void	btTriangleIndexVertexArray::getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, unsigned int **indexbase,int& numfaces,PHY_ScalarType& indicestype,int subpart)
{
	btAssert(subpart< getNumSubParts() );

	btIndexedMesh& mesh = m_indexedMeshes[subpart];

	numverts = mesh.m_numVertices;
	(*vertexbase) = (unsigned char *) mesh.m_vertexBase;

   type = mesh.m_vertexType;

	numfaces = mesh.m_numTriangles;

	(*indexbase) = (unsigned int *)mesh.m_triangleIndexBase;
	indicestype = mesh.m_indexType;
}
void btTriangleIndexVertexMaterialArray::getLockedMaterialBase(unsigned char **materialBase, int& numMaterials, PHY_ScalarType& materialType, int& materialStride,
                                   unsigned char ** triangleMaterialBase, int& numTriangles, int& triangleMaterialStride, PHY_ScalarType& triangleType, int subpart)
{
    btAssert(subpart< getNumSubParts() );

    btMaterialProperties& mats = m_materials[subpart];

    numMaterials = mats.m_numMaterials;
    (*materialBase) = (unsigned char *) mats.m_materialBase;
#ifdef BT_USE_DOUBLE_PRECISION
    materialType = PHY_DOUBLE;
#else
    materialType = PHY_FLOAT;
#endif
    materialStride = mats.m_materialStride;

    numTriangles = mats.m_numTriangles;
    (*triangleMaterialBase) = (unsigned char *)mats.m_triangleMaterialsBase;
    triangleMaterialStride = mats.m_triangleMaterialStride;
    triangleType = mats.m_triangleType;
}
void	btStridingMeshInterface::InternalProcessAllTriangles(btInternalTriangleIndexCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
	(void)aabbMin;
	(void)aabbMax;
	int numtotalphysicsverts = 0;
	int part,graphicssubparts = getNumSubParts();
	const unsigned char * vertexbase;
	const unsigned char * indexbase;
	int indexstride;
	PHY_ScalarType type;
	PHY_ScalarType gfxindextype;
	int stride,numverts,numtriangles;
	int gfxindex;
	btVector3 triangle[3];

	btVector3 meshScaling = getScaling();

	///if the number of parts is big, the performance might drop due to the innerloop switch on indextype
	for (part=0;part<graphicssubparts ;part++)
	{
		getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,type,stride,&indexbase,indexstride,numtriangles,gfxindextype,part);
		numtotalphysicsverts+=numtriangles*3; //upper bound

		///unlike that developers want to pass in double-precision meshes in single-precision Bullet build
		///so disable this feature by default
		///see patch http://code.google.com/p/bullet/issues/detail?id=213

		switch (type)
		{
		case PHY_FLOAT:
		 {

			 float* graphicsbase;

			 switch (gfxindextype)
			 {
			 case PHY_INTEGER:
				 {
					 for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
					 {
						 unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride);
						 graphicsbase = (float*)(vertexbase+tri_indices[0]*stride);
						 triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
						 graphicsbase = (float*)(vertexbase+tri_indices[1]*stride);
						 triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
						 graphicsbase = (float*)(vertexbase+tri_indices[2]*stride);
						 triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
						 callback->internalProcessTriangleIndex(triangle,part,gfxindex);
					 }
					 break;
				 }
			 case PHY_SHORT:
				 {
					 for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
					 {
						 unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride);
						 graphicsbase = (float*)(vertexbase+tri_indices[0]*stride);
						 triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
						 graphicsbase = (float*)(vertexbase+tri_indices[1]*stride);
						 triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
						 graphicsbase = (float*)(vertexbase+tri_indices[2]*stride);
						 triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
						 callback->internalProcessTriangleIndex(triangle,part,gfxindex);
					 }
					 break;
				 }
			case PHY_UCHAR:
				 {
					 for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
					 {
						 unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride);
						 graphicsbase = (float*)(vertexbase+tri_indices[0]*stride);
						 triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
						 graphicsbase = (float*)(vertexbase+tri_indices[1]*stride);
						 triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
						 graphicsbase = (float*)(vertexbase+tri_indices[2]*stride);
						 triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
						 callback->internalProcessTriangleIndex(triangle,part,gfxindex);
					 }
					 break;
				 }
			 default:
				 btAssert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
			 }
			 break;
		 }

		case PHY_DOUBLE:
			{
				double* graphicsbase;

				switch (gfxindextype)
				{
				case PHY_INTEGER:
					{
						for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
						{
							unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride);
							graphicsbase = (double*)(vertexbase+tri_indices[0]*stride);
							triangle[0].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),(btScalar)graphicsbase[2]*meshScaling.getZ());
							graphicsbase = (double*)(vertexbase+tri_indices[1]*stride);
							triangle[1].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),  (btScalar)graphicsbase[2]*meshScaling.getZ());
							graphicsbase = (double*)(vertexbase+tri_indices[2]*stride);
							triangle[2].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),  (btScalar)graphicsbase[2]*meshScaling.getZ());
							callback->internalProcessTriangleIndex(triangle,part,gfxindex);
						}
						break;
					}
				case PHY_SHORT:
					{
						for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
						{
							unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride);
							graphicsbase = (double*)(vertexbase+tri_indices[0]*stride);
							triangle[0].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),(btScalar)graphicsbase[2]*meshScaling.getZ());
							graphicsbase = (double*)(vertexbase+tri_indices[1]*stride);
							triangle[1].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),  (btScalar)graphicsbase[2]*meshScaling.getZ());
							graphicsbase = (double*)(vertexbase+tri_indices[2]*stride);
							triangle[2].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),  (btScalar)graphicsbase[2]*meshScaling.getZ());
							callback->internalProcessTriangleIndex(triangle,part,gfxindex);
						}
						break;
					}
				case PHY_UCHAR:
					{
						for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
						{
							unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride);
							graphicsbase = (double*)(vertexbase+tri_indices[0]*stride);
							triangle[0].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),(btScalar)graphicsbase[2]*meshScaling.getZ());
							graphicsbase = (double*)(vertexbase+tri_indices[1]*stride);
							triangle[1].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),  (btScalar)graphicsbase[2]*meshScaling.getZ());
							graphicsbase = (double*)(vertexbase+tri_indices[2]*stride);
							triangle[2].setValue((btScalar)graphicsbase[0]*meshScaling.getX(),(btScalar)graphicsbase[1]*meshScaling.getY(),  (btScalar)graphicsbase[2]*meshScaling.getZ());
							callback->internalProcessTriangleIndex(triangle,part,gfxindex);
						}
						break;
					}
				default:
					btAssert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
				}
				break;
			}
		default:
			btAssert((type == PHY_FLOAT) || (type == PHY_DOUBLE));
		}

		unLockReadOnlyVertexBase(part);
	}
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
const char*	btStridingMeshInterface::serialize(void* dataBuffer, btSerializer* serializer) const
{
	btStridingMeshInterfaceData* trimeshData = (btStridingMeshInterfaceData*) dataBuffer;

	trimeshData->m_numMeshParts = getNumSubParts();

	//void* uniquePtr = 0;

	trimeshData->m_meshPartsPtr = 0;

	if (trimeshData->m_numMeshParts)
	{
		btChunk* chunk = serializer->allocate(sizeof(btMeshPartData),trimeshData->m_numMeshParts);
		btMeshPartData* memPtr = (btMeshPartData*)chunk->m_oldPtr;
		trimeshData->m_meshPartsPtr = (btMeshPartData *)serializer->getUniquePointer(memPtr);


	//	int numtotalphysicsverts = 0;
		int part,graphicssubparts = getNumSubParts();
		const unsigned char * vertexbase;
		const unsigned char * indexbase;
		int indexstride;
		PHY_ScalarType type;
		PHY_ScalarType gfxindextype;
		int stride,numverts,numtriangles;
		int gfxindex;
	//	btVector3 triangle[3];

		//btVector3 meshScaling = getScaling();

		///if the number of parts is big, the performance might drop due to the innerloop switch on indextype
		for (part=0;part<graphicssubparts ;part++,memPtr++)
		{
			getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,type,stride,&indexbase,indexstride,numtriangles,gfxindextype,part);
			memPtr->m_numTriangles = numtriangles;//indices = 3*numtriangles
			memPtr->m_numVertices = numverts;
			memPtr->m_indices16 = 0;
			memPtr->m_indices32 = 0;
			memPtr->m_3indices16 = 0;
			memPtr->m_vertices3f = 0;
			memPtr->m_vertices3d = 0;

			switch (gfxindextype)
			{
			case PHY_INTEGER:
				{
					int numindices = numtriangles*3;
				
					if (numindices)
					{
						btChunk* chunk = serializer->allocate(sizeof(btIntIndexData),numindices);
						btIntIndexData* tmpIndices = (btIntIndexData*)chunk->m_oldPtr;
						memPtr->m_indices32 = (btIntIndexData*)serializer->getUniquePointer(tmpIndices);
						for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
						{
							unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride);
							tmpIndices[gfxindex*3].m_value = tri_indices[0];
							tmpIndices[gfxindex*3+1].m_value = tri_indices[1];
							tmpIndices[gfxindex*3+2].m_value = tri_indices[2];
						}
						serializer->finalizeChunk(chunk,"btIntIndexData",BT_ARRAY_CODE,(void*)chunk->m_oldPtr);
					}
					break;
				}
			case PHY_SHORT:
				{
					if (numtriangles)
					{
						btChunk* chunk = serializer->allocate(sizeof(btShortIntIndexTripletData),numtriangles);
						btShortIntIndexTripletData* tmpIndices = (btShortIntIndexTripletData*)chunk->m_oldPtr;
						memPtr->m_3indices16 = (btShortIntIndexTripletData*) serializer->getUniquePointer(tmpIndices);
						for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
						{
							unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride);
							tmpIndices[gfxindex].m_values[0] = tri_indices[0];
							tmpIndices[gfxindex].m_values[1] = tri_indices[1];
							tmpIndices[gfxindex].m_values[2] = tri_indices[2];
						}
						serializer->finalizeChunk(chunk,"btShortIntIndexTripletData",BT_ARRAY_CODE,(void*)chunk->m_oldPtr);
					}
					break;
				}
				case PHY_UCHAR:
				{
					if (numtriangles)
					{
						btChunk* chunk = serializer->allocate(sizeof(btCharIndexTripletData),numtriangles);
						btCharIndexTripletData* tmpIndices = (btCharIndexTripletData*)chunk->m_oldPtr;
						memPtr->m_3indices8 = (btCharIndexTripletData*) serializer->getUniquePointer(tmpIndices);
						for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
						{
							unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride);
							tmpIndices[gfxindex].m_values[0] = tri_indices[0];
							tmpIndices[gfxindex].m_values[1] = tri_indices[1];
							tmpIndices[gfxindex].m_values[2] = tri_indices[2];
						}
						serializer->finalizeChunk(chunk,"btCharIndexTripletData",BT_ARRAY_CODE,(void*)chunk->m_oldPtr);
					}
					break;
				}
			default:
				{
					btAssert(0);
					//unknown index type
				}
			}

			switch (type)
			{
			case PHY_FLOAT:
			 {
				 float* graphicsbase;

				 if (numverts)
				 {
					 btChunk* chunk = serializer->allocate(sizeof(btVector3FloatData),numverts);
					 btVector3FloatData* tmpVertices = (btVector3FloatData*) chunk->m_oldPtr;
					 memPtr->m_vertices3f = (btVector3FloatData *)serializer->getUniquePointer(tmpVertices);
					 for (int i=0;i<numverts;i++)
					 {
						 graphicsbase = (float*)(vertexbase+i*stride);
						 tmpVertices[i].m_floats[0] = graphicsbase[0];
						 tmpVertices[i].m_floats[1] = graphicsbase[1];
						 tmpVertices[i].m_floats[2] = graphicsbase[2];
					 }
					 serializer->finalizeChunk(chunk,"btVector3FloatData",BT_ARRAY_CODE,(void*)chunk->m_oldPtr);
				 }
				 break;
				}

			case PHY_DOUBLE:
				{
					if (numverts)
					{
						btChunk* chunk = serializer->allocate(sizeof(btVector3DoubleData),numverts);
						btVector3DoubleData* tmpVertices = (btVector3DoubleData*) chunk->m_oldPtr;
						memPtr->m_vertices3d = (btVector3DoubleData *) serializer->getUniquePointer(tmpVertices);
						for (int i=0;i<numverts;i++)
					 {
						 double* graphicsbase = (double*)(vertexbase+i*stride);//for now convert to float, might leave it at double
						 tmpVertices[i].m_floats[0] = graphicsbase[0];
						 tmpVertices[i].m_floats[1] = graphicsbase[1];
						 tmpVertices[i].m_floats[2] = graphicsbase[2];
					 }
						serializer->finalizeChunk(chunk,"btVector3DoubleData",BT_ARRAY_CODE,(void*)chunk->m_oldPtr);
					}
					break;
				}

			default:
				btAssert((type == PHY_FLOAT) || (type == PHY_DOUBLE));
			}

			unLockReadOnlyVertexBase(part);
		}

		serializer->finalizeChunk(chunk,"btMeshPartData",BT_ARRAY_CODE,chunk->m_oldPtr);
	}


	m_scaling.serializeFloat(trimeshData->m_scaling);
	return "btStridingMeshInterfaceData";
}
void	btStridingMeshInterface::InternalProcessAllTriangles(btInternalTriangleIndexCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
	(void)aabbMin;
	(void)aabbMax;
	int numtotalphysicsverts = 0;
	int part,graphicssubparts = getNumSubParts();
	const unsigned char * vertexbase;
	const unsigned char * indexbase;
	int indexstride;
	PHY_ScalarType type;
	PHY_ScalarType gfxindextype;
	int stride,numverts,numtriangles;
	int gfxindex;
	btVector3 triangle[3];
	btScalar* graphicsbase;

	btVector3 meshScaling = getScaling();

	///if the number of parts is big, the performance might drop due to the innerloop switch on indextype
	for (part=0;part<graphicssubparts ;part++)
	{
		getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,type,stride,&indexbase,indexstride,numtriangles,gfxindextype,part);
		numtotalphysicsverts+=numtriangles*3; //upper bound

		switch (gfxindextype)
		{
		case PHY_INTEGER:
			{
				for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
				{
					int* tri_indices= (int*)(indexbase+gfxindex*indexstride);
					graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
					triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
					graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
					triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
					graphicsbase = (btScalar*)(vertexbase+tri_indices[2]*stride);
					triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
					callback->internalProcessTriangleIndex(triangle,part,gfxindex);
				}
				break;
			}
		case PHY_SHORT:
			{
				for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
				{
					short int* tri_indices= (short int*)(indexbase+gfxindex*indexstride);
					graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
					triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
					graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
					triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
					graphicsbase = (btScalar*)(vertexbase+tri_indices[2]*stride);
					triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),	graphicsbase[2]*meshScaling.getZ());
					callback->internalProcessTriangleIndex(triangle,part,gfxindex);
				}
				break;
			}
		default:
			btAssert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
		}

		unLockReadOnlyVertexBase(part);
	}
}