/*******************************************************************************
**
**	gckCOMMAND_Commit
**
**	Commit a command buffer to the command queue.
**
**	INPUT:
**
**		gckCOMMAND Command
**			Pointer to an gckCOMMAND object.
**
**		gcoCMDBUF CommandBuffer
**			Pointer to an gcoCMDBUF object.
**
**		gcoCONTEXT Context
**			Pointer to an gcoCONTEXT object.
**
**	OUTPUT:
**
**		Nothing.
*/
gceSTATUS
gckCOMMAND_Commit(
    IN gckCOMMAND Command,
    IN gcoCMDBUF CommandBuffer,
    IN gcoCONTEXT Context,
    IN gctHANDLE Process
    )
{
    gcoCMDBUF commandBuffer;
    gcoCONTEXT context;
	gckHARDWARE hardware;
	gceSTATUS status;
	gctPOINTER initialLink, link;
	gctSIZE_T bytes, initialSize, lastRun;
	gcoCMDBUF buffer;
	gctPOINTER wait;
	gctSIZE_T waitSize;
	gctUINT32 offset;
	gctPOINTER fetchAddress;
	gctSIZE_T fetchSize;
	gctUINT8_PTR logical;
	gcsMAPPED_PTR stack = gcvNULL;
	gctINT acquired = 0;
#if gcdSECURE_USER
	gctUINT32_PTR hint;
#endif
#if gcdDUMP_COMMAND
    gctPOINTER dataPointer;
    gctSIZE_T dataBytes;
#endif
    gctPOINTER flushPointer;
    gctSIZE_T flushSize;

	gcmkHEADER_ARG("Command=0x%x CommandBuffer=0x%x Context=0x%x",
				   Command, CommandBuffer, Context);

	/* Verify the arguments. */
	gcmkVERIFY_OBJECT(Command, gcvOBJ_COMMAND);

#if gcdNULL_DRIVER == 2
	/* Do nothing with infinite hardware. */
	gcmkFOOTER_NO();
	return gcvSTATUS_OK;
#endif

	gcmkONERROR(
		_AddMap(Command->os,
				CommandBuffer,
				gcmSIZEOF(struct _gcoCMDBUF),
				(gctPOINTER *) &commandBuffer,
				&stack));
	gcmkVERIFY_OBJECT(commandBuffer, gcvOBJ_COMMANDBUFFER);
	gcmkONERROR(
		_AddMap(Command->os,
				Context,
				gcmSIZEOF(struct _gcoCONTEXT),
				(gctPOINTER *) &context,
				&stack));
	gcmkVERIFY_OBJECT(context, gcvOBJ_CONTEXT);

	/* Extract the gckHARDWARE and gckEVENT objects. */
	hardware = Command->kernel->hardware;
	gcmkVERIFY_OBJECT(hardware, gcvOBJ_HARDWARE);

	/* Acquire the context switching mutex. */
	gcmkONERROR(
		gckOS_AcquireMutex(Command->os,
						   Command->mutexContext,
						   gcvINFINITE));

	++acquired;

	/* Reserved slot in the context or command buffer. */
	gcmkONERROR(
		gckHARDWARE_PipeSelect(hardware, gcvNULL, 0, &bytes));

	/* Test if we need to switch to this context. */
	if ((context->id != 0)
	&&  (context->id != Command->currentContext)
	)
	{
		/* Map the context buffer.*/
		gcmkONERROR(
			_AddMap(Command->os,
					context->logical,
					context->bufferSize,
					(gctPOINTER *) &logical,
					&stack));

#if gcdSECURE_USER
		/* Map the hint array.*/
		gcmkONERROR(
			_AddMap(Command->os,
					context->hintArray,
					context->hintCount * gcmSIZEOF(gctUINT32),
					(gctPOINTER *) &hint,
					&stack));

        /* Loop while we have valid hints. */
        while (*hint != 0)
        {
            /* Map handle into physical address. */
            gcmkONERROR(
                gckKERNEL_MapLogicalToPhysical(
                    Command->kernel,
                    Process,
                    (gctPOINTER *) (logical + *hint)));

			/* Next hint. */
			++hint;
		}
#endif

		/* See if we have to check pipes. */
		if (context->pipe2DIndex != 0)
		{
			/* See if we are in the correct pipe. */
			if (context->initialPipe == Command->pipeSelect)
			{
				gctUINT32 reserved = bytes;
				gctUINT8_PTR nop   = logical;

				/* Already in the correct pipe, fill context buffer with NOP. */
				while (reserved > 0)
				{
					bytes = reserved;
					gcmkONERROR(
						gckHARDWARE_Nop(hardware, nop, &bytes));

					gcmkASSERT(reserved >= bytes);
					reserved -= bytes;
					nop      += bytes;
				}
			}
			else
			{
				/* Switch to the correct pipe. */
				gcmkONERROR(
					gckHARDWARE_PipeSelect(hardware,
										   logical,
										   context->initialPipe,
										   &bytes));
			}
		}

		/* Save initial link pointer. */
        initialLink = logical;
		initialSize = context->bufferSize;
        
#if MRVL_PRINT_CMD_BUFFER
		_AddCmdBuffer(
			Command, initialLink, initialSize, gcvTRUE, gcvFALSE
			);
#endif

        /* Save initial buffer to flush. */
        flushPointer = initialLink;
        flushSize    = initialSize;

        /* Save pointer to next link. */
        gcmkONERROR(
            _AddMap(Command->os,
                    context->link,
                    8,
                    &link,
                    &stack));

		/* Start parsing CommandBuffer. */
		buffer = commandBuffer;

		/* Mark context buffer as used. */
		if (context->inUse != gcvNULL)
		{
			gctBOOL_PTR inUse;

			gcmkONERROR(
				_AddMap(Command->os,
						(gctPOINTER) context->inUse,
						gcmSIZEOF(gctBOOL),
						(gctPOINTER *) &inUse,
						&stack));

			*inUse = gcvTRUE;
		}
	}

	else
	{
		/* Test if this is a new context. */
		if (context->id == 0)
		{
			/* Generate unique ID for the context buffer. */
			context->id = ++ Command->contextCounter;

			if (context->id == 0)
			{
				/* Context counter overflow (wow!) */
				gcmkONERROR(gcvSTATUS_TOO_COMPLEX);
			}
		}

		/* Map the command buffer. */
		gcmkONERROR(
			_AddMap(Command->os,
					commandBuffer->logical,
					commandBuffer->offset,
					(gctPOINTER *) &logical,
					&stack));

#if gcdSECURE_USER
		/* Map the hint table. */
		gcmkONERROR(
			_AddMap(Command->os,
					commandBuffer->hintCommit,
					commandBuffer->offset - commandBuffer->startOffset,
					(gctPOINTER *) &hint,
					&stack));

        /* Walk while we have valid hints. */
        while (*hint != 0)
        {
            /* Map the handle to a physical address. */
            gcmkONERROR(
                gckKERNEL_MapLogicalToPhysical(
                    Command->kernel,
                    Process,
                    (gctPOINTER *) (logical + *hint)));

			/* Next hint. */
			++hint;
		}
#endif

		if (context->entryPipe == Command->pipeSelect)
		{
			gctUINT32 reserved = Command->reservedHead;
			gctUINT8_PTR nop   = logical + commandBuffer->startOffset;

			/* Already in the correct pipe, fill context buffer with NOP. */
			while (reserved > 0)
			{
				bytes = reserved;
				gcmkONERROR(
					gckHARDWARE_Nop(hardware, nop, &bytes));

				gcmkASSERT(reserved >= bytes);
				reserved -= bytes;
				nop      += bytes;
			}
		}
		else
		{
			/* Switch to the correct pipe. */
			gcmkONERROR(
				gckHARDWARE_PipeSelect(hardware,
									   logical + commandBuffer->startOffset,
									   context->entryPipe,
									   &bytes));
		}

		/* Save initial link pointer. */
        initialLink = logical + commandBuffer->startOffset;
		initialSize = commandBuffer->offset
					- commandBuffer->startOffset
					+ Command->reservedTail;
        
#if MRVL_PRINT_CMD_BUFFER
		_AddCmdBuffer(
			Command, initialLink, initialSize, gcvFALSE, gcvFALSE
			);
#endif

        /* Save initial buffer to flush. */
        flushPointer = initialLink;
        flushSize    = initialSize;

        /* Save pointer to next link. */
        link = logical + commandBuffer->offset;

		/* No more data. */
		buffer = gcvNULL;
	}

#if MRVL_PRINT_CMD_BUFFER
	_AddLink(Command, Command->wait, initialLink);
#endif

#if gcdDUMP_COMMAND
    dataPointer = initialLink;
    dataBytes   = initialSize;
#endif

	/* Loop through all remaining command buffers. */
	if (buffer != gcvNULL)
	{
		/* Map the command buffer. */
		gcmkONERROR(
			_AddMap(Command->os,
					buffer->logical,
					buffer->offset + Command->reservedTail,
					(gctPOINTER *) &logical,
					&stack));
#if MRVL_PRINT_CMD_BUFFER
		_AddCmdBuffer(
			Command, (gctUINT32_PTR)logical, buffer->offset + Command->reservedTail, gcvFALSE, gcvFALSE
			);
#endif

#if gcdSECURE_USER
		/* Map the hint table. */
		gcmkONERROR(
			_AddMap(Command->os,
					buffer->hintCommit,
					buffer->offset - buffer->startOffset,
					(gctPOINTER *) &hint,
					&stack));

        /* Walk while we have valid hints. */
        while (*hint != 0)
        {
            /* Map the handle to a physical address. */
            gcmkONERROR(
                gckKERNEL_MapLogicalToPhysical(
                    Command->kernel,
                    Process,
                    (gctPOINTER *) (logical + *hint)));

			/* Next hint. */
			++hint;
		}
#endif

		/* First slot becomes a NOP. */
		{
			gctUINT32 reserved = Command->reservedHead;
			gctUINT8_PTR nop   = logical + buffer->startOffset;

			/* Already in the correct pipe, fill context buffer with NOP. */
			while (reserved > 0)
			{
				bytes = reserved;
				gcmkONERROR(
					gckHARDWARE_Nop(hardware, nop, &bytes));

				gcmkASSERT(reserved >= bytes);
				reserved -= bytes;
				nop      += bytes;
			}
		}

		/* Generate the LINK to this command buffer. */
		gcmkONERROR(
			gckHARDWARE_Link(hardware,
							 link,
                             logical + buffer->startOffset,
							 buffer->offset
							 - buffer->startOffset
							 + Command->reservedTail,
							 &bytes));
#if MRVL_PRINT_CMD_BUFFER
	_AddLink(Command, link, (gctUINT32_PTR)logical);
#endif

        /* Flush the initial buffer. */
        gcmkONERROR(gckOS_CacheFlush(Command->os,
                                     Process,
                                     flushPointer,
                                     flushSize));

        /* Save new flush pointer. */
        flushPointer = logical + buffer->startOffset;
        flushSize    = buffer->offset
                     - buffer->startOffset
                     + Command->reservedTail;

#if gcdDUMP_COMMAND
        _DumpCommand(Command, dataPointer, dataBytes);
        dataPointer = logical + buffer->startOffset;
        dataBytes   = buffer->offset - buffer->startOffset
                    + Command->reservedTail;
#endif

		/* Save pointer to next link. */
        link = logical + buffer->offset;
	}

	/* Compute number of bytes required for WAIT/LINK. */
	gcmkONERROR(
		gckHARDWARE_WaitLink(hardware,
							 gcvNULL,
							 Command->offset,
							 &bytes,
							 gcvNULL,
							 gcvNULL));

	lastRun = bytes;

	/* Grab the command queue mutex. */
	gcmkONERROR(
		gckOS_AcquireMutex(Command->os,
						   Command->mutexQueue,
						   gcvINFINITE));

	++acquired;

	if (Command->kernel->notifyIdle)
	{
		/* Increase the commit stamp */
		Command->commitStamp++;

		/* Set busy if idle */
		if (Command->idle)
		{
			Command->idle = gcvFALSE;

			gcmkVERIFY_OK(gckOS_NotifyIdle(Command->os, gcvFALSE));
		}
	}

	/* Compute number of bytes left in current command queue. */
	bytes = Command->pageSize - Command->offset;

	if (bytes < lastRun)
	{
        /* Create a new command queue. */
		gcmkONERROR(_NewQueue(Command, gcvTRUE));

		/* Adjust run size with any extra commands inserted. */
		lastRun += Command->offset;
	}

	/* Get current offset. */
	offset = Command->offset;

	/* Append WAIT/LINK in command queue. */
	bytes = Command->pageSize - offset;

	gcmkONERROR(
		gckHARDWARE_WaitLink(hardware,
							 (gctUINT8 *) Command->logical + offset,
							 offset,
							 &bytes,
							 &wait,
							 &waitSize));

    /* Flush the cache for the wait/link. */
    gcmkONERROR(gckOS_CacheFlush(Command->os,
                                 gcvNULL,
                                 (gctUINT8 *) Command->logical + offset,
                                 bytes));

#if gcdDUMP_COMMAND
    _DumpCommand(Command, (gctUINT8 *) Command->logical + offset, bytes);
#endif

	/* Adjust offset. */
	offset += bytes;

	if (Command->newQueue)
	{
		/* Compute fetch location and size for a new command queue. */
		fetchAddress = Command->logical;
		fetchSize    = offset;
	}
	else
	{
		/* Compute fetch location and size for an existing command queue. */
		fetchAddress = (gctUINT8 *) Command->logical + Command->offset;
		fetchSize    = offset - Command->offset;
	}

	bytes = 8;

	/* Link in WAIT/LINK. */
	gcmkONERROR(
		gckHARDWARE_Link(hardware,
						 link,
						 fetchAddress,
						 fetchSize,
						 &bytes));
#if MRVL_PRINT_CMD_BUFFER
	_AddLink(Command, link, fetchAddress);
#endif

    /* Flush the cache for the command buffer. */
    gcmkONERROR(gckOS_CacheFlush(Command->os,
                                 Process,
                                 flushPointer,
                                 flushSize));

#if gcdDUMP_COMMAND
    _DumpCommand(Command, dataPointer, dataBytes);
#endif

	/* Execute the entire sequence. */
	gcmkONERROR(
		gckHARDWARE_Link(hardware,
						 Command->wait,
						 initialLink,
						 initialSize,
						 &Command->waitSize));

    /* Flush the cache for the link. */
    gcmkONERROR(gckOS_CacheFlush(Command->os,
                                 gcvNULL,
                                 Command->wait,
                                 Command->waitSize));

#if gcdDUMP_COMMAND
    _DumpCommand(Command, Command->wait, Command->waitSize);
#endif

	/* Update command queue offset. */
	Command->offset   = offset;
	Command->newQueue = gcvFALSE;

	/* Update address of last WAIT. */
	Command->wait     = wait;
	Command->waitSize = waitSize;

	/* Update context and pipe select. */
	Command->currentContext = context->id;
	Command->pipeSelect     = context->currentPipe;

	/* Update queue tail pointer. */
	gcmkONERROR(
		gckHARDWARE_UpdateQueueTail(hardware,
									Command->logical,
									Command->offset));

#if gcdDUMP_COMMAND
    gcmkPRINT("@[kernel.commit]");
#endif

    /* Release the command queue mutex. */
    gcmkONERROR(gckOS_ReleaseMutex(Command->os, Command->mutexQueue));
    --acquired;

    /* Release the context switching mutex. */
    gcmkONERROR(gckOS_ReleaseMutex(Command->os, Command->mutexContext));
    --acquired;

    /* Submit events if asked for. */
    if (Command->submit)
    {
        /* Submit events. */
        status = gckEVENT_Submit(Command->kernel->event, gcvFALSE, gcvFALSE);

        if (gcmIS_SUCCESS(status))
        {
            /* Success. */
            Command->submit = gcvFALSE;
        }
        else
        {
            gcmkTRACE_ZONE(gcvLEVEL_WARNING, gcvZONE_COMMAND,
                           "gckEVENT_Submit returned %d",
                           status);
        }
    }

    /* Success. */
    status = gcvSTATUS_OK;

OnError:
	if (acquired > 1)
	{
		/* Release the command queue mutex. */
		gcmkVERIFY_OK(
			gckOS_ReleaseMutex(Command->os, Command->mutexQueue));
	}

	if (acquired > 0)
	{
		/* Release the context switching mutex. */
		gcmkVERIFY_OK(
			gckOS_ReleaseMutex(Command->os, Command->mutexContext));
	}

	/* Unmap all mapped pointers. */
	while (stack != gcvNULL)
	{
		gcsMAPPED_PTR map = stack;
		stack             = map->next;

		gcmkVERIFY_OK(
			gckOS_UnmapUserPointer(Command->os,
								   map->pointer,
								   map->bytes,
								   map->kernelPointer));

		gcmkVERIFY_OK(
			gckOS_Free(Command->os, map));
	}

	/* Return status. */
	gcmkFOOTER();
	return status;
}
/*******************************************************************************
**
**	gckKERNEL_Dispatch
**
**	Dispatch a command received from the user HAL layer.
**
**	INPUT:
**
**		gckKERNEL Kernel
**			Pointer to an gckKERNEL object.
**
**		gctBOOL FromUser
**			whether the call is from the user space.
**
**		gcsHAL_INTERFACE * Interface
**			Pointer to a gcsHAL_INTERFACE structure that defines the command to
**			be dispatched.
**
**	OUTPUT:
**
**		gcsHAL_INTERFACE * Interface
**			Pointer to a gcsHAL_INTERFACE structure that receives any data to be
**			returned.
*/
gceSTATUS
gckKERNEL_Dispatch(
	IN gckKERNEL Kernel,
	IN gctBOOL FromUser,
	IN OUT gcsHAL_INTERFACE * Interface
	)
{
	gceSTATUS status;
	gctUINT32 bitsPerPixel;
	gctSIZE_T bytes;
	gcuVIDMEM_NODE_PTR node;
	gctBOOL locked = gcvFALSE;
	gctPHYS_ADDR physical;
	gctUINT32 address;

	gcmkHEADER_ARG("Kernel=0x%x FromUser=%d Interface=0x%x",
				   Kernel, FromUser, Interface);

	/* Verify the arguments. */
	gcmkVERIFY_OBJECT(Kernel, gcvOBJ_KERNEL);
	gcmkVERIFY_ARGUMENT(Interface != gcvNULL);

	gcmkTRACE_ZONE(gcvLEVEL_INFO, gcvZONE_KERNEL,
				   "Dispatching command %d", Interface->command);

	/* Dispatch on command. */
	switch (Interface->command)
	{
	case gcvHAL_GET_BASE_ADDRESS:
		/* Get base address. */
		gcmkONERROR(
			gckOS_GetBaseAddress(Kernel->os,
								 &Interface->u.GetBaseAddress.baseAddress));
		break;

    case gcvHAL_QUERY_VIDEO_MEMORY:
        /* Query video memory size. */
        gcmkONERROR(gckKERNEL_QueryVideoMemory(Kernel, Interface));
		break;

	case gcvHAL_QUERY_CHIP_IDENTITY:
		/* Query chip identity. */
		gcmkONERROR(
			gckHARDWARE_QueryChipIdentity(
				Kernel->hardware,
				&Interface->u.QueryChipIdentity.chipModel,
				&Interface->u.QueryChipIdentity.chipRevision,
				&Interface->u.QueryChipIdentity.chipFeatures,
				&Interface->u.QueryChipIdentity.chipMinorFeatures,
				&Interface->u.QueryChipIdentity.chipMinorFeatures1));

		/* Query chip specifications. */
		gcmkONERROR(
			gckHARDWARE_QueryChipSpecs(
				Kernel->hardware,
				&Interface->u.QueryChipIdentity.streamCount,
				&Interface->u.QueryChipIdentity.registerMax,
				&Interface->u.QueryChipIdentity.threadCount,
				&Interface->u.QueryChipIdentity.shaderCoreCount,
				&Interface->u.QueryChipIdentity.vertexCacheSize,
				&Interface->u.QueryChipIdentity.vertexOutputBufferSize));
		break;

	case gcvHAL_MAP_MEMORY:
		physical = Interface->u.MapMemory.physical;

		/* Map memory. */
		gcmkONERROR(
			gckKERNEL_MapMemory(Kernel,
								physical,
								Interface->u.MapMemory.bytes,
								&Interface->u.MapMemory.logical));
		break;

	case gcvHAL_UNMAP_MEMORY:
		physical = Interface->u.UnmapMemory.physical;

		/* Unmap memory. */
		gcmkONERROR(
			gckKERNEL_UnmapMemory(Kernel,
								  physical,
								  Interface->u.UnmapMemory.bytes,
								  Interface->u.UnmapMemory.logical));
		break;

	case gcvHAL_ALLOCATE_NON_PAGED_MEMORY:
		/* Allocate non-paged memory. */
#ifdef __QNXNTO__
		if (FromUser)
		{
			gcmkONERROR(
				gckOS_AllocateNonPagedMemoryShmPool(
				Kernel->os,
				FromUser,
				Interface->pid,
				Interface->handle,
				&Interface->u.AllocateNonPagedMemory.bytes,
				&Interface->u.AllocateNonPagedMemory.physical,
				&Interface->u.AllocateNonPagedMemory.logical));
			break;
		}
#endif
		gcmkONERROR(
			gckOS_AllocateNonPagedMemory(
				Kernel->os,
				FromUser,
				&Interface->u.AllocateNonPagedMemory.bytes,
				&Interface->u.AllocateNonPagedMemory.physical,
				&Interface->u.AllocateNonPagedMemory.logical));
		break;

	case gcvHAL_FREE_NON_PAGED_MEMORY:
		physical = Interface->u.FreeNonPagedMemory.physical;

		/* Free non-paged memory. */
		gcmkONERROR(
			gckOS_FreeNonPagedMemory(Kernel->os,
									 Interface->u.FreeNonPagedMemory.bytes,
									 physical,
									 Interface->u.FreeNonPagedMemory.logical));
		break;

	case gcvHAL_ALLOCATE_CONTIGUOUS_MEMORY:
		/* Allocate contiguous memory. */
#ifdef __QNXNTO__
		if (FromUser)
		{
			gcmkONERROR(
				gckOS_AllocateNonPagedMemoryShmPool(
				Kernel->os,
				FromUser,
				Interface->pid,
				Interface->handle,
				&Interface->u.AllocateNonPagedMemory.bytes,
				&Interface->u.AllocateNonPagedMemory.physical,
				&Interface->u.AllocateNonPagedMemory.logical));
			break;
		}
#endif
		gcmkONERROR(
			gckOS_AllocateContiguous(
				Kernel->os,
				FromUser,
				&Interface->u.AllocateContiguousMemory.bytes,
				&Interface->u.AllocateContiguousMemory.physical,
				&Interface->u.AllocateContiguousMemory.logical));

		break;

	case gcvHAL_FREE_CONTIGUOUS_MEMORY:
		physical = Interface->u.FreeContiguousMemory.physical;

       /* Free contiguous memory. */
        gcmkONERROR(
            gckOS_FreeContiguous(Kernel->os,
                                 physical,
                                 Interface->u.FreeContiguousMemory.logical,
                                 Interface->u.FreeContiguousMemory.bytes));
        break;

	case gcvHAL_ALLOCATE_VIDEO_MEMORY:
		/* Align width and height to tiles. */
		gcmkONERROR(
			gckHARDWARE_AlignToTile(Kernel->hardware,
									Interface->u.AllocateVideoMemory.type,
									&Interface->u.AllocateVideoMemory.width,
									&Interface->u.AllocateVideoMemory.height,
									gcvNULL));

		/* Convert format into bytes per pixel and bytes per tile. */
		gcmkONERROR(
			gckHARDWARE_ConvertFormat(Kernel->hardware,
									  Interface->u.AllocateVideoMemory.format,
									  &bitsPerPixel,
									  gcvNULL));

		/* Compute number of bytes for the allocation. */
		bytes = Interface->u.AllocateVideoMemory.width * bitsPerPixel
			  * Interface->u.AllocateVideoMemory.height
			  * Interface->u.AllocateVideoMemory.depth / 8;

		/* Allocate memory. */
#ifdef __QNXNTO__
		gcmkONERROR(
			_AllocateMemory(Kernel,
							&Interface->u.AllocateVideoMemory.pool,
							bytes,
							64,
							Interface->u.AllocateVideoMemory.type,
							Interface->handle,
							&Interface->u.AllocateVideoMemory.node));
#else
		gcmkONERROR(
			_AllocateMemory(Kernel,
							&Interface->u.AllocateVideoMemory.pool,
							bytes,
							64,
							Interface->u.AllocateVideoMemory.type,
							&Interface->u.AllocateVideoMemory.node));
#endif
		break;

	case gcvHAL_ALLOCATE_LINEAR_VIDEO_MEMORY:
		/* Allocate memory. */
#ifdef __QNXNTO__
		gcmkONERROR(
			_AllocateMemory(Kernel,
							&Interface->u.AllocateLinearVideoMemory.pool,
							Interface->u.AllocateLinearVideoMemory.bytes,
							Interface->u.AllocateLinearVideoMemory.alignment,
							Interface->u.AllocateLinearVideoMemory.type,
							Interface->handle,
							&Interface->u.AllocateLinearVideoMemory.node));

		/* Set the current user pid in the node,
		 * which is used while locking memory. */
		gcmkVERIFY_OK(gckVIDMEM_SetPID(
				Interface->u.AllocateLinearVideoMemory.node,
				Interface->pid));
#else
		gcmkONERROR(
			_AllocateMemory(Kernel,
							&Interface->u.AllocateLinearVideoMemory.pool,
							Interface->u.AllocateLinearVideoMemory.bytes,
							Interface->u.AllocateLinearVideoMemory.alignment,
							Interface->u.AllocateLinearVideoMemory.type,
							&Interface->u.AllocateLinearVideoMemory.node));
#endif
		break;

    case gcvHAL_FREE_VIDEO_MEMORY:
#ifdef __QNXNTO__
        node = Interface->u.FreeVideoMemory.node;
        if (node->VidMem.memory->object.type == gcvOBJ_VIDMEM
         && node->VidMem.logical != gcvNULL)
        {
            gcmkONERROR(
                    gckKERNEL_UnmapVideoMemory(Kernel,
                                               node->VidMem.logical,
                                               Interface->pid,
                                               node->VidMem.bytes));
            node->VidMem.logical = gcvNULL;
        }
#endif
        /* Free video memory. */
        gcmkONERROR(
            gckVIDMEM_Free(Interface->u.FreeVideoMemory.node));
        break;

	case gcvHAL_LOCK_VIDEO_MEMORY:
		/* Lock video memory. */
		gcmkONERROR(
			gckVIDMEM_Lock(Interface->u.LockVideoMemory.node,
						   &Interface->u.LockVideoMemory.address));

		locked = gcvTRUE;

		node = Interface->u.LockVideoMemory.node;
		if (node->VidMem.memory->object.type == gcvOBJ_VIDMEM)
		{
			/* Map video memory address into user space. */
#ifdef __QNXNTO__
        if (node->VidMem.logical == gcvNULL)
        {
			gcmkONERROR(
				gckKERNEL_MapVideoMemory(Kernel,
										 FromUser,
										 Interface->u.LockVideoMemory.address,
										 Interface->pid,
										 node->VidMem.bytes,
										 &node->VidMem.logical));
        }
		Interface->u.LockVideoMemory.memory = node->VidMem.logical;
#else
			gcmkONERROR(
				gckKERNEL_MapVideoMemory(Kernel,
										 FromUser,
										 Interface->u.LockVideoMemory.address,
										 &Interface->u.LockVideoMemory.memory));
#endif

#ifdef __QNXNTO__
			/* Add more information to node, which is used while unmapping. */
			gcmkVERIFY_OK(gckVIDMEM_SetPID(
					Interface->u.LockVideoMemory.node,
					Interface->pid));
#endif
		}

		else
		{
			/* Copy logical memory for virtual memory. */
			Interface->u.LockVideoMemory.memory = node->Virtual.logical;

            /* Success. */
            status = gcvSTATUS_OK;
        }

#if gcdSECURE_USER
        /* Return logical address as physical address. */
        Interface->u.LockVideoMemory.address =
            gcmPTR2INT(Interface->u.LockVideoMemory.memory);
#endif
        break;

	case gcvHAL_UNLOCK_VIDEO_MEMORY:
		/* Unlock video memory. */
		node = Interface->u.UnlockVideoMemory.node;

        /* Unlock video memory. */
        gcmkONERROR(
            gckVIDMEM_Unlock(node,
                             Interface->u.UnlockVideoMemory.type,
                             &Interface->u.UnlockVideoMemory.asynchroneous));
        break;

	case gcvHAL_EVENT_COMMIT:
		/* Commit an event queue. */
		gcmkONERROR(
			gckEVENT_Commit(Kernel->event,
						    Interface->u.Event.queue));
        break;

    case gcvHAL_COMMIT:
        /* Commit a command and context buffer. */
        gcmkONERROR(
            gckCOMMAND_Commit(Kernel->command,
                              Interface->u.Commit.commandBuffer,
                              Interface->u.Commit.contextBuffer,
                              Interface->u.Commit.process));
        break;

    case gcvHAL_STALL:
        /* Stall the command queue. */
        gcmkONERROR(gckCOMMAND_Stall(Kernel->command));
        break;

	case gcvHAL_MAP_USER_MEMORY:
		/* Map user memory to DMA. */
		gcmkONERROR(
			gckOS_MapUserMemory(Kernel->os,
								Interface->u.MapUserMemory.memory,
								Interface->u.MapUserMemory.size,
								&Interface->u.MapUserMemory.info,
								&Interface->u.MapUserMemory.address));
		break;

	case gcvHAL_UNMAP_USER_MEMORY:
		address = Interface->u.MapUserMemory.address;

		/* Unmap user memory. */
		gcmkONERROR(
			gckOS_UnmapUserMemory(Kernel->os,
								  Interface->u.UnmapUserMemory.memory,
								  Interface->u.UnmapUserMemory.size,
								  Interface->u.UnmapUserMemory.info,
								  address));
		break;

#if !USE_NEW_LINUX_SIGNAL
	case gcvHAL_USER_SIGNAL:
     	gcmkTRACE_ZONE(gcvLEVEL_INFO, gcvZONE_KERNEL,
				   "Dispatching gcvHAL_USER_SIGNAL %d", Interface->u.UserSignal.command);
		/* Dispatch depends on the user signal subcommands. */
		switch(Interface->u.UserSignal.command)
		{
		case gcvUSER_SIGNAL_CREATE:
			/* Create a signal used in the user space. */
			gcmkONERROR(
				gckOS_CreateUserSignal(Kernel->os,
									   Interface->u.UserSignal.manualReset,
                                       Interface->u.UserSignal.signalType,
									   &Interface->u.UserSignal.id));
			break;

		case gcvUSER_SIGNAL_DESTROY:
			/* Destroy the signal. */
			gcmkONERROR(
				gckOS_DestroyUserSignal(Kernel->os,
										Interface->u.UserSignal.id));
			break;

		case gcvUSER_SIGNAL_SIGNAL:
			/* Signal the signal. */
			gcmkONERROR(
				gckOS_SignalUserSignal(Kernel->os,
									   Interface->u.UserSignal.id,
									   Interface->u.UserSignal.state));
			break;

		case gcvUSER_SIGNAL_WAIT:
			/* Wait on the signal. */
			status = gckOS_WaitUserSignal(Kernel->os,
										  Interface->u.UserSignal.id,
										  Interface->u.UserSignal.wait);
			break;

		default:
			/* Invalid user signal command. */
			gcmkONERROR(gcvSTATUS_INVALID_ARGUMENT);
		}
        break;
#endif

    case gcvHAL_SET_POWER_MANAGEMENT_STATE:
		/* Set the power management state. */
		gcmkONERROR(
			gckHARDWARE_SetPowerManagementState(
				Kernel->hardware,
				Interface->u.SetPowerManagement.state));
		break;

    case gcvHAL_QUERY_POWER_MANAGEMENT_STATE:
        /* Chip is not idle. */
        Interface->u.QueryPowerManagement.isIdle = gcvFALSE;

		/* Query the power management state. */
        gcmkONERROR(gckHARDWARE_QueryPowerManagementState(
            Kernel->hardware,
            &Interface->u.QueryPowerManagement.state));

        /* Query the idle state. */
        gcmkONERROR(
            gckHARDWARE_QueryIdle(Kernel->hardware,
                                  &Interface->u.QueryPowerManagement.isIdle));
        break;

    case gcvHAL_READ_REGISTER:
#if gcdREGISTER_ACCESS_FROM_USER
        /* Read a register. */
        gcmkONERROR(
            gckOS_ReadRegister(Kernel->os,
                               Interface->u.ReadRegisterData.address,
                               &Interface->u.ReadRegisterData.data));
#else
		/* No access from user land to read registers. */
		Interface->u.ReadRegisterData.data = 0;
		status = gcvSTATUS_NOT_SUPPORTED;
#endif
        break;

    case gcvHAL_WRITE_REGISTER:
#if gcdREGISTER_ACCESS_FROM_USER
        /* Write a register. */
        gcmkONERROR(
            gckOS_WriteRegister(Kernel->os,
                                Interface->u.WriteRegisterData.address,
                                Interface->u.WriteRegisterData.data));
#else
		/* No access from user land to write registers. */
		status = gcvSTATUS_NOT_SUPPORTED;
#endif
        break;

    case gcvHAL_READ_ALL_PROFILE_REGISTERS:
#if VIVANTE_PROFILER
		/* Read all 3D profile registers. */
		gcmkONERROR(
			gckHARDWARE_QueryProfileRegisters(
				Kernel->hardware,
				&Interface->u.RegisterProfileData.counters));
#else
        status = gcvSTATUS_OK;
#endif
        break;

    case gcvHAL_PROFILE_REGISTERS_2D:
#if VIVANTE_PROFILER
		/* Read all 2D profile registers. */
		gcmkONERROR(
			gckHARDWARE_ProfileEngine2D(
				Kernel->hardware,
				Interface->u.RegisterProfileData2D.hwProfile2D));
#else
        status = gcvSTATUS_OK;
#endif
        break;

	case gcvHAL_GET_PROFILE_SETTING:
#if VIVANTE_PROFILER
		/* Get profile setting */
		Interface->u.GetProfileSetting.enable = Kernel->profileEnable;

		gcmkVERIFY_OK(
			gckOS_MemCopy(Interface->u.GetProfileSetting.fileName,
						  Kernel->profileFileName,
						  gcdMAX_PROFILE_FILE_NAME));
#endif

		status = gcvSTATUS_OK;
        break;

	case gcvHAL_SET_PROFILE_SETTING:
#if VIVANTE_PROFILER
		/* Set profile setting */
		Kernel->profileEnable = Interface->u.SetProfileSetting.enable;

		gcmkVERIFY_OK(
			gckOS_MemCopy(Kernel->profileFileName,
						  Interface->u.SetProfileSetting.fileName,
						  gcdMAX_PROFILE_FILE_NAME));
#endif

        status = gcvSTATUS_OK;
		break;

	case gcvHAL_QUERY_KERNEL_SETTINGS:
		/* Get kernel settings. */
		gcmkONERROR(
			gckKERNEL_QuerySettings(Kernel,
									&Interface->u.QueryKernelSettings.settings));
		break;

	case gcvHAL_RESET:
		/* Reset the hardware. */
		gcmkONERROR(
			gckHARDWARE_Reset(Kernel->hardware));
		break;

    case gcvHAL_DEBUG:
        /* Set debug level and zones. */
        if (Interface->u.Debug.set)
        {
            gckOS_SetDebugLevel(Interface->u.Debug.level);
            gckOS_SetDebugZones(Interface->u.Debug.zones,
                                Interface->u.Debug.enable);
        }

        if (Interface->u.Debug.message[0] != '\0')
        {
            /* Print a message to the debugger. */
            gcmkPRINT(Interface->u.Debug.message);
        }
        status = gcvSTATUS_OK;
        break;

    case gcvHAL_CACHE:
        if (Interface->u.Cache.invalidate)
        {
            /* Flush and invalidate the cache. */
            status = gckOS_CacheInvalidate(Kernel->os,
                                           Interface->u.Cache.process,
                                           Interface->u.Cache.logical,
                                           Interface->u.Cache.bytes);
        }
        else
        {
            /* Flush the cache. */
            status = gckOS_CacheFlush(Kernel->os,
                                      Interface->u.Cache.process,
                                      Interface->u.Cache.logical,
                                      Interface->u.Cache.bytes);
        }
		break;
    	
	default:
		/* Invalid command. */
		gcmkONERROR(gcvSTATUS_INVALID_ARGUMENT);
	}

OnError:
	/* Save status. */
	Interface->status = status;

    if (gcmIS_ERROR(status))
    {
        if (locked)
        {
            /* Roll back the lock. */
            gcmkVERIFY_OK(
                gckVIDMEM_Unlock(Interface->u.LockVideoMemory.node,
                                 gcvSURF_TYPE_UNKNOWN,
                                 gcvNULL));
        }
    }

	/* Return the status. */
	gcmkFOOTER();
	return status;
}
/*******************************************************************************
**
**	gckCOMMAND_Execute
**
**	Execute a previously reserved command queue by appending a WAIT/LINK command
**  sequence after it and modifying the last WAIT into a LINK command.  The
**  command FIFO mutex will be released whether this function succeeds or not.
**
**	INPUT:
**
**		gckCOMMAND Command
**			Pointer to an gckCOMMAND object.
**
**		gctSIZE_T RequestedBytes
**			Number of bytes previously reserved.
**
**	OUTPUT:
**
**		Nothing.
*/
gceSTATUS
gckCOMMAND_Execute(
    IN gckCOMMAND Command,
    IN gctSIZE_T RequestedBytes,
	IN gctBOOL Locking
    )
{
    gctUINT32 offset;
    gctPOINTER address;
    gctSIZE_T bytes;
    gceSTATUS status;
    gctPOINTER wait;
    gctSIZE_T waitBytes;

    gcmkHEADER_ARG("Command=0x%x RequestedBytes=%lu Locking=%d",
					Command, RequestedBytes, Locking);

    /* Verify the arguments. */
    gcmkVERIFY_OBJECT(Command, gcvOBJ_COMMAND);

	if (Command->kernel->notifyIdle)
	{
		/* Increase the commit stamp */
		Command->commitStamp++;

		/* Set busy if idle */
		if (Command->idle)
		{
			Command->idle = gcvFALSE;

			gcmkVERIFY_OK(gckOS_NotifyIdle(Command->os, gcvFALSE));
		}
	}
    
	/* Compute offset for WAIT/LINK. */
	offset = Command->offset + RequestedBytes;

	/* Compute number of byts left in command queue. */
	bytes = Command->pageSize - offset;

	/* Append WAIT/LINK in command queue. */
	gcmkONERROR(
		gckHARDWARE_WaitLink(Command->kernel->hardware,
							 (gctUINT8 *) Command->logical + offset,
							 offset,
							 &bytes,
							 &wait,
							 &waitBytes));

	if (Command->newQueue)
	{
		/* For a new command queue, point to the start of the command
		** queue and include both the commands inserted at the head of it
		** and the WAIT/LINK. */
		address = Command->logical;
		bytes  += offset;
	}
	else
	{
		/* For an existing command queue, point to the current offset and
		** include the WAIT/LINK. */
		address = (gctUINT8 *) Command->logical + Command->offset;
		bytes  += RequestedBytes;
	}

    /* Flush the cache. */
    gcmkONERROR(gckOS_CacheFlush(Command->os, gcvNULL, address, bytes));

#if gcdDUMP_COMMAND
    _DumpCommand(Command, address, bytes);
#endif

    /* Convert the last WAIT into a LINK. */
    gcmkONERROR(gckHARDWARE_Link(Command->kernel->hardware,
                                 Command->wait,
                                 address,
                                 bytes,
                                 &Command->waitSize));
#if MRVL_PRINT_CMD_BUFFER
	_AddLink(Command, Command->wait, address);
#endif

    /* Flush the cache. */
    gcmkONERROR(gckOS_CacheFlush(Command->os,
                                 gcvNULL,
                                 Command->wait,
                                 Command->waitSize));

#if gcdDUMP_COMMAND
    _DumpCommand(Command, Command->wait, 8);
#endif

	/* Update the pointer to the last WAIT. */
	Command->wait     = wait;
	Command->waitSize = waitBytes;

	/* Update the command queue. */
	Command->offset  += bytes;
	Command->newQueue = gcvFALSE;

	/* Update queue tail pointer. */
	gcmkONERROR(
		gckHARDWARE_UpdateQueueTail(Command->kernel->hardware,
									Command->logical,
									Command->offset));

#if gcdDUMP_COMMAND
    gcmkPRINT("@[kernel.execute]");
#endif

	if (!Locking)
	{
	    /* Release the command queue mutex. */
    	gcmkONERROR(
        	gckOS_ReleaseMutex(Command->os, Command->mutexQueue));
	}

    /* Submit events if asked for. */
    if (Command->submit)
    {
        /* Submit events. */
        status = gckEVENT_Submit(Command->kernel->event, gcvFALSE, gcvFALSE);

        if (gcmIS_SUCCESS(status))
        {
            /* Success. */
            Command->submit = gcvFALSE;
        }
        else
        {
            gcmkTRACE_ZONE(gcvLEVEL_WARNING, gcvZONE_COMMAND,
                           "gckEVENT_Submit returned %d",
                           status);
        }
    }

    /* Success. */
    gcmkFOOTER_NO();
    return gcvSTATUS_OK;

OnError:
	/* Release the command queue mutex. */
	gcmkVERIFY_OK(
    	gckOS_ReleaseMutex(Command->os, Command->mutexQueue));

    /* Return the status. */
    gcmkFOOTER();
    return status;
}