static char* draw_net_input_drive(ivl_nexus_t nex, ivl_nexus_ptr_t nptr)
{
      unsigned nptr_pin = ivl_nexus_ptr_pin(nptr);
      ivl_net_const_t cptr;
      ivl_net_logic_t lptr;
      ivl_signal_t sptr;
      ivl_lpm_t lpm;

      lptr = ivl_nexus_ptr_log(nptr);
      if (lptr
	  && ((ivl_logic_type(lptr)==IVL_LO_BUFZ)||(ivl_logic_type(lptr)==IVL_LO_BUFT))
	  && (nptr_pin == 0))
	    do {
		  if (! can_elide_bufz(lptr, nptr))
			break;

		  return strdup(draw_net_input(ivl_logic_pin(lptr, 1)));
	    } while(0);

	/* If this is a pulldown device, then there is a single pin
	   that drives a constant value to the entire width of the
	   vector. The driver normally drives a pull0 value, so a C8<>
	   constant is appropriate, but if the drive is really strong,
	   then we can draw a C4<> constant instead. */
      if (lptr && (ivl_logic_type(lptr) == IVL_LO_PULLDOWN)) {
	    if (ivl_nexus_ptr_drive0(nptr) == IVL_DR_STRONG) {
		  size_t result_len = ivl_logic_width(lptr) + 5;
		  char*result = malloc(result_len);
		  char*dp = result;
		  strcpy(dp, "C4<");
		  dp += strlen(dp);
		  str_repeat(dp, "0", ivl_logic_width(lptr));
		  dp += ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);
		  return result;
	    } else {
		  char val[4];
		  size_t result_len = 3*ivl_logic_width(lptr) + 5;
		  char*result = malloc(result_len);
		  char*dp = result;

		  val[0] = "01234567"[ivl_nexus_ptr_drive0(nptr)];
		  val[1] = val[0];
		  val[2] = '0';
		  val[3] = 0;

		  strcpy(dp, "C8<");
		  dp += strlen(dp);
		  str_repeat(dp, val, ivl_logic_width(lptr));
		  dp += 3*ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);
		  return result;
	    }
      }

      if (lptr && (ivl_logic_type(lptr) == IVL_LO_PULLUP)) {
	    char*result;
	    char tmp[32];
	    if (ivl_nexus_ptr_drive1(nptr) == IVL_DR_STRONG) {
		  size_t result_len = 5 + ivl_logic_width(lptr);
		  result = malloc(result_len);
		  char*dp = result;
		  strcpy(dp, "C4<");
		  dp += strlen(dp);
		  str_repeat(dp, "1", ivl_logic_width(lptr));
		  dp += ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);

	    } else {
		  char val[4];
		  size_t result_len = 5 + 3*ivl_logic_width(lptr);
		  result = malloc(result_len);
		  char*dp = result;

		  val[0] = "01234567"[ivl_nexus_ptr_drive1(nptr)];
		  val[1] = val[0];
		  val[2] = '1';
		  val[3] = 0;

		  strcpy(dp, "C8<");
		  dp += strlen(dp);
		  str_repeat(dp, val, ivl_logic_width(lptr));
		  dp += 3*ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);

	    }

	      /* Make the constant an argument to a BUFZ, which is
		 what we use to drive the PULLed value. */
	    fprintf(vvp_out, "L_%p .functor BUFT 1, %s, C4<0>, C4<0>, C4<0>;\n",
		    lptr, result);
	    snprintf(tmp, sizeof tmp, "L_%p", lptr);
	    result = realloc(result, strlen(tmp)+1);
	    strcpy(result, tmp);
	    return result;
      }

      if (lptr && (nptr_pin == 0)) {
	    char tmp[128];
	    snprintf(tmp, sizeof tmp, "L_%p", lptr);
	    return strdup(tmp);
      }

      sptr = ivl_nexus_ptr_sig(nptr);
      if (sptr && (ivl_signal_type(sptr) == IVL_SIT_REG)) {
	    char tmp[128];
	      /* Input is a .var. This device may be a non-zero pin
	         because it may be an array of reg vectors. */
	    snprintf(tmp, sizeof tmp, "v%p_%u", sptr, nptr_pin);

	    if (ivl_signal_dimensions(sptr) > 0) {
		  fprintf(vvp_out, "v%p_%u .array/port v%p, %u;\n",
			  sptr, nptr_pin, sptr, nptr_pin);
	    }

	    return strdup(tmp);
      }

      cptr = ivl_nexus_ptr_con(nptr);
      if (cptr) {
	    char *result = 0;
	    ivl_expr_t d_rise, d_fall, d_decay;
            unsigned dly_width = 0;

	      /* Constants should have exactly 1 pin, with a literal value. */
	    assert(nptr_pin == 0);

	    switch (ivl_const_type(cptr)) {
		case IVL_VT_LOGIC:
		case IVL_VT_BOOL:
		case IVL_VT_STRING:
		  if ((ivl_nexus_ptr_drive0(nptr) == IVL_DR_STRONG)
		      && (ivl_nexus_ptr_drive1(nptr) == IVL_DR_STRONG)) {

			result = draw_C4_to_string(cptr);

		  } else {
			result = draw_C8_to_string(cptr,
						   ivl_nexus_ptr_drive0(nptr),
						   ivl_nexus_ptr_drive1(nptr));
		  }
                  dly_width = ivl_const_width(cptr);
		  break;

		case IVL_VT_REAL:
		  result = draw_Cr_to_string(ivl_const_real(cptr));
                  dly_width = 0;
		  break;

		default:
		  assert(0);
		  break;
	    }

	    d_rise = ivl_const_delay(cptr, 0);
	    d_fall = ivl_const_delay(cptr, 1);
	    d_decay = ivl_const_delay(cptr, 2);

	      /* We have a delayed constant, so we need to build some code. */
	    if (d_rise != 0) {
		  char tmp[128];
		  fprintf(vvp_out, "L_%p/d .functor BUFT 1, %s, "
		                   "C4<0>, C4<0>, C4<0>;\n", cptr, result);
		  free(result);

		    /* Is this a fixed or variable delay? */
		  if (number_is_immediate(d_rise, 64, 0) &&
		      number_is_immediate(d_fall, 64, 0) &&
		      number_is_immediate(d_decay, 64, 0)) {

			assert(! number_is_unknown(d_rise));
			assert(! number_is_unknown(d_fall));
			assert(! number_is_unknown(d_decay));

			fprintf(vvp_out, "L_%p .delay %u "
				"(%" PRIu64 ",%" PRIu64 ",%" PRIu64 ") L_%p/d;\n",
			                 cptr, dly_width,
			                 get_number_immediate64(d_rise),
			                 get_number_immediate64(d_fall),
			                 get_number_immediate64(d_decay), cptr);

		  } else {
			ivl_signal_t sig;
			// We do not currently support calculating the decay
			// from the rise and fall variable delays.
			assert(d_decay != 0);
			assert(ivl_expr_type(d_rise) == IVL_EX_SIGNAL);
			assert(ivl_expr_type(d_fall) == IVL_EX_SIGNAL);
			assert(ivl_expr_type(d_decay) == IVL_EX_SIGNAL);

			fprintf(vvp_out, "L_%p .delay %u L_%p/d",
                                cptr, dly_width, cptr);

			sig = ivl_expr_signal(d_rise);
			assert(ivl_signal_dimensions(sig) == 0);
			fprintf(vvp_out, ", v%p_0", sig);

			sig = ivl_expr_signal(d_fall);
			assert(ivl_signal_dimensions(sig) == 0);
			fprintf(vvp_out, ", v%p_0", sig);

			sig = ivl_expr_signal(d_decay);
			assert(ivl_signal_dimensions(sig) == 0);
			fprintf(vvp_out, ", v%p_0;\n", sig);
		  }

		  snprintf(tmp, sizeof tmp, "L_%p", cptr);
		  result = strdup(tmp);

	    } else {
		  char tmp[64];
		  fprintf(vvp_out, "L_%p .functor BUFT 1, %s, "
			  "C4<0>, C4<0>, C4<0>;\n", cptr, result);
		  free(result);

		  snprintf(tmp, sizeof tmp, "L_%p", cptr);
		  result = strdup(tmp);
	    }

	    return result;
      }

      lpm = ivl_nexus_ptr_lpm(nptr);
      if (lpm) switch (ivl_lpm_type(lpm)) {

	  case IVL_LPM_FF:
	  case IVL_LPM_ABS:
	  case IVL_LPM_ADD:
	  case IVL_LPM_ARRAY:
	  case IVL_LPM_CAST_INT2:
	  case IVL_LPM_CAST_INT:
	  case IVL_LPM_CAST_REAL:
	  case IVL_LPM_CONCAT:
	  case IVL_LPM_CONCATZ:
	  case IVL_LPM_CMP_EEQ:
	  case IVL_LPM_CMP_EQ:
	  case IVL_LPM_CMP_GE:
	  case IVL_LPM_CMP_GT:
	  case IVL_LPM_CMP_NE:
	  case IVL_LPM_CMP_NEE:
	  case IVL_LPM_RE_AND:
	  case IVL_LPM_RE_OR:
	  case IVL_LPM_RE_XOR:
	  case IVL_LPM_RE_NAND:
	  case IVL_LPM_RE_NOR:
	  case IVL_LPM_RE_XNOR:
	  case IVL_LPM_SFUNC:
	  case IVL_LPM_SHIFTL:
	  case IVL_LPM_SHIFTR:
	  case IVL_LPM_SIGN_EXT:
	  case IVL_LPM_SUB:
	  case IVL_LPM_MULT:
	  case IVL_LPM_MUX:
	  case IVL_LPM_POW:
	  case IVL_LPM_DIVIDE:
	  case IVL_LPM_MOD:
	  case IVL_LPM_UFUNC:
	  case IVL_LPM_PART_VP:
	  case IVL_LPM_PART_PV: /* NOTE: This is only a partial driver. */
	  case IVL_LPM_REPEAT:
	    if (ivl_lpm_q(lpm) == nex) {
		  char tmp[128];
		  snprintf(tmp, sizeof tmp, "L_%p", lpm);
		  return strdup(tmp);
	    }
	    break;

      }

      fprintf(stderr, "vvp.tgt error: no input to nexus.\n");
      assert(0);
      return strdup("C<z>");
}
void draw_switch_in_scope(ivl_switch_t sw)
{
      ivl_island_t island;
      ivl_nexus_t nex_a, nex_b, enable;
      const char*str_a, *str_b, *str_e;

      ivl_expr_t rise_exp = ivl_switch_delay(sw, 0);
      ivl_expr_t fall_exp = ivl_switch_delay(sw, 1);
      ivl_expr_t decay_exp= ivl_switch_delay(sw, 2);

      if ((rise_exp || fall_exp || decay_exp) &&
          (!number_is_immediate(rise_exp, 64, 0) ||
           number_is_unknown(rise_exp) ||
           !number_is_immediate(fall_exp, 64, 0) ||
           number_is_unknown(fall_exp) ||
	   !number_is_immediate(decay_exp, 64, 0) ||
	   number_is_unknown(decay_exp))) {
	    fprintf(stderr, "%s:%u: error: Invalid tranif delay expression.\n",
	                    ivl_switch_file(sw), ivl_switch_lineno(sw));
	    vvp_errors += 1;
      }

      island = ivl_switch_island(sw);
      if (ivl_island_flag_test(island, 0) == 0)
	    draw_tran_island(island);

      nex_a = ivl_switch_a(sw);
      assert(nex_a);
      str_a = draw_island_net_input(island, nex_a);

      nex_b = ivl_switch_b(sw);
      assert(nex_b);
      str_b = draw_island_net_input(island, nex_b);

      enable = ivl_switch_enable(sw);
      str_e = 0;
      char str_e_buf[4 + 2*sizeof(void*)];

      if (enable && rise_exp) {
	    assert(fall_exp && decay_exp);

	      /* If the enable has a delay, then generate a .delay
		 node to delay the input by the specified amount. Do
		 the delay outside of the island so that the island
		 processing doesn't have to deal with it. */
	    const char*raw = draw_net_input(enable);

	    snprintf(str_e_buf, sizeof str_e_buf, "p%p", sw);
	    str_e = str_e_buf;

	    fprintf(vvp_out, "%s/d .delay 1 "
		    "(%" PRIu64 ",%" PRIu64 ",%" PRIu64 ") %s;\n",
		    str_e, get_number_immediate64(rise_exp),
		    get_number_immediate64(fall_exp),
		    get_number_immediate64(decay_exp), raw);

	    fprintf(vvp_out, "%s .import I%p, %s/d;\n", str_e, island, str_e);

      } else if (enable) {
	    str_e = draw_island_net_input(island, enable);
      }

      switch (ivl_switch_type(sw)) {
	  case IVL_SW_TRAN:
	    fprintf(vvp_out, " .tran");
	    break;
	  case IVL_SW_TRANIF0:
	    fprintf(vvp_out, " .tranif0");
	    break;
	  case IVL_SW_TRANIF1:
	    fprintf(vvp_out, " .tranif1");
	    break;
	  case IVL_SW_TRAN_VP:
	    fprintf(vvp_out, " .tranvp %u %u %u,",
		    ivl_switch_width(sw), ivl_switch_part(sw), ivl_switch_offset(sw));
	    break;

	  default:
	    fprintf(stderr, "%s:%u: tgt-vvp sorry: resistive switch modeling "
	                    "is not currently supported.\n",
		            ivl_switch_file(sw), ivl_switch_lineno(sw));
	    vvp_errors += 1;
	    return;
      }

      fprintf(vvp_out, " I%p, %s %s", island, str_a, str_b);
      if (enable) {
	    fprintf(vvp_out, ", %s", str_e);
      }
      fprintf(vvp_out, ";\n");
}