bool KDLArmKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose &ik_pose,
                                              const std::vector<double> &ik_seed_state,
                                              const double &timeout,
                                              std::vector<double> &solution,
                                              const boost::function<void(const geometry_msgs::Pose &ik_pose,const std::vector<double> &ik_solution,int &error_code)> &desired_pose_callback,
                                              const boost::function<void(const geometry_msgs::Pose &ik_pose,const std::vector<double> &ik_solution,int &error_code)> &solution_callback,
                                              int &error_code)  
{
  if(!active_)
  {
    ROS_ERROR("kinematics not active");
    error_code = kinematics::INACTIVE;
    return false;
  }
  KDL::Frame pose_desired;
  tf::PoseMsgToKDL(ik_pose, pose_desired);

  //Do the IK
  KDL::JntArray jnt_pos_in;
  KDL::JntArray jnt_pos_out;
  jnt_pos_in.resize(dimension_);
  for(unsigned int i=0; i < dimension_; i++)
    jnt_pos_in(i) = ik_seed_state[i];
 
  if(!desired_pose_callback.empty())
    desired_pose_callback(ik_pose,ik_seed_state,error_code);
  
  if(error_code < 0)
  {
    ROS_ERROR("Could not find inverse kinematics for desired end-effector pose since the pose may be in collision");
    return false;
  }
  for(int i=0; i < max_search_iterations_; i++)
  {
    jnt_pos_in = getRandomConfiguration();
    int ik_valid = ik_solver_pos_->CartToJnt(jnt_pos_in,pose_desired,jnt_pos_out);                      
    if(ik_valid < 0)                                                                                                       
      continue;
    std::vector<double> solution_local;
    solution_local.resize(dimension_);
    for(unsigned int j=0; j < dimension_; j++)
      solution_local[j] = jnt_pos_out(j);
    solution_callback(ik_pose,solution_local,error_code);
    if(error_code == kinematics::SUCCESS)
    {
      solution = solution_local;
      return true;
    }
  }
  ROS_DEBUG("An IK that satisifes the constraints and is collision free could not be found");   
  if (error_code == 0)
    error_code = kinematics::NO_IK_SOLUTION;
  return false;
}
bool KDLKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose &ik_pose,
                                           const std::vector<double> &ik_seed_state,
                                           double timeout,
                                           std::vector<double> &solution,
                                           const IKCallbackFn &solution_callback,
                                           moveit_msgs::MoveItErrorCodes &error_code,
                                           const std::vector<double> &consistency_limits,
                                           const kinematics::KinematicsQueryOptions &options) const
{
  ros::WallTime n1 = ros::WallTime::now();
  if(!active_)
  {
    ROS_ERROR_NAMED("kdl","kinematics not active");
    error_code.val = error_code.NO_IK_SOLUTION;
    return false;
  }

  if(ik_seed_state.size() != dimension_)
  {
    ROS_ERROR_STREAM_NAMED("kdl","Seed state must have size " << dimension_ << " instead of size " << ik_seed_state.size());
    error_code.val = error_code.NO_IK_SOLUTION;
    return false;
  }

  if(!consistency_limits.empty() && consistency_limits.size() != dimension_)
  {
    ROS_ERROR_STREAM_NAMED("kdl","Consistency limits be empty or must have size " << dimension_ << " instead of size " << consistency_limits.size());
    error_code.val = error_code.NO_IK_SOLUTION;
    return false;
  }

  KDL::JntArray jnt_seed_state(dimension_);
  KDL::JntArray jnt_pos_in(dimension_);
  KDL::JntArray jnt_pos_out(dimension_);

  KDL::ChainFkSolverPos_recursive fk_solver(kdl_chain_);
  KDL::ChainIkSolverVel_pinv_mimic ik_solver_vel(kdl_chain_, joint_model_group_->getMimicJointModels().size(), redundant_joint_indices_.size(), position_ik_);
  KDL::ChainIkSolverPos_NR_JL_Mimic ik_solver_pos(kdl_chain_, joint_min_, joint_max_, fk_solver, ik_solver_vel, max_solver_iterations_, epsilon_, position_ik_);
  ik_solver_vel.setMimicJoints(mimic_joints_);
  ik_solver_pos.setMimicJoints(mimic_joints_);

  if ((redundant_joint_indices_.size() > 0) && !ik_solver_vel.setRedundantJointsMapIndex(redundant_joints_map_index_))
  {
    ROS_ERROR_NAMED("kdl","Could not set redundant joints");
    return false;
  }

  if(options.lock_redundant_joints)
  {
    ik_solver_vel.lockRedundantJoints();
  }

  solution.resize(dimension_);

  KDL::Frame pose_desired;
  tf::poseMsgToKDL(ik_pose, pose_desired);

  ROS_DEBUG_STREAM_NAMED("kdl","searchPositionIK2: Position request pose is " <<
                   ik_pose.position.x << " " <<
                   ik_pose.position.y << " " <<
                   ik_pose.position.z << " " <<
                   ik_pose.orientation.x << " " <<
                   ik_pose.orientation.y << " " <<
                   ik_pose.orientation.z << " " <<
                   ik_pose.orientation.w);
  //Do the IK
  for(unsigned int i=0; i < dimension_; i++)
    jnt_seed_state(i) = ik_seed_state[i];
  jnt_pos_in = jnt_seed_state;

  unsigned int counter(0);
  while(1)
  {
    //    ROS_DEBUG_NAMED("kdl","Iteration: %d, time: %f, Timeout: %f",counter,(ros::WallTime::now()-n1).toSec(),timeout);
    counter++;
    if(timedOut(n1,timeout))
    {
      ROS_DEBUG_NAMED("kdl","IK timed out");
      error_code.val = error_code.TIMED_OUT;
      ik_solver_vel.unlockRedundantJoints();
      return false;
    }
    int ik_valid = ik_solver_pos.CartToJnt(jnt_pos_in, pose_desired, jnt_pos_out);
    ROS_DEBUG_NAMED("kdl","IK valid: %d", ik_valid);
    if(!consistency_limits.empty())
    {
      getRandomConfiguration(jnt_seed_state, consistency_limits, jnt_pos_in, options.lock_redundant_joints);
      if( (ik_valid < 0 && !options.return_approximate_solution) || !checkConsistency(jnt_seed_state, consistency_limits, jnt_pos_out))
      {
        ROS_DEBUG_NAMED("kdl","Could not find IK solution: does not match consistency limits");
        continue;
      }
    }
    else
    {
      getRandomConfiguration(jnt_pos_in, options.lock_redundant_joints);
      ROS_DEBUG_NAMED("kdl","New random configuration");
      for(unsigned int j=0; j < dimension_; j++)
        ROS_DEBUG_NAMED("kdl","%d %f", j, jnt_pos_in(j));

      if(ik_valid < 0 && !options.return_approximate_solution)
      {
        ROS_DEBUG_NAMED("kdl","Could not find IK solution");
        continue;
      }
    }
    ROS_DEBUG_NAMED("kdl","Found IK solution");
    for(unsigned int j=0; j < dimension_; j++)
      solution[j] = jnt_pos_out(j);
    if(!solution_callback.empty())
      solution_callback(ik_pose,solution,error_code);
    else
      error_code.val = error_code.SUCCESS;

    if(error_code.val == error_code.SUCCESS)
    {
      ROS_DEBUG_STREAM_NAMED("kdl","Solved after " << counter << " iterations");
      ik_solver_vel.unlockRedundantJoints();
      return true;
    }
  }
  ROS_DEBUG_NAMED("kdl","An IK that satisifes the constraints and is collision free could not be found");
  error_code.val = error_code.NO_IK_SOLUTION;
  ik_solver_vel.unlockRedundantJoints();
  return false;
}
bool KDLKinematicsPlugin::searchPositionIK(const geometry_msgs::Pose &ik_pose,
                                           const std::vector<double> &ik_seed_state,
                                           double timeout,
                                           std::vector<double> &solution,
                                           const IKCallbackFn &solution_callback,
                                           moveit_msgs::MoveItErrorCodes &error_code,
                                           const std::vector<double> &consistency_limits) const
{
  ros::WallTime n1 = ros::WallTime::now();
  if(!active_)
  {
    ROS_ERROR("kinematics not active");
    error_code.val = error_code.NO_IK_SOLUTION;
    return false;
  }

  if(ik_seed_state.size() != dimension_)
  {
    ROS_ERROR_STREAM("Seed state must have size " << dimension_ << " instead of size " << ik_seed_state.size());
    error_code.val = error_code.NO_IK_SOLUTION;
    return false;    
  }

  if(!consistency_limits.empty() && consistency_limits.size() != dimension_)
  {
    ROS_ERROR_STREAM("Consistency limits be empty or must have size " << dimension_ << " instead of size " << consistency_limits.size());
    error_code.val = error_code.NO_IK_SOLUTION;
    return false;        
  }  

  solution.resize(dimension_);
  
  KDL::Frame pose_desired;
  tf::poseMsgToKDL(ik_pose, pose_desired);
  
  ROS_DEBUG_STREAM("searchPositionIK2: Position request pose is " <<
                   ik_pose.position.x << " " <<
                   ik_pose.position.y << " " <<
                   ik_pose.position.z << " " <<
                   ik_pose.orientation.x << " " << 
                   ik_pose.orientation.y << " " << 
                   ik_pose.orientation.z << " " << 
                   ik_pose.orientation.w);
  //Do the IK
  for(unsigned int i=0; i < dimension_; i++)
    jnt_seed_state_(i) = ik_seed_state[i]; 
  jnt_pos_in_ = jnt_seed_state_;

  unsigned int counter(0);  
  while(1)  
  {
    //    ROS_DEBUG("Iteration: %d, time: %f, Timeout: %f",counter,(ros::WallTime::now()-n1).toSec(),timeout);    
    counter++;    
    if(timedOut(n1,timeout))
    {
      ROS_DEBUG("IK timed out");
      error_code.val = error_code.TIMED_OUT;
      return false;      
    }    
    int ik_valid = ik_solver_pos_->CartToJnt(jnt_pos_in_,pose_desired,jnt_pos_out_);                     
    if(!consistency_limits.empty()) 
    {
      getRandomConfiguration(jnt_seed_state_, consistency_limits, jnt_pos_in_);
      if(ik_valid < 0 || !checkConsistency(jnt_seed_state_, consistency_limits, jnt_pos_out_))
      {
        ROS_DEBUG("Could not find IK solution");        
        continue;
      } 
    }
    else
    {
      getRandomConfiguration(jnt_pos_in_);
      if(ik_valid < 0)
      {
        ROS_DEBUG("Could not find IK solution");        
        continue;
      }      
    }
    ROS_DEBUG("Found IK solution");    
    for(unsigned int j=0; j < dimension_; j++)
      solution[j] = jnt_pos_out_(j);
    if(!solution_callback.empty())
      solution_callback(ik_pose,solution,error_code);
    else
      error_code.val = error_code.SUCCESS;
    
    if(error_code.val == error_code.SUCCESS)
    {
      ROS_DEBUG_STREAM("Solved after " << counter << " iterations");
      return true;
    }
  }
  ROS_DEBUG("An IK that satisifes the constraints and is collision free could not be found");   
  error_code.val = error_code.NO_IK_SOLUTION;
  return false;
}