] != NULL)node0_printf("destroy prop[%d]\n",i);
      destroy_wp_field(prop[i]);
      prop[i] = NULL;
    }
    ENDTIME("generate quarks");
    
    /****************************************************************/
    /* Compute the meson propagators */

    STARTTIME;
    for(i = 0; i < param.num_pair; i++){

      /* Index for the quarks making up this meson */
      iq0 = param.qkpair[i][0];
      iq1 = param.qkpair[i][1];

      node0_printf("Mesons for quarks %d and %d\n",iq0,iq1);

#ifdef CLOV_LEAN
      /* Restore quarks from file and free old memory */
      /* We try to reuse props that are already in memory, so we don't
         destroy them immediately, but wait to see if we need
         them again for the next pair. */
      if(i > 0 && oldiq0 != iq0 && oldiq0 != iq1)
	if(param.saveflag_q[oldiq0] != FORGET){
	  free_wp_field(quark[oldiq0]);
	  node0_printf("destroy quark[%d]\n",oldiq0);
	}
      
      if(i > 0 && oldiq1 != iq0 && oldiq1 != iq1)
	if(param.saveflag_q[oldiq1] != FORGET){
	  free_wp_field(quark[oldiq1]);
	  node0_printf("destroy quark[%d]\n",oldiq1);
	}

      if(quark[iq0]->swv[0] == NULL)
	reread_wprop_to_wp_field(param.saveflag_q[iq0], param.savefile_q[iq0], quark[iq0]);

      if(quark[iq1]->swv[0] == NULL){
	reread_wprop_to_wp_field(param.saveflag_q[iq1], param.savefile_q[iq1], quark[iq1]);
      }
#endif

      /* Tie together to generate hadron spectrum */
      spectrum_cl(quark[iq0], quark[iq1], i);

      /* Remember, in case we need to free memory */
#ifdef CLOV_LEAN
      oldiq0 = iq0;
      oldiq1 = iq1;
#endif
    }
#ifdef CLOV_LEAN
    /* Free any remaining quark prop memory */
    if(quark[oldiq0]->swv[0] != NULL)
      if(param.saveflag_q[oldiq0] != FORGET){
	free_wp_field(quark[oldiq0]);
	node0_printf("destroy quark[%d]\n",oldiq0);
      }
    if(quark[oldiq1]->swv[0] != NULL)
      if(param.saveflag_q[oldiq1] != FORGET){
	free_wp_field(quark[oldiq1]);
	node0_printf("destroy quark[%d]\n",oldiq1);
      }
#endif
    ENDTIME("tie hadron correlators");

    node0_printf("RUNNING COMPLETED\n");
    endtime=dclock();

    node0_printf("Time = %e seconds\n",(double)(endtime-starttime));
    node0_printf("total_iters = %d\n",total_iters);
#ifdef HISQ_SVD_COUNTER
    printf("hisq_svd_counter = %d\n",hisq_svd_counter);
#endif
    fflush(stdout);

    for(i = 0; i < param.num_qk; i++){
      if(quark[i] != NULL)node0_printf("destroy quark[%d]\n",i);
      destroy_wp_field(quark[i]);
      quark[i] = NULL;
    }

    destroy_ape_links_3D(ape_links);

    /* Destroy fermion links (possibly created in make_prop()) */

#if FERM_ACTION == HISQ
    destroy_fermion_links_hisq(fn_links);
#else
    destroy_fermion_links(fn_links);
#endif
    fn_links = NULL;

  } /* readin(prompt) */

#ifdef HAVE_QUDA
  qudaFinalize();
#endif
  normal_exit(0);

  return 0;
}
Beispiel #7
0
MUST COMPILE WITH QIO FOR THE SCRATCH FILE
#endif

/* Comment these out if you want to suppress detailed timing */
/*#define IOTIME*/
/*#define PRTIME*/

int main(int argc, char *argv[])
{
  int meascount;
  int prompt;
  Real avm_iters,avs_iters;
  
  double starttime,endtime;
#ifdef IOTIME
  double dtime;
  int iotime = 1;
#else
  int iotime = 0;
#endif
  
  int MinCG,MaxCG;
  Real RsdCG, RRsdCG;
  
  int spin,color,j,k;
  int flag;
  int status;
  
  w_prop_file *fp_in_w[MAX_KAP];        /* For reading binary propagator files */
  w_prop_file *fp_out_w[MAX_KAP];       /* For writing binary propagator files */
  w_prop_file *fp_scr[MAX_KAP];
  quark_source wqs_scr;  /* scratch file */
  char scratch_file[MAX_KAP][MAXFILENAME];
  
  wilson_vector *psi = NULL;
  wilson_prop_field *quark_propagator = NULL;
  wilson_prop_field *quark_prop2 = NULL;
  int cg_cl = CL_CG;
  int source_type;
  
  initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  /* set up */
  prompt = setup_cl();
  /* loop over input sets */
  
  psi = create_wv_field();
  quark_propagator = create_wp_field(3);
  quark_prop2 = create_wp_field(3);

  while( readin(prompt) == 0)
    {
      
      starttime=dclock();
      MaxCG=niter;
      
      avm_iters=0.0;
      meascount=0;
      
      spectrum_cl_hl_init();
  
      if( fixflag == COULOMB_GAUGE_FIX)
	{
	  if(this_node == 0) 
	    printf("Fixing to Coulomb gauge\n");
#ifdef IOTIME
	  dtime = -dclock();
#endif
	  gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);
#ifdef IOTIME
	  dtime += dclock();
	  if(this_node==0)printf("Time to gauge fix = %e\n",dtime);
#endif
	  invalidate_this_clov(gen_clov);
	}
      else
	if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");
      
      /* save lattice if requested */
      if( saveflag != FORGET ){
	savelat_p = save_lattice( saveflag, savefile, stringLFN );
      }
      
      if(this_node==0)printf("END OF HEADER\n");
      
      /*	if(this_node==0) printf("num_kap = %d\n", num_kap); */
      /* Loop over kappas to compute and store quark propagator */
      for(k=0;k<num_kap;k++){
	
	kappa=kap[k];
	RsdCG=resid[k];
	RRsdCG=relresid[k];
	if(this_node==0)printf("Kappa= %g r0= %g residue= %g rel= %g\n",
			       (double)kappa,(double)wqs.r0,(double)RsdCG,
			       (double)RRsdCG);
	
	/* open files for wilson propagators */
	
#ifdef IOTIME
	dtime = -dclock();
#endif
	wqstmp = wqs;  /* For clover_info.c */
	fp_in_w[k]  = r_open_wprop(startflag_w[k], startfile_w[k]);
	fp_out_w[k] = w_open_wprop(saveflag_w[k],  savefile_w[k],
				   wqs.type);
#ifdef IOTIME
	dtime += dclock();
	if(startflag_w[k] != FRESH)
	  node0_printf("Time to open prop = %e\n",dtime);
#endif
	
	/* Open scratch file and write header */
	sprintf(scratch_file[k],"%s_%02d",scratchstem_w,k);
	source_type = UNKNOWN;
	fp_scr[k] = w_open_wprop(scratchflag, scratch_file[k], source_type);
	init_qs(&wqs_scr);

	  
	/* Loop over source spins */
	for(spin=0;spin<4;spin++){
	  /* Loop over source colors */
	  for(color=0;color<3;color++){
	    meascount ++;
	    /*if(this_node==0)printf("color=%d spin=%d\n",color,spin);*/
	    
	    if(startflag_w[k] == CONTINUE)
	      {
		if(k == 0)
		  {
		    node0_printf("Can not continue propagator here! Zeroing it instead\n");
		    startflag_w[k] = FRESH;
		  }
		else
		  {
		    copy_wv_from_wp(psi, quark_propagator, color, spin);
		  }
	      }
	    
	    /* Saves one multiplication by zero in cgilu */
	    if(startflag_w[k] == FRESH)flag = 0;
	    else 
	      flag = 1;      
	    
	    /* load psi if requested */
	    status = reload_wprop_sc_to_field( startflag_w[k], fp_in_w[k], 
					       &wqs, spin, color, psi, iotime);
	    if(status != 0)
	      {
		node0_printf("control_cl_hl: Recovering from error by resetting initial guess to zero\n");
		reload_wprop_sc_to_field( FRESH, fp_in_w[k], &wqs,
					  spin, color, psi,0);
		flag = 0;
	      }
	    
	    /* Complete the source structure */
	    wqs.color = color;
	    wqs.spin = spin;
	    
	    /* If we are starting afresh, we set a minimum number
	       of iterations */
	    if(startflag_w[k] == FRESH || status != 0)MinCG = nt/2; 
	    else MinCG = 0;
	    
	    /* Load inversion control structure */
	    qic.prec = PRECISION;
	    qic.min = 0;
	    qic.max = MaxCG;
	    qic.nrestart = nrestart;
	    qic.parity = EVENANDODD;
	    qic.start_flag = flag;
	    qic.nsrc = 1;
	    qic.resid = RsdCG;
	    qic.relresid = RRsdCG;
	    
	    /* Load Dirac matrix parameters */
	    dcp.Kappa = kappa;
	    dcp.Clov_c = clov_c;
	    dcp.U0 = u0;
	    
	    switch (cg_cl) {
	    case BICG:
	      avs_iters =
		(Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
					      bicgilu_cl_field,
					      &qic,(void *)&dcp);
	      break;
	    case HOP:
	      avs_iters = 
		(Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
					      hopilu_cl_field,
					      &qic,(void *)&dcp);
	      break;
	    case MR:
	      avs_iters = 
		(Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
					      mrilu_cl_field,
					      &qic,(void *)&dcp);
		break;
	    case CG:
	      avs_iters = 
		(Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
					      cgilu_cl_field,
					      &qic,(void *)&dcp);
	      break;
	    default:
	      node0_printf("main(%d): Inverter choice %d not supported\n",
			   cg_cl, this_node);
	    }
	    
	    avm_iters += avs_iters;
	    
	    copy_wp_from_wv(quark_propagator, psi, color, spin);
	    
	    /* Write psi to scratch disk */
#ifdef IOTIME
	    dtime = -dclock();
#endif
	    save_wprop_sc_from_field(scratchflag, fp_scr[k], &wqs_scr,
				     spin, color, psi, "Scratch record", iotime);
#ifdef IOTIME
	    dtime += dclock();
	    if(this_node==0) 
	      printf("Time to dump prop spin %d color %d %e\n",
		     spin,color,dtime);
#endif
	    
	    /* save psi if requested */
	    save_wprop_sc_from_field( saveflag_w[k],fp_out_w[k], &wqs,
				      spin,color,psi,"", iotime);
	    
	  } /* source colors */
	} /* source spins */
	
	/* Close and release scratch file */
	w_close_wprop(scratchflag, fp_scr[k]);
	
	/*if(this_node==0)printf("Dumped prop to file  %s\n",
	  scratch_file[k]); */
	
	/* close files for wilson propagators */
#ifdef IOTIME
	dtime = -dclock();
#endif
	r_close_wprop(startflag_w[k],fp_in_w[k]);
	w_close_wprop(saveflag_w[k],fp_out_w[k]);
#ifdef IOTIME
	dtime += dclock();
	if(saveflag_w[k] != FORGET)
	  node0_printf("Time to close prop = %e\n",dtime);
#endif
	
      } /* kappas */
      
      
      /* Loop over heavy kappas for the point sink spectrum */
      for(k=0;k<num_kap;k++){
	
	/* Read the propagator from the scratch file */

#ifdef IOTIME
	dtime = -dclock();
#endif
	kappa=kap[k];
	init_qs(&wqs_scr);
	reload_wprop_to_wp_field(scratchflag, scratch_file[k], &wqs_scr,
				 quark_propagator, iotime);
#ifdef IOTIME
	dtime += dclock();
	if(this_node==0) 
	  {
	    printf("Time to read 12 spin,color combinations %e\n",dtime);
	    fflush(stdout);
	  }
#endif
	
	/*if(this_node==0)
	  printf("Closed scratch file %s\n",scratch_file[k]);
	  fflush(stdout); */
	
	/* Diagonal spectroscopy */
	spectrum_cl_hl_diag_baryon(quark_propagator, k);
	spectrum_cl_hl_diag_meson(quark_propagator, k);
	spectrum_cl_hl_diag_rot_meson(quark_propagator, k);
	if(strstr(spectrum_request,",sink_smear,") != NULL){
	  spectrum_cl_hl_diag_smeared_meson(quark_propagator, k);
	}
	
	/* Heavy-light spectroscopy */
	/* Loop over light kappas for the point sink spectrum */
	for(j=k+1;j<num_kap;j++){

#ifdef IOTIME
	  dtime = -dclock();
#endif
	  /* Read the propagator from the scratch file */
	  kappa=kap[j];
	  init_qs(&wqs_scr);
	  reload_wprop_to_wp_field(scratchflag,  scratch_file[j], &wqs_scr,
				   quark_prop2, iotime);
#ifdef IOTIME
	  dtime += dclock();
	  if(this_node==0) 
	    {
	      printf("Time to read 12 spin,color combinations %e\n",dtime);
	      fflush(stdout);
	    }
#endif
#ifdef PRTIME
	  dtime = -dclock();
#endif
	  spectrum_cl_hl_offdiag_baryon( quark_propagator, quark_prop2, 
					 j, k);
	  spectrum_cl_hl_offdiag_meson( quark_propagator, quark_prop2, 
					j, k);
	  spectrum_cl_hl_offdiag_rot_meson( quark_propagator, quark_prop2, 
					    j, k);
	  
#ifdef PRTIME
	  dtime = -dclock();
#endif
	} /* light kappas */
	
	/* Smear the heavy propagator in place */
	sink_smear_prop( quark_propagator );
	
	/* Write the smeared propagator to the scratch file (overwriting)*/
	
	kappa=kap[k];

#ifdef IOTIME
	dtime = -dclock();
#endif
	save_wprop_from_wp_field(scratchflag, scratch_file[k], &wqs_scr,
				 quark_propagator, "Scratch propagator", 
				 iotime);
	
#ifdef IOTIME
	dtime += dclock();
	if(this_node==0) 
	  {
	    printf("Time to dump convolution %d %e\n",k,dtime);
	    fflush(stdout);
	  }
#endif
      } /* heavy kappas */
      
      /* Loop over heavy kappas for the shell sink spectrum */
      if(strstr(spectrum_request,",sink_smear,") != NULL)
	for(k=0;k<num_kap;k++){
	  
#ifdef IOTIME
	  dtime = -dclock();
#endif
	  /* Read the propagator from the scratch file */
	  kappa=kap[k];
	  init_qs(&wqs_scr);
	  reload_wprop_to_wp_field(scratchflag,  scratch_file[k], &wqs_scr,
				   quark_propagator, iotime);
#ifdef IOTIME
	  dtime += dclock();
	  if(this_node==0) 
	    {
	      printf("Time to read convolution %d %e\n",k,dtime);
	      fflush(stdout);
	    }
#endif
	  
	  /* Diagonal spectroscopy */
	  spectrum_cl_hl_diag_smeared_meson(quark_propagator, k);
	  
	  /* Heavy-light spectroscopy */
	  /* Loop over light kappas for the shell sink spectrum */
	  for(j=k+1;j<num_kap;j++){
#ifdef PRTIME
	    dtime = -dclock();
#endif
	    /* Read the propagator from the scratch file */
	    kappa=kap[j];
	    init_qs(&wqs_scr);
	    reload_wprop_to_wp_field(scratchflag,  scratch_file[j], &wqs_scr,
				     quark_prop2, iotime);
	      
	    /* Compute the spectrum */
	    spectrum_cl_hl_offdiag_smeared_meson( quark_propagator,
						  quark_prop2, j, k);
	    
#ifdef PRTIME
	    dtime += dclock();
	    if(this_node==0) 
	      {
		printf("Time to read and do off diagonal mesons %d %d %e\n",
		       j,k,dtime);
		fflush(stdout);
	      }
#endif
	} /* light kappas */
	
      } /* heavy kappas */
      
      spectrum_cl_hl_print(wqs.t0);
      spectrum_cl_hl_cleanup();

      if(this_node==0)printf("RUNNING COMPLETED\n");
      if(meascount>0){
	if(this_node==0)printf("total cg iters for measurement= %e\n",
			       (double)avm_iters);
	if(this_node==0)printf("cg iters for measurement= %e\n",
			       (double)avm_iters/(double)meascount);
      }
      
      endtime=dclock();
      if(this_node==0){
	printf("Time = %e seconds\n",(double)(endtime-starttime));
	printf("total_iters = %d\n",total_iters);
      }
      fflush(stdout);
    }
      
  destroy_wv_field(psi);
  destroy_wp_field(quark_propagator);
  
  return 0;
}
Beispiel #8
0
int main(int argc, char *argv[])
{
  int meascount;
  int prompt;
  Real avm_iters,avs_iters;
  
  double starttime,endtime;
#ifdef IOTIME
  double dtime;
  int iotime = 1;
#else
  int iotime = 0;
#endif
  
  int MaxCG;
  Real RsdCG, RRsdCG;
  
  int spin,color,k;
  int flag;

  int status;

  int cl_cg = CL_CG;

  w_prop_file *fp_in_w[MAX_KAP];        /* For propagator files */
  w_prop_file *fp_out_w[MAX_KAP];       /* For propagator files */

  wilson_vector *psi = NULL;
  wilson_prop_field quark_propagator = NULL;
  
  initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  /* set up */
  prompt = setup_cl();
  /* loop over input sets */

  psi = create_wv_field();
  quark_propagator = create_wp_field();
  
  while( readin(prompt) == 0)
    {
      
      starttime=dclock();
      MaxCG=niter;
      wqstmp = wqs;  /* For clover_info.c */
      
      avm_iters=0.0;
      meascount=0;
      
      if( fixflag == COULOMB_GAUGE_FIX)
	{
	  if(this_node == 0) 
	    printf("Fixing to Coulomb gauge\n");
#ifdef IOTIME
	  dtime = -dclock();
#endif
	  gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);
#ifdef IOTIME
	  dtime += dclock();
	  if(this_node==0)printf("Time to gauge fix = %e\n",dtime);
#endif
	  invalidate_this_clov(gen_clov);
	}
      else
	if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");
      
      /* save lattice if requested */
      if( saveflag != FORGET ){
	savelat_p = save_lattice( saveflag, savefile, stringLFN );
      }
      
      if(this_node==0)printf("END OF HEADER\n");
      
      /*	if(this_node==0) printf("num_kap = %d\n", num_kap); */
      /* Loop over kappas */
      for(k=0;k<num_kap;k++){
	
	kappa=kap[k];
	RsdCG=resid[k];
	RRsdCG=relresid[k];
	if(this_node==0)printf("Kappa= %g r0= %g residue= %g rel= %g\n",
			       (double)kappa,(double)wqs.r0,(double)RsdCG,
			       (double)RRsdCG);
	
	/* open files for wilson propagators */
	
#ifdef IOTIME
	dtime = -dclock();
#endif
	fp_in_w[k]  = r_open_wprop(startflag_w[k], startfile_w[k]);
#ifdef IOTIME
	dtime += dclock();
	if(startflag_w[k] != FRESH)
	node0_printf("Time to open prop = %e\n",dtime);
#endif
	fp_out_w[k] = w_open_wprop(saveflag_w[k],  savefile_w[k],
				   wqs.type);
	
	
	/* Loop over source spins */
	for(spin=0;spin<4;spin++){
	  /* Loop over source colors */
	  for(color=0;color<3;color++){
	  
	    meascount ++;
	    /*if(this_node==0)printf("color=%d spin=%d\n",color,spin); */
	    if(startflag_w[k] == CONTINUE)
	      {
		node0_printf("Can not continue propagator here! Zeroing it instead\n");
		startflag_w[k] = FRESH;
	      }
	    
	    /* Saves one multiplication by zero in cgilu */
	    if(startflag_w[k] == FRESH)flag = 0;
	    else 
	      flag = 1;      
	    
	    /* load psi if requested */
	    status = reload_wprop_sc_to_field( startflag_w[k], fp_in_w[k], 
				       &wqs, spin, color, psi, iotime);

	    if(status != 0)
	      {
		node0_printf("control_cl: Recovering from error by resetting initial guess to zero\n");
		reload_wprop_sc_to_field( FRESH, fp_in_w[k], &wqs,
			       spin, color, psi, 0);
		flag = 0;
	      }

	    /* Complete the source structure */
	    wqs.color = color;
	    wqs.spin = spin;

	    /* Load inversion control structure */
	    qic.prec = PRECISION;
	    qic.max = MaxCG;
	    qic.nrestart = nrestart;
	    qic.resid = RsdCG;
	    qic.relresid = RRsdCG;
	    qic.start_flag = flag;
	    
	    /* Load Dirac matrix parameters */
	    dcp.Kappa = kappa;
	    dcp.Clov_c = clov_c;
	    dcp.U0 = u0;


	    /* compute the propagator.  Result in psi. */
	    
	    switch (cl_cg) {
	      case BICG:
		avs_iters =
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						bicgilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      case HOP:
		avs_iters = 
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						hopilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      case MR:
		avs_iters = 
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						mrilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      case CG:
		avs_iters = 
		  (Real)wilson_invert_field_wqs(&wqs, w_source_field, psi,
						cgilu_cl_field,
						&qic,(void *)&dcp);
		break;
	      default:
		node0_printf("main(%d): Inverter choice %d not supported\n",
			     this_node,cl_cg);
	      }

	    avm_iters += avs_iters;

	    copy_wp_from_wv(quark_propagator, psi, color, spin);
	    
	    /* save psi if requested */
	    save_wprop_sc_from_field( saveflag_w[k],fp_out_w[k], &wqs,
			     spin,color,psi,"Fill in record info here",iotime);
	  } /* source spins */
	} /* source colors */
	
	/* close files for wilson propagators */
	r_close_wprop(startflag_w[k],fp_in_w[k]);
#ifdef IOTIME
	dtime = -dclock();
#endif
	w_close_wprop(saveflag_w[k],fp_out_w[k]);
#ifdef IOTIME
      dtime += dclock();
      if(saveflag_w[k] != FORGET)
	node0_printf("Time to close prop = %e\n",dtime);
#endif
	
	/* spectrum, if requested */

	if(strstr(spectrum_request,",spectrum,") != NULL)
	  spectrum_cl(quark_propagator, wqs.t0, k);

      } /* kappas */


      if(this_node==0)printf("RUNNING COMPLETED\n");
      if(meascount>0){
	if(this_node==0)printf("total cg iters for measurement= %e\n",
			       (double)avm_iters);
	if(this_node==0)printf("cg iters for measurement= %e\n",
			       (double)avm_iters/(double)meascount);
      }
      
      endtime=dclock();
      if(this_node==0){
	printf("Time = %e seconds\n",(double)(endtime-starttime));
	printf("total_iters = %d\n",total_iters);
      }
      fflush(stdout);
      
    }

  destroy_wv_field(psi);
  destroy_wp_field(quark_propagator);
  return 0;
}
Beispiel #9
0
int
main( int argc, char **argv )
{
  int meascount,traj_done;
  int prompt;
  int s_iters, avs_iters, avspect_iters, avbcorr_iters;
  double dtime, dclock();
  
  initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  /* set up */
  prompt = setup();

//  restore_random_state_scidac_to_site("randsave", F_OFFSET(site_prn));
//  restore_color_vector_scidac_to_site("xxx1save", F_OFFSET(xxx1),1);
//  restore_color_vector_scidac_to_site("xxx2save", F_OFFSET(xxx2),1);

  /* loop over input sets */
  while( readin(prompt) == 0) {
    
    /* perform warmup trajectories */
    dtime = -dclock();
    for( traj_done=0; traj_done < warms; traj_done++ ){
      update();
    }
    node0_printf("WARMUPS COMPLETED\n"); fflush(stdout);
    
    /* perform measuring trajectories, reunitarizing and measuring 	*/
    meascount=0;		/* number of measurements 		*/
    avspect_iters = avs_iters = avbcorr_iters = 0;
    for( traj_done=0; traj_done < trajecs; traj_done++ ){ 
      
      /* do the trajectories */
      s_iters=update();
      
      /* measure every "propinterval" trajectories */
      if( (traj_done%propinterval)==(propinterval-1) ){
	
	/* call gauge_variable fermion_variable measuring routines */
	/* results are printed in output file */
	rephase(OFF);
	g_measure( );
	rephase(ON);

	/* Load fat and long links for fermion measurements */
	load_ferm_links(&fn_links, &ks_act_paths);
#ifdef DM_DU0
	load_ferm_links(&fn_links_dmdu0, &ks_act_paths_dmdu0);
#endif

	/* Measure pbp, etc */
#ifdef ONEMASS
	f_meas_imp(F_OFFSET(phi),F_OFFSET(xxx),mass, &fn_links, 
		   &fn_links_dmdu0);
#else
	f_meas_imp( F_OFFSET(phi1), F_OFFSET(xxx1), mass1, 
		    &fn_links, &fn_links_dmdu0);
	f_meas_imp( F_OFFSET(phi2), F_OFFSET(xxx2), mass2,
		    &fn_links, &fn_links_dmdu0);
#endif

	/* Measure derivatives wrto chemical potential */
#ifdef D_CHEM_POT
#ifdef ONEMASS
	Deriv_O6( F_OFFSET(phi1), F_OFFSET(xxx1), F_OFFSET(xxx2), mass,
		  &fn_links, &fn_links_dmdu0);
#else
	Deriv_O6( F_OFFSET(phi1), F_OFFSET(xxx1), F_OFFSET(xxx2), mass1,
		  &fn_links, &fn_links_dmdu0);
	Deriv_O6( F_OFFSET(phi1), F_OFFSET(xxx1), F_OFFSET(xxx2), mass2,
		  &fn_links, &fn_links_dmdu0);
#endif
#endif

#ifdef SPECTRUM 
	/* Fix TUP Coulomb gauge - gauge links only*/
	rephase( OFF );
	gaugefix(TUP,(Real)1.8,500,(Real)GAUGE_FIX_TOL);
	rephase( ON );
#ifdef FN
	invalidate_all_ferm_links(&fn_links);
#ifdef DM_DU0
	invalidate_all_ferm_links(&fn_links_dmdu0);
#endif
#endif
	/* Load fat and long links for fermion measurements */
	load_ferm_links(&fn_links, &ks_act_paths);
#ifdef DM_DU0
	load_ferm_links(&fn_links_dmdu0, &ks_act_paths_dmdu0);
#endif	
	if(strstr(spectrum_request,",spectrum,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum2(mass,F_OFFSET(phi),F_OFFSET(xxx),
				     &fn_links);
#else
	  avspect_iters += spectrum2( mass1, F_OFFSET(phi1),
				      F_OFFSET(xxx1), &fn_links);
	  avspect_iters += spectrum2( mass2, F_OFFSET(phi1),
				      F_OFFSET(xxx1), &fn_links);
#endif
	}
	
	if(strstr(spectrum_request,",spectrum_point,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum_fzw(mass,F_OFFSET(phi),F_OFFSET(xxx),
					&fn_links);
#else
	  avspect_iters += spectrum_fzw( mass1, F_OFFSET(phi1),
					 F_OFFSET(xxx1), &fn_links);
	  avspect_iters += spectrum_fzw( mass2, F_OFFSET(phi1),
					 F_OFFSET(xxx1), &fn_links);
#endif
	}
	
	if(strstr(spectrum_request,",nl_spectrum,") != NULL){
#ifdef ONEMASS
	  avspect_iters += nl_spectrum(mass,F_OFFSET(phi),F_OFFSET(xxx),
				       F_OFFSET(tempmat1),F_OFFSET(staple),
				       &fn_links);
#else
	  avspect_iters += nl_spectrum( mass1, F_OFFSET(phi1), 
		F_OFFSET(xxx1), F_OFFSET(tempmat1),F_OFFSET(staple),
					&fn_links);
#endif
	}
	
	if(strstr(spectrum_request,",spectrum_mom,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum_mom(mass,mass,F_OFFSET(phi),5e-3,
					&fn_links);
#else
	  avspect_iters += spectrum_mom( mass1, mass1, 
					 F_OFFSET(phi1), 1e-1,
					 &fn_links);
#endif
	}
	
	if(strstr(spectrum_request,",spectrum_multimom,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum_multimom(mass,
					     spectrum_multimom_low_mass,
					     spectrum_multimom_mass_step,
					     spectrum_multimom_nmasses,
					     5e-3, &fn_links);
#else
	  avspect_iters += spectrum_multimom(mass1,
					     spectrum_multimom_low_mass,
					     spectrum_multimom_mass_step,
					     spectrum_multimom_nmasses,
					     5e-3, &fn_links);

#endif
	}
	
#ifndef ONEMASS
	if(strstr(spectrum_request,",spectrum_nd,") != NULL){
	  avspect_iters += spectrum_nd( mass1, mass2, 1e-1,
					&fn_links);
	}
#endif
	if(strstr(spectrum_request,",spectrum_nlpi2,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum_nlpi2(mass,mass,F_OFFSET(phi),5e-3,
					  &fn_links );
#else
	  avspect_iters += spectrum_nlpi2( mass1, mass1, 
					   F_OFFSET(phi1),1e-1,
					   &fn_links );
	  avspect_iters += spectrum_nlpi2( mass2, mass2, 
					   F_OFFSET(phi1),1e-1,
					   &fn_links );
#endif
	}
	
	if(strstr(spectrum_request,",spectrum_singlets,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum_singlets(mass, 5e-3, F_OFFSET(phi),
					     &fn_links);
#else
	  avspect_iters += spectrum_singlets(mass1, 5e-3, F_OFFSET(phi1),
					     &fn_links );
	  avspect_iters += spectrum_singlets(mass2, 5e-3, F_OFFSET(phi1),
					     &fn_links );
#endif
	}

	if(strstr(spectrum_request,",fpi,") != NULL)
	  {
	    avspect_iters += fpi_2( fpi_mass, fpi_nmasses, 2e-3,
				    &fn_links );
	  }
	
#ifdef HYBRIDS
	if(strstr(spectrum_request,",spectrum_hybrids,") != NULL){
#ifdef ONEMASS
	  avspect_iters += spectrum_hybrids( mass,F_OFFSET(phi),1e-1,
					     &fn_links);
#else
	  avspect_iters += spectrum_hybrids( mass1, F_OFFSET(phi1), 5e-3,
					     &fn_links);
	  avspect_iters += spectrum_hybrids( mass2, F_OFFSET(phi1), 2e-3,
					     &fn_links);
#endif
	}
#endif
	if(strstr(spectrum_request,",hvy_pot,") != NULL){
	  rephase( OFF );
	  hvy_pot( F_OFFSET(link[XUP]) );
	  rephase( ON );
	}
#endif /* SPECTRUM */
	avs_iters += s_iters;
	++meascount;
	fflush(stdout);
      }
    }	/* end loop over trajectories */
    
    node0_printf("RUNNING COMPLETED\n"); fflush(stdout);
    if(meascount>0)  {
      node0_printf("average cg iters for step= %e\n",
		   (double)avs_iters/meascount);
#ifdef SPECTRUM
      node0_printf("average cg iters for spectrum = %e\n",
		   (double)avspect_iters/meascount);
#endif
    }
    
    dtime += dclock();
    if(this_node==0){
      printf("Time = %e seconds\n",dtime);
      printf("total_iters = %d\n",total_iters);
    }
    fflush(stdout);
    
    /* save lattice if requested */
    if( saveflag != FORGET ){
      rephase( OFF );
      save_lattice( saveflag, savefile, stringLFN );
      rephase( ON );
#ifdef HAVE_QIO
//       save_random_state_scidac_from_site("randsave", "Dummy file XML",
//        "Random number state", QIO_SINGLEFILE, F_OFFSET(site_prn));
//       save_color_vector_scidac_from_site("xxx1save", "Dummy file XML",
//        "xxx vector", QIO_SINGLEFILE, F_OFFSET(xxx1),1);
//       save_color_vector_scidac_from_site("xxx2save", "Dummy file XML",
//        "xxx vector", QIO_SINGLEFILE, F_OFFSET(xxx2),1);
#endif
    }
  }
#ifdef HAVE_QDP
  QDP_finalize();
#endif  
  normal_exit(0);
  return 0;
}
Beispiel #10
0
int main(int argc, char *argv[]){
int meascount,todo;
int prompt;
double ssplaq,stplaq;
int m_iters,s_iters,avm_iters,avs_iters,avspect_iters;
#ifdef SPECTRUM
int spect_iters;
#endif
#ifdef QUARK
int disp_iters;
#endif
complex plp;
double dtime;

 initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
 g_sync();
    /* set up */
    prompt = setup();

    /* loop over input sets */
    while( readin(prompt) == 0){

	/* perform warmup trajectories */
	dtime = -dclock();
	for(todo=warms; todo > 0; --todo ){
	    update();
	}
	if(this_node==0)printf("WARMUPS COMPLETED\n");

	/* perform measuring trajectories, reunitarizing and measuring 	*/
	meascount=0;		/* number of measurements 		*/
	plp = cmplx(99.9,99.9);
	avspect_iters = avm_iters = avs_iters = 0;
	for(todo=trajecs; todo > 0; --todo ){ 

	    /* do the trajectories */
	    if(steps>0)s_iters=update(); else s_iters=-99;

	    /* measure every "propinterval" trajectories */
	    if((todo%propinterval) == 0){
	    
                /* generate a pseudofermion configuration */
		boundary_flip(MINUS);
		m_iters = f_measure2();

#ifdef SPECTRUM 
#ifdef SCREEN 
		boundary_flip(PLUS);
		gaugefix(ZUP,(Real)1.5,100,(Real)GAUGE_FIX_TOL);
		boundary_flip(MINUS);
		spect_iters = s_props();
		avspect_iters += spect_iters;
		spect_iters = w_spectrum_z();
		avspect_iters += spect_iters;
#ifdef QUARK
		boundary_flip(PLUS);
		/* Lorentz gauge*/
		gaugefix(8,(Real)1.5,100,(Real)GAUGE_FIX_TOL);
		boundary_flip(MINUS);
                disp_iters = quark();
                avspect_iters += disp_iters;
#endif /* ifdef QUARK */
#else	/* spectrum in time direction */
		boundary_flip(PLUS);
		gaugefix(TUP,(Real)1.5,100,(Real)GAUGE_FIX_TOL);
		boundary_flip(MINUS);
		spect_iters = t_props();
		avspect_iters += spect_iters;
		spect_iters = w_spectrum();
		avspect_iters += spect_iters;
#endif	/* end ifndef SCREEN */
#endif	/* end ifdef SPECTRUM */
		boundary_flip(PLUS);

	        /* call plaquette measuring process */
		d_plaquette(&ssplaq,&stplaq);

		/* call the Polyakov loop measuring program */
		plp = ploop();

		avm_iters += m_iters;
		avs_iters += s_iters;
	           
	        ++meascount;
	        if(this_node==0)printf("GMES %e %e %e %e %e\n",
		    (double)plp.real,(double)plp.imag,(double)m_iters,
		    (double)ssplaq,(double)stplaq);
		/* Re(Polyakov) Im(Poyakov) cg_iters ss_plaq st_plaq */

		fflush(stdout);
	    }
	}	/* end loop over trajectories */

	if(this_node==0)printf("RUNNING COMPLETED\n");
	if(meascount>0)  {
	    if(this_node==0)printf("average cg iters for step= %e\n",
		(double)avs_iters/meascount);
	    if(this_node==0)printf("average cg iters for measurement= %e\n",
		(double)avm_iters/meascount);
#ifdef SPECTRUM
	    if(this_node==0)printf("average cg iters for spectrum = %e\n",
		(double)avspect_iters/meascount);
#endif
	}

	dtime += dclock();
	if(this_node==0){
	    printf("Time = %e seconds\n",dtime);
	    printf("total_iters = %d\n",total_iters);
	}
	fflush(stdout);

	/* save lattice if requested */
        if( saveflag != FORGET ){
	  save_lattice( saveflag, savefile, stringLFN );
        }
    }
    return 0;
}
Beispiel #11
0
int main(int argc, char *argv[])
{
   int meascount;
   int todo;
   int prompt;
   double ssplaq;
   double stplaq;
   complex plp;
   double dtime;

   initialize_machine(&argc, &argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);

   g_sync();

   /* set up */
   prompt = setup();
   make_loop_table2();

   if(startflag != CONTINUE)total_sweeps = 0;

   /* loop over input sets */
   while ( readin(prompt) == 0 )
   {
      total_sweeps += sweeps;
      dtime = -dclock();

      /* perform smoothing sweeps, reunitarizing and measuring */

      meascount = 0;   /* number of measurements */
      for (todo=sweeps; todo > 0; --todo )
      {
         /* do one smoothing sweep */
         smooth();

         /* measure every "measinterval" trajectories */
         if ((todo%measinterval) == 0)
         {
            /* call plaquette measuring process */
            d_plaquette(&ssplaq, &stplaq);

            /* don't bother to */
            /* call the Polyakov loop measuring program */
            /* plp = ploop(); */
            plp = cmplx(99.9, 99.9);

            ++meascount;
            if (this_node==0)
            {
               /* Re(Polyakov) Im(Poyakov) cg_iters ss_plaq st_plaq */
               printf("GMES %e %e %e %e %e\n",
                      (double)plp.real, (double)plp.imag, 99.9,
                      (double)ssplaq, (double)stplaq);
            }

            fflush(stdout);
         }
      }       /* end loop over sweeps */


      /* perform gauge fixing after smoothing if requested */

      if ( fixflag == COULOMB_GAUGE_FIX )
      {
         if (this_node == 0)
         {
            printf("Fixing to Coulomb gauge\n");
         }
         gaugefix(TUP, (Real)1.5, 500, GAUGE_FIX_TOL);
      }
      else if (this_node == 0)
      {
         printf("GAUGE FIXING SKIPPED.\n");
      }

      /* measure the instanton charge on the fitted config */
      instanton_density();
	  
      if (this_node==0)
	{
	  printf("RUNNING COMPLETED\n");
	}
      
      dtime += dclock();
      if (this_node==0)
	{
	  printf("Time = %e seconds\n", dtime);
	}
      fflush(stdout);
      
      /* save FFdual */
      if(savetopoflag != FORGET) save_topo(topofile);

      /* save lattice if requested */
      if ( saveflag != FORGET )
      {
	save_lattice( saveflag, savefile, stringLFN );
      }
   }

   return 0;
}
Beispiel #12
0
int
main( int argc, char **argv )
{
  int meascount,traj_done,i;
  int prompt;
  int s_iters, avs_iters, avspect_iters, avbcorr_iters;
  double dtime, dclock();
  
  initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#ifndef QDP_PROFILE
  QDP_profcontrol(0);
#endif
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  g_sync();
  /* set up */
  prompt = setup();

  /* loop over input sets */
  while( readin(prompt) == 0) {
    
    /* perform warmup trajectories */
#ifdef MILC_GLOBAL_DEBUG
    global_current_time_step = 0;
#endif /* MILC_GLOBAL_DEBUG */

    dtime = -dclock();
    for( traj_done=0; traj_done < warms; traj_done++ ){
      update();
    }
    node0_printf("WARMUPS COMPLETED\n"); fflush(stdout);
    
    /* perform measuring trajectories, reunitarizing and measuring 	*/
    meascount=0;		/* number of measurements 		*/
    avspect_iters = avs_iters = avbcorr_iters = 0;

    for( traj_done=0; traj_done < trajecs; traj_done++ ){ 
#ifdef MILC_GLOBAL_DEBUG
#ifdef HISQ_REUNITARIZATION_DEBUG
  {
  int isite, idir;
  site *s;
  FORALLSITES(isite,s) {
    for( idir=XUP;idir<=TUP;idir++ ) {
      lattice[isite].on_step_Y[idir] = 0;
      lattice[isite].on_step_W[idir] = 0;
      lattice[isite].on_step_V[idir] = 0;
    }
  }
  }
#endif /* HISQ_REUNITARIZATION_DEBUG */
#endif /* MILC_GLOBAL_DEBUG */
      /* do the trajectories */
      s_iters=update();

      /* measure every "propinterval" trajectories */
      if( (traj_done%propinterval)==(propinterval-1) ){
	
	/* call gauge_variable fermion_variable measuring routines */
	/* results are printed in output file */
	rephase(OFF);
	g_measure( );
	rephase(ON);
#ifdef MILC_GLOBAL_DEBUG
#ifdef HISQ
        g_measure_plaq( );
#endif
#ifdef MEASURE_AND_TUNE_HISQ
        g_measure_tune( );
#endif /* MEASURE_AND_TUNE_HISQ */
#endif /* MILC_GLOBAL_DEBUG */

	/************************************************************/
	/* WARNING: The spectrum code below is under revision       */
	/* It works only in special cases                           */
	/* For the asqtad spectrum, please create the lattice first */
	/* and then run the appropriate executable in ks_imp_dyn.   */
	/************************************************************/
	/* Do some fermion measurements */
#ifdef SPECTRUM 
	/* Fix TUP Coulomb gauge - gauge links only*/
	rephase( OFF );
	gaugefix(TUP,(Real)1.8,500,(Real)GAUGE_FIX_TOL);
	rephase( ON );

	invalidate_all_ferm_links(&fn_links);
#ifdef DM_DU0
	invalidate_all_ferm_links(&fn_links_dmdu0);
#endif
#endif


	for(i=0;i<n_dyn_masses;i++){
	  // Remake the path table if the fermion coeffs change for this mass
// DT IT CAN"T BE RIGHT TO CALL IT WITH dyn_mass
	  //if(make_path_table(&ks_act_paths, &ks_act_paths_dmdu0,dyn_mass[i]))
//AB: NOT SURE IF WE ARE DOING THIS RIGHT HERE
//    HAVE TO THINK THROUGH HOW LINKS ARE LOADED FOR MEASUREMENTS
//    AND WHERE NAIK CORRECTION CAN EVER POSSIBLY ENTER
//	  if(make_path_table(&ks_act_paths, &ks_act_paths_dmdu0,   0.0/*TEMP*/   ))
	    {
	      // If they change, invalidate only fat and long links
	      //node0_printf("INVALIDATE\n");
	      invalidate_all_ferm_links(&fn_links);
#ifdef DM_DU0
	      invalidate_all_ferm_links(&fn_links_dmdu0);
#endif
	    }
	    /* Load fat and long links for fermion measurements if needed */
#ifdef HISQ
//AB: QUICK FIX TO USE NAIK EPSILON FOR SPECTRUM MEASUREMENTS,
//    WORKS ONLY IF IN THE RATIONAL FUNCTION FILE naik_term_epsilon IS NON-ZERO
//    FOR LAST PSEUDO-FIELD
//    IT IS ASSUMED THAT THIS CORRECTION CORRESPONDS TO LAST DYNAMICAL MASS
//AB: OLD WAY OF INITIALIZING THE LINKS:  fn_links.hl.current_X_set = 0;
//    INSTEAD WE DO:
////	    if(n_dyn_masses-1==i) { // last dynamical mass, assumed to be c-quark
////	      fn_links.hl.current_X_set = n_naiks-1;
//DT CHARM QUARK NEEDS SMALLER RESIDUAL
////	      node0_printf("TEMP: reset rsqprop from %e to %e\n",rsqprop,1e-8*rsqprop);
////	      rsqprop *= 1e-8;
////	    }
////	    else { // light quarks
	      fn_links.hl.current_X_set = 0;
////	    }
#endif
	    load_ferm_links(&fn_links, &ks_act_paths);
#ifdef DM_DU0
#ifdef HISQ
	    fn_links_dmdu0.hl.current_X_set = 0;
#endif
	    load_ferm_links(&fn_links_dmdu0, &ks_act_paths_dmdu0);
#endif
	    
	    f_meas_imp( F_OFFSET(phi1), F_OFFSET(xxx1), dyn_mass[i],
			&fn_links, &fn_links_dmdu0);
	    /* Measure derivatives wrto chemical potential */
#ifdef D_CHEM_POT
	    Deriv_O6( F_OFFSET(phi1), F_OFFSET(xxx1), F_OFFSET(xxx2), 
		      dyn_mass[i], &fn_links, &fn_links_dmdu0);
#endif
	    
#ifdef SPECTRUM 

	    // DT: At the moment spectrum_nd does only the first two masses
	    // this only makes sense to get the kaon, and only works if
	    // eps_naik is the same for both the first two quarks
            if( strstr(spectrum_request,",spectrum_nd,") != NULL && i==0 )
              avspect_iters += spectrum_nd( dyn_mass[0], dyn_mass[1],  1e-2, &fn_links);

	    // AB: spectrum() is used only for the charm quark,
	    // i.e., last dynamical mass
	    if(strstr(spectrum_request,",spectrum,") != NULL && n_dyn_masses-1==i)
	      avspect_iters += spectrum2( dyn_mass[i], F_OFFSET(phi1),
					  F_OFFSET(xxx1), &fn_links);
	    
	    if(strstr(spectrum_request,",spectrum_point,") != NULL)
	      avspect_iters += spectrum_fzw( dyn_mass[i], F_OFFSET(phi1),
					     F_OFFSET(xxx1), &fn_links);
	    
	    // AB: nl_spectrum is used only for strange,
	    // i.e., second mass
	    if(strstr(spectrum_request,",nl_spectrum,") != NULL && 1==i)
	      avspect_iters += nl_spectrum( dyn_mass[i], F_OFFSET(phi1), 
					    F_OFFSET(xxx1), 
					    F_OFFSET(tempmat1),
					    F_OFFSET(staple),
					    &fn_links);
	    
	    // AB: spectrum_mom is used only for charm,
	    // i.e., last mass
	    if(strstr(spectrum_request,",spectrum_mom,") != NULL && n_dyn_masses-1==i)
	      avspect_iters += spectrum_mom( dyn_mass[i], dyn_mass[i], 
					     F_OFFSET(phi1), 1e-1,
					     &fn_links);
	    
	    // For now we can't do the off-diagonal spectrum if Dirac operators
            // depend on masses.  We need two propagators
	    // if(strstr(spectrum_request,",spectrum_multimom,") != NULL)
	    //     avspect_iters += spectrum_multimom(dyn_mass[i],
	    //				 spectrum_multimom_low_mass,
	    //				 spectrum_multimom_mass_step,
	    //				 spectrum_multimom_nmasses,
	    //				 5e-3, &fn_links);

	    // For now we can't do the off-diagonal spectrum if Dirac operators
            // depend on masses.  We need two propagators
	    //	    if(strstr(spectrum_request,",spectrum_nd,") != NULL){
	    //	      avspect_iters += spectrum_nd( mass1, mass2, 1e-1,
	    //					    &fn_links);

	    // AB: spectrum_nlpi2 is used only for up/down,
	    // i.e., first mass
	    if(strstr(spectrum_request,",spectrum_nlpi2,") != NULL && 0==i)
	      avspect_iters += spectrum_nlpi2( dyn_mass[i], dyn_mass[i],
					       F_OFFSET(phi1),1e-1,
					       &fn_links );
	
	    if(strstr(spectrum_request,",spectrum_singlets,") != NULL)
	      avspect_iters += spectrum_singlets(dyn_mass[i], 5e-3, 
						 F_OFFSET(phi1), &fn_links );

	    // For now we can't do the off-diagonal spectrum if Dirac operators
            // depend on masses.  We need two propagators
	    // if(strstr(spectrum_request,",fpi,") != NULL)
	    // avspect_iters += fpi_2( fpi_mass, fpi_nmasses, 2e-3,
	    //			    &fn_links );
	
#ifdef HYBRIDS
	  if(strstr(spectrum_request,",spectrum_hybrids,") != NULL)
	    avspect_iters += spectrum_hybrids( dyn_mass[i], F_OFFSET(phi1), 
					       5e-3, &fn_links);
#endif
	  if(strstr(spectrum_request,",hvy_pot,") != NULL){
	    rephase( OFF );
	    hvy_pot( F_OFFSET(link[XUP]) );
	    rephase( ON );
	  }
#endif
//	    if(n_dyn_masses-1==i) { // last dynamical mass, assumed to be c-quark
//DT CHARM QUARK NEEDS SMALLER RESIDUAL
//AB NEED TO RETURN RESIDUAL TO THE ORIGINAL VALUE
//	      node0_printf("TEMP: reset rsqprop from %e to %e\n",rsqprop,1e+8*rsqprop);
//	      rsqprop *= 1e+8;
//	    }
	}
	avs_iters += s_iters;
	++meascount;
	fflush(stdout);
      }
    }	/* end loop over trajectories */
    
    node0_printf("RUNNING COMPLETED\n"); fflush(stdout);
    if(meascount>0)  {
      node0_printf("average cg iters for step= %e\n",
		   (double)avs_iters/meascount);
    }
    
    dtime += dclock();
    if(this_node==0){
      printf("Time = %e seconds\n",dtime);
      printf("total_iters = %d\n",total_iters);
    }
    fflush(stdout);
    
    /* save lattice if requested */
    if( saveflag != FORGET ){
      rephase( OFF );
      save_lattice( saveflag, savefile, stringLFN );
      rephase( ON );
    }
  }
#ifdef HAVE_QDP
  QDP_finalize();
#endif  
  normal_exit(0);
  return 0;
}
Beispiel #13
0
int main(int argc, char **argv)
{
  int meascount[MAX_NKAP];
  int prompt, count1, count2;
  Real avm_iters[MAX_NKAP];
  double starttime, endtime;

  int MaxMR, restart_flag;
  Real RsdMR;		/******/

  int spin, color, nk;		/******/
  int max_prop;

  int cl_cg = CL_CG;
  double ssplaq, stplaq;


  FILE *fp_m_out = NULL;  /*** meson IO stuff **/
  int fb_m_out = 0;	   /*** meson IO stuff **/

  w_prop_file *fp_in_w[MAX_NKAP];        /* For propagator files */
  w_prop_file *fp_out_w[MAX_NKAP];       /* For propagator files */
  
  double g_time ; 

  int i ;
  int MinMR;
  
/*** variables required for the static variational code ***/
  int nodata = 0 ;
  complex *meson = NULL;

/****** start of the execution of the code ************/


  initialize_machine(&argc, &argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);

  g_sync();

  /* set up */
  prompt = setup_h();

  /**DEBUG***/  
#ifdef DEBUGDEF
  light_quark_pion(0) ;
#endif

    /* loop over input sets */
  while( readin(prompt) == 0)
  {

    if( fixflag == COULOMB_GAUGE_FIX)
    {
      if(this_node == 0) 
	printf("Fixing to Coulomb gauge\n");
      g_time = -dclock();

      gaugefix(TUP,(Real)1.5,500,GAUGE_FIX_TOL);

      g_time += dclock();
      if(this_node==0)printf("Time to gauge fix = %e\n",g_time);
      invalidate_this_clov(gen_clov);
      
    }
    else
      if(this_node == 0)printf("COULOMB GAUGE FIXING SKIPPED.\n");

    /* save lattice if requested */
    if( saveflag != FORGET )
    {
      save_lattice( saveflag, savefile, stringLFN );
    }


    /* call plaquette measuring process */
    d_plaquette(&ssplaq, &stplaq);
    if (this_node == 0)
      printf("START %e %e\n",(double) ssplaq, (double) stplaq);


    /******* set up code for the static variational calculation *****/
    if( nkap == 1 )
    {
      nodata = nt*nosmear*144 ;
      /** reserve memory for the smeared meson correlators on each node ****/
      if( ( meson = (complex *) calloc( (size_t) nodata, sizeof(complex) )  ) == NULL )
      {
	printf("ERROR: could not reserve buffer space for the meson smearing functions\n");
	terminate(1);
      }
      
      /** call a number of set up routines for the static variational code ***/
      setup_vary(meson, nodata);
      
    }  /*** end of set up section for the static-variational calculation ***/

    /***DEBUG check_calc_matrix() ;   ****/  


    starttime=dclock();



    MaxMR = niter;
    RsdMR = (Real) sqrt((double) rsqprop);

    if (this_node == 0)
      printf("Residue=%e\n",(double) RsdMR);
	     

    for (nk = 0; nk < nkap; nk++)
    {
      avm_iters[nk] = 0.0;
      meascount[nk] = 0;
    }
    max_prop = 12;
    count1 = 0;
    count2 = 0;


    for (spin = start_spin; spin < 4; spin++)
    {

      for (color = 0; color < 3; color++)
      {

	count1++;
	if (count1 == 1)
	  color += start_color;

	for (nk = 0; nk < nkap; nk++)
	{

	  count2++;
	  if (count2 == 1)
	    nk += start_kap;


	  kappa = cappa[nk];

	  meascount[nk]++;

	  /* open file for wilson propagators */
	  fp_in_w[nk]  = r_open_wprop(startflag_w[nk], startfile_w[nk]);

	  if ((spin + color) == 0)
	  {
	    /*** first pass of the code  **/
	    fp_out_w[nk] = w_open_wprop(saveflag_w[nk],  savefile_w[nk],
					wqs.type);

	    /* open file for meson output and write the header */
	    if (saveflag_m == SAVE_MESON_ASCII)
	    {
	      fp_m_out = w_ascii_m_i(savefile_m[nk], max_prop);
	      fb_m_out = -1;	/* i.e. file is NOT binary */
	    }
	    else if (saveflag_m == SAVE_MESON_BINARY)
	    {
	      fb_m_out = w_binary_m_i(savefile_m[nk], max_prop);
	      fp_m_out = NULL;	/* i.e. file is NOT ascii */
	    }
	    else
	    {
	      if( this_node == 0 ) 
		printf("ERROR in main saveflag_m = %d is out of range in initial opening\n",saveflag_m)  ;
	      terminate(1); 
	    }


	  } /*** end of spin =0 && color == 0 **/
	  else
	  {
	    fp_out_w[nk] = w_open_wprop(saveflag_w[nk],  savefile_w[nk],
					wqs.type);

	    /* open file for meson output for appending output*/
	    if (saveflag_m == SAVE_MESON_ASCII)
	    {
	      fp_m_out = a_ascii_m_i(savefile_m[nk], max_prop);
	      fb_m_out = -1;	/* i.e. file is NOT binary */
	    }
	    if (saveflag_m == SAVE_MESON_BINARY)
	    {
	      fb_m_out = a_binary_m_i(savefile_m[nk], max_prop);
	      fp_m_out = NULL;	/* i.e. file is NOT ascii */
	    }
	    else
	    {
	      if( this_node == 0 ) 
		printf("ERROR in main saveflag_m = %d is out of range in appending opening\n",saveflag_m)  ;
	      terminate(1); 
	    }



	  }  /*** end of spin && color not equal to zero ***/


	  if (this_node == 0)
	    printf("color=%d spin=%d kappa=%f nk=%d\n", color, spin, (double) kappa, nk);

	  /* load psi if requested */
	  init_qs(&wqstmp2);
	  reload_wprop_sc_to_site(startflag_w[nk], fp_in_w[nk],&wqstmp2,
			    spin, color, F_OFFSET(psi),1);

	  if (nk == 0 || count2 == 1)
	    restart_flag = flag;
	  else
	    restart_flag = 1;

	  
	  /* Conjugate gradient inversion uses site structure
	     temporary"chi" */
	  
	  
	  /* Complete the source structure */
	  wqs.color = color;
	  wqs.spin = spin;
	  wqs.parity = EVENANDODD;
	  
	  /* For wilson_info */
	  wqstmp = wqs;
	  
	  /* If we are starting fresh, we want to set a mininum number of
	     iterations */
	  if(startflag_w[nk] == FRESH)MinMR = nt/2; else MinMR = 0;

	  /* Load inversion control structure */
	  qic.prec = PRECISION;
	  qic.min = MinMR;
	  qic.max = MaxMR;
	  qic.nrestart = nrestart;
	  qic.parity = EVENANDODD;
	  qic.start_flag = restart_flag;
	  qic.nsrc = 1;
	  qic.resid = RsdMR;
	  qic.relresid = 0;
	    
	  /* Load Dirac matrix parameters */
	  dwp.Kappa = kappa;
	  
	  switch (cl_cg) {
	  case CG:
	    /* Load temporaries specific to inverter */
	    
	    /* compute the propagator.  Result in psi. */
	    avm_iters[nk] += 
	      (Real)wilson_invert_site_wqs(F_OFFSET(chi),F_OFFSET(psi),
					   w_source_h,&wqs,
					   cgilu_w_site,&qic,(void *)&dwp);
	    break;
	  case MR:
	    /* Load temporaries specific to inverter */
	    
	    /* compute the propagator.  Result in psi. */
	    avm_iters[nk] += 
	      (Real)wilson_invert_site_wqs(F_OFFSET(chi),F_OFFSET(psi),
					   w_source_h,&wqs,
					   mrilu_w_site,&qic,(void *)&dwp);
		break;
	      default:
		node0_printf("main(%d): Inverter choice %d not supported\n",
			     this_node,cl_cg);
	  }
	  
	  /* save psi if requested */
	  save_wprop_sc_from_site( saveflag_w[nk],fp_out_w[nk], &wqstmp2,
			  spin,color,F_OFFSET(psi),1);


	  light_meson(F_OFFSET(psi), color, spin, wqs.type, fp_m_out, fb_m_out);

	  if (this_node == 0)
	    printf("Light mesons found\n");

	/*** calculate the correlators required for the static variational code **/
	if( nkap == 1 )
	{

	  /** calculate the smeared meson correlators required for Bparam **/
	  calc_smeared_meson(meson, F_OFFSET(psi) ,  F_OFFSET(mp), color, spin);
			 
	  /** calculate the object required for the 2-pt variational calculation ***/
	  buildup_strip(F_OFFSET(psi)   ,  color,  spin); 

	} /** end of the partial calculations for the variationl project ***/



	  /*
	   * find source again since mrilu overwrites it; for hopping
	   * expansion 
	   */
	  /* source must be of definite parity */

	  wqs.parity = source_parity;
	  w_source_h(F_OFFSET(chi), &wqs);

	  hopping(F_OFFSET(chi), F_OFFSET(mp), F_OFFSET(psi), nhop,
		  kappa_c, wqs.parity, color, spin, wqs.type,
		  fp_m_out, fb_m_out);

	  /* close files */

	  r_close_wprop(startflag_w[nk], fp_in_w[nk]);
	  w_close_wprop(saveflag_w[nk],fp_out_w[nk]);

	  if (saveflag_m == SAVE_MESON_ASCII)
	    w_ascii_m_f(fp_m_out, savefile_m[nk]);
	  else if (saveflag_m == SAVE_MESON_BINARY)
	    w_binary_m_f(fb_m_out, savefile_m[nk]);


	  if (spin == end_spin && color == end_color && nk == end_kap)
	    goto end_of_loops;


	}
      }
    }				/* end of loop over spin, color, kappa */

end_of_loops:


    if (this_node == 0)
      printf("RUNNING COMPLETED\n");

    /**DEBUG***/  
#ifdef DEBUGDEF
    light_quark_pion(2) ;
#endif

    for (nk = 0; nk < nkap; nk++)
    {
      if (meascount[nk] > 0)
      {
	if (this_node == 0)
	  printf("total mr iters for measurement= %e\n",
		 (double) avm_iters[nk]);
	if (this_node == 0)
	  printf("average mr iters per spin-color= %e\n",
		 (double) avm_iters[nk] / (double) meascount[nk]);
      }
    }


    endtime=dclock();
    node0_printf("Time = %e seconds\n", (double) (endtime - starttime));

    fflush(stdout);

    /*** calculation section for the variational code *****/
    if( nkap == 1 )
    {
      
      /** sum up the smeared meson correlators over all the nodes ***/
      for(i=0 ; i < nodata ;++i)
      {
	g_complexsum(meson + i) ;
      }
	  

      /* write the smeared correlators to a single disk file ***/
      IF_MASTER
	write_smear_mesonx(meson);
      
      free(meson);  /*** free up the memory for the b-parameter correlators ***/
      
      calc_vary_matrix() ;  /** calculate the static variational matrix **/
      node0_printf(">> The end of the static variational code <<<<\n");
      
    }/** end of the final static variational code *****/


    node0_printf("Time = %e seconds\n",(double)(endtime-starttime));


    fflush(stdout);
    
  } /* end of while(prompt) */

  return 0;

}  /* end of main() */
Beispiel #14
0
int main(int argc, char *argv[])  {
#ifndef COULOMB
  int todo,sm_lev,lsmeared=0;
#else
  su3_matrix *links, *ape_links;
#endif
  int prompt;
  double dtime;
  
  initialize_machine(&argc,&argv);
  
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
  
  
  g_sync();
  /* set up */
  prompt = setup();
  
  /* loop over input sets */
  while( readin(prompt) == 0){
    
    if(prompt == 2)continue;
    dtime = -dclock();
    
#ifdef COULOMB
    if(this_node == 0) 
      printf("Fixing to Coulomb gauge\n");
    fixflag = COULOMB_GAUGE_FIX;
    
    gaugefix(TUP,(Real)1.8,500,GAUGE_FIX_TOL);
    
    links = create_G_from_site();
    ape_links = create_G();
    ape_smear_field_dir( links, TUP, ape_links, staple_weight, u0, 0, ape_iter, 0.0 ); 
    free(links);
    hvy_pot( ape_links, max_t, max_x );
    free(ape_links);
#else
    
    /* fix to axial gauge */
    if( startflag != CONTINUE){
      ax_gauge();
      fixflag = AXIAL_GAUGE_FIX;
      tot_smear = 0;
    }
    
    /* Compute unsmeared simple, i.e one-plaquette, glueball operators */
    if( no_smear_level > 0 ){
      gball_simp(tot_smear);
    }
    
    /* Loop over the different smearing levels */
    for(sm_lev=0; sm_lev < no_smear_level; sm_lev++ ){
      
      /* Do the smearing iterations */
      for(todo=smear_num[sm_lev]; todo > 0; --todo ){
	smearing();
        lsmeared=1;
      }

      if(this_node==0 && lsmeared!=0)
#ifdef HYP_3D_SMEARING
        printf("HYP SMEARING COMPLETED\n"); 
#else
        printf("APE SMEARING COMPLETED\n"); 
#endif
      tot_smear += smear_num[sm_lev];
      
      /* Compute simple, i.e one-plaquette, glueball operators */
      gball_simp(tot_smear);
      
#ifndef HYBRIDS_MEASURE
      /* Compute on-axis time-like Wilson loops */
      w_loop1(tot_smear);
#else
      /* Compute on-axis time-like hybrid potential loops 
	 and on-axis time-like Wilson loops */
      hybrid_loop1(tot_smear);
#endif
      
      /* Compute off-axis time-like Wilson loops, if desired */
      if( off_axis_flag == 1 ){
	w_loop2(tot_smear);
      }
    }
#endif
    if(this_node==0)printf("RUNNING COMPLETED\n");
    
    dtime += dclock();
    if(this_node==0){
      printf("Time = %e seconds\n",dtime);
    }
    fflush(stdout);
    dtime = -dclock();
    
    /* save lattice if requested */
    if( saveflag != FORGET ){
      save_lattice( saveflag, savefile, stringLFN );
    }
  }
  return 0;
}