Beispiel #1
0
static void printDstIdx(MCInst *MI, unsigned Op, SStream *O)
{
	if (MI->csh->detail) {
		uint8_t access[6];

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;

		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
	}

	// DI accesses are always ES-based on non-64bit mode
	if (MI->csh->mode != CS_MODE_64) {
		SStream_concat0(O, "%es:(");
		if (MI->csh->detail) {
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_ES;
		}
	} else
		SStream_concat0(O, "(");

	set_mem_access(MI, true);

	printOperand(MI, Op, O);

	SStream_concat0(O, ")");
	set_mem_access(MI, false);
}
static void printU8Imm(MCInst *MI, unsigned Op, SStream *O)
{
	uint8_t val = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xff;

	if (val > HEX_THRESHOLD)
		SStream_concat(O, "0x%x", val);
	else
		SStream_concat(O, "%u", val);

	if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
		uint8_t access[6];
#endif

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = val;

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

		MI->flat_insn->detail->x86.op_count++;
	}
}
static void printMemOffset(MCInst *MI, unsigned Op, SStream *O)
{
	MCOperand *DispSpec = MCInst_getOperand(MI, Op);
	MCOperand *SegReg = MCInst_getOperand(MI, Op + 1);
	int reg;

	if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
		uint8_t access[6];
#endif

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif
	}

	// If this has a segment register, print it.
	reg = MCOperand_getReg(SegReg);
	if (reg) {
		_printOperand(MI, Op + 1, O);
		SStream_concat0(O, ":");
		if (MI->csh->detail) {
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
		}
	}

	SStream_concat0(O, "[");

	if (MCOperand_isImm(DispSpec)) {
		int64_t imm = MCOperand_getImm(DispSpec);
		if (MI->csh->detail)
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
		if (imm < 0) {
			SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & imm);
		} else {
			if (imm > HEX_THRESHOLD)
				SStream_concat(O, "0x%"PRIx64, imm);
			else
				SStream_concat(O, "%"PRIu64, imm);
		}
	}

	SStream_concat0(O, "]");

	if (MI->csh->detail)
		MI->flat_insn->detail->x86.op_count++;

	if (MI->op1_size == 0)
		MI->op1_size = MI->x86opsize;
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value.
static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O)
{
	MCOperand *Op = MCInst_getOperand(MI, OpNo);
	if (MCOperand_isImm(Op)) {
		int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address;
		int opsize = X86_immediate_size(MI->Opcode);

		// truncat imm for non-64bit
		if (MI->csh->mode != CS_MODE_64) {
			imm = imm & 0xffffffff;
		}

		if (MI->csh->mode == CS_MODE_16 &&
				(MI->Opcode != X86_JMP_4 && MI->Opcode != X86_CALLpcrel32))
			imm = imm & 0xffff;

		// Hack: X86 16bit with opcode X86_JMP_4
		if (MI->csh->mode == CS_MODE_16 &&
				(MI->Opcode == X86_JMP_4 && MI->x86_prefix[2] != 0x66))
			imm = imm & 0xffff;

		// CALL/JMP rel16 is special
		if (MI->Opcode == X86_CALLpcrel16 || MI->Opcode == X86_JMP_2)
			imm = imm & 0xffff;

		printImm(MI->csh->syntax, O, imm, true);

		if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
			uint8_t access[6];
#endif

			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
			// if op_count > 0, then this operand's size is taken from the destination op
			if (MI->flat_insn->detail->x86.op_count > 0)
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size;
			else if (opsize > 0)
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
			else
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;

#ifndef CAPSTONE_DIET
			get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

			MI->flat_insn->detail->x86.op_count++;
		}

		if (MI->op1_size == 0)
			MI->op1_size = MI->imm_size;
	}
}
void X86_Intel_printInst(MCInst *MI, SStream *O, void *Info)
{
	char *mnem;
	x86_reg reg, reg2;
	enum cs_ac_type access1, access2;

	// Try to print any aliases first.
	mnem = printAliasInstr(MI, O, Info);
	if (mnem)
		cs_mem_free(mnem);
	else
		printInstruction(MI, O, Info);

	reg = X86_insn_reg_intel(MCInst_getOpcode(MI), &access1);
	if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
		uint8_t access[6];
#endif

		// first op can be embedded in the asm by llvm.
		// so we have to add the missing register as the first operand
		if (reg) {
			// shift all the ops right to leave 1st slot for this new register op
			memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
					sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
			MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
			MI->flat_insn->detail->x86.operands[0].reg = reg;
			MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
			MI->flat_insn->detail->x86.operands[0].access = access1;
			MI->flat_insn->detail->x86.op_count++;
		} else {
			if (X86_insn_reg_intel2(MCInst_getOpcode(MI), &reg, &access1, &reg2, &access2)) {
				MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[0].reg = reg;
				MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
				MI->flat_insn->detail->x86.operands[0].access = access1;
				MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[1].reg = reg2;
				MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2];
				MI->flat_insn->detail->x86.operands[1].access = access2;
				MI->flat_insn->detail->x86.op_count = 2;
			}
		}

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[0].access = access[0];
		MI->flat_insn->detail->x86.operands[1].access = access[1];
#endif
	}

	if (MI->op1_size == 0 && reg)
		MI->op1_size = MI->csh->regsize_map[reg];
}
static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O)
{
	MCOperand *SegReg;
	int reg;

	if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
		uint8_t access[6];
#endif

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif
	}

	SegReg = MCInst_getOperand(MI, Op+1);
	reg = MCOperand_getReg(SegReg);

	// If this has a segment register, print it.
	if (reg) {
		_printOperand(MI, Op+1, O);
		if (MI->csh->detail) {
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
		}
		SStream_concat0(O, ":");
	}

	SStream_concat0(O, "[");
	set_mem_access(MI, true);
	printOperand(MI, Op, O);
	SStream_concat0(O, "]");
	set_mem_access(MI, false);
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value.
static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O)
{
	MCOperand *Op = MCInst_getOperand(MI, OpNo);
	if (MCOperand_isImm(Op)) {
		int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address;
		if (imm < 0) {
			SStream_concat(O, "0x%"PRIx64, imm);
		} else {
			// handle 16bit segment bound
			if (MI->csh->mode == CS_MODE_16 && imm > 0x100000)
				imm -= 0x10000;

			if (imm > HEX_THRESHOLD)
				SStream_concat(O, "0x%"PRIx64, imm);
			else
				SStream_concat(O, "%"PRIu64, imm);
		}
		if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
			uint8_t access[6];
#endif

			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
			// if op_count > 0, then this operand's size is taken from the destination op
			if (MI->flat_insn->detail->x86.op_count > 0)
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size;
			else
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;

#ifndef CAPSTONE_DIET
			get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

			MI->flat_insn->detail->x86.op_count++;
		}

		if (MI->op1_size == 0)
			MI->op1_size = MI->imm_size;
	}
}
static void printU8Imm(MCInst *MI, unsigned Op, SStream *O)
{
	uint8_t val = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xff;

	printImm(MI->csh->syntax, O, val, true);

	if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
		uint8_t access[6];
#endif

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = val;

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

		MI->flat_insn->detail->x86.op_count++;
	}
}
Beispiel #9
0
void X86_ATT_printInst(MCInst *MI, SStream *OS, void *info)
{
	char *mnem;
	x86_reg reg, reg2;
	enum cs_ac_type access1, access2;
	int i;

	// perhaps this instruction does not need printer
	if (MI->assembly[0]) {
		strncpy(OS->buffer, MI->assembly, sizeof(OS->buffer));
		return;
	}

	// Output CALLpcrel32 as "callq" in 64-bit mode.
	// In Intel annotation it's always emitted as "call".
	//
	// TODO: Probably this hack should be redesigned via InstAlias in
	// InstrInfo.td as soon as Requires clause is supported properly
	// for InstAlias.
	if (MI->csh->mode == CS_MODE_64 && MCInst_getOpcode(MI) == X86_CALLpcrel32) {
		SStream_concat0(OS, "callq\t");
		MCInst_setOpcodePub(MI, X86_INS_CALL);
		printPCRelImm(MI, 0, OS);
		return;
	}

	// Try to print any aliases first.
	mnem = printAliasInstr(MI, OS, info);
	if (mnem)
		cs_mem_free(mnem);
	else
		printInstruction(MI, OS, info);

	// HACK TODO: fix this in machine description
	switch(MI->flat_insn->id) {
		default: break;
		case X86_INS_SYSEXIT:
				 SStream_Init(OS);
				 SStream_concat0(OS, "sysexit");
				 break;
	}

	if (MI->has_imm) {
		// if op_count > 1, then this operand's size is taken from the destination op
		if (MI->flat_insn->detail->x86.op_count > 1) {
			if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) {
				for (i = 0; i < MI->flat_insn->detail->x86.op_count; i++) {
					if (MI->flat_insn->detail->x86.operands[i].type == X86_OP_IMM)
						MI->flat_insn->detail->x86.operands[i].size =
							MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count - 1].size;
				}
			}
		} else
			MI->flat_insn->detail->x86.operands[0].size = MI->imm_size;
	}

	if (MI->csh->detail) {
		uint8_t access[6] = {0};

		// some instructions need to supply immediate 1 in the first op
		switch(MCInst_getOpcode(MI)) {
			default:
				break;
			case X86_SHL8r1:
			case X86_SHL16r1:
			case X86_SHL32r1:
			case X86_SHL64r1:
			case X86_SAL8r1:
			case X86_SAL16r1:
			case X86_SAL32r1:
			case X86_SAL64r1:
			case X86_SHR8r1:
			case X86_SHR16r1:
			case X86_SHR32r1:
			case X86_SHR64r1:
			case X86_SAR8r1:
			case X86_SAR16r1:
			case X86_SAR32r1:
			case X86_SAR64r1:
			case X86_RCL8r1:
			case X86_RCL16r1:
			case X86_RCL32r1:
			case X86_RCL64r1:
			case X86_RCR8r1:
			case X86_RCR16r1:
			case X86_RCR32r1:
			case X86_RCR64r1:
			case X86_ROL8r1:
			case X86_ROL16r1:
			case X86_ROL32r1:
			case X86_ROL64r1:
			case X86_ROR8r1:
			case X86_ROR16r1:
			case X86_ROR32r1:
			case X86_ROR64r1:
			case X86_SHL8m1:
			case X86_SHL16m1:
			case X86_SHL32m1:
			case X86_SHL64m1:
			case X86_SAL8m1:
			case X86_SAL16m1:
			case X86_SAL32m1:
			case X86_SAL64m1:
			case X86_SHR8m1:
			case X86_SHR16m1:
			case X86_SHR32m1:
			case X86_SHR64m1:
			case X86_SAR8m1:
			case X86_SAR16m1:
			case X86_SAR32m1:
			case X86_SAR64m1:
			case X86_RCL8m1:
			case X86_RCL16m1:
			case X86_RCL32m1:
			case X86_RCL64m1:
			case X86_RCR8m1:
			case X86_RCR16m1:
			case X86_RCR32m1:
			case X86_RCR64m1:
			case X86_ROL8m1:
			case X86_ROL16m1:
			case X86_ROL32m1:
			case X86_ROL64m1:
			case X86_ROR8m1:
			case X86_ROR16m1:
			case X86_ROR32m1:
			case X86_ROR64m1:
				// shift all the ops right to leave 1st slot for this new register op
				memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
						sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
				MI->flat_insn->detail->x86.operands[0].type = X86_OP_IMM;
				MI->flat_insn->detail->x86.operands[0].imm = 1;
				MI->flat_insn->detail->x86.operands[0].size = 1;
				MI->flat_insn->detail->x86.op_count++;
		}

		// special instruction needs to supply register op
		// first op can be embedded in the asm by llvm.
		// so we have to add the missing register as the first operand

		//printf(">>> opcode = %u\n", MCInst_getOpcode(MI));

		reg = X86_insn_reg_att(MCInst_getOpcode(MI), &access1);
		if (reg) {
			// shift all the ops right to leave 1st slot for this new register op
			memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
					sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
			MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
			MI->flat_insn->detail->x86.operands[0].reg = reg;
			MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
			MI->flat_insn->detail->x86.operands[0].access = access1;

			MI->flat_insn->detail->x86.op_count++;
		} else {
			if (X86_insn_reg_att2(MCInst_getOpcode(MI), &reg, &access1, &reg2, &access2)) {

				MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[0].reg = reg;
				MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
				MI->flat_insn->detail->x86.operands[0].access = access1;
				MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[1].reg = reg2;
				MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2];
				MI->flat_insn->detail->x86.operands[0].access = access2;
				MI->flat_insn->detail->x86.op_count = 2;
			}
		}

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[0].access = access[0];
		MI->flat_insn->detail->x86.operands[1].access = access[1];
#endif
	}
}
Beispiel #10
0
static void printMemReference(MCInst *MI, unsigned Op, SStream *O)
{
	MCOperand *BaseReg  = MCInst_getOperand(MI, Op + X86_AddrBaseReg);
	MCOperand *IndexReg  = MCInst_getOperand(MI, Op + X86_AddrIndexReg);
	MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp);
	MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg);
	uint64_t ScaleVal;
	int segreg;
	int64_t DispVal = 1;

	if (MI->csh->detail) {
		uint8_t access[6];

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;

		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
	}

	// If this has a segment register, print it.
	segreg = MCOperand_getReg(SegReg);
	if (segreg) {
		_printOperand(MI, Op + X86_AddrSegmentReg, O);
		if (MI->csh->detail) {
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = segreg;
		}

		SStream_concat0(O, ":");
	}

	if (MCOperand_isImm(DispSpec)) {
		DispVal = MCOperand_getImm(DispSpec);
		if (MI->csh->detail)
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal;
		if (DispVal) {
			if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) {
				printInt64(O, DispVal);
			} else {
				// only immediate as address of memory
				if (DispVal < 0) {
					SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & DispVal);
				} else {
					if (DispVal > HEX_THRESHOLD)
						SStream_concat(O, "0x%"PRIx64, DispVal);
					else
						SStream_concat(O, "%"PRIu64, DispVal);
				}
			}
		} else {
		}
	}

	if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) {
		SStream_concat0(O, "(");

		if (MCOperand_getReg(BaseReg))
			_printOperand(MI, Op + X86_AddrBaseReg, O);

		if (MCOperand_getReg(IndexReg)) {
			SStream_concat0(O, ", ");
			_printOperand(MI, Op + X86_AddrIndexReg, O);
			ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt));
			if (MI->csh->detail)
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal;
			if (ScaleVal != 1) {
				SStream_concat(O, ", %u", ScaleVal);
			}
		}
		SStream_concat0(O, ")");
	} else {
		if (!DispVal)
			SStream_concat0(O, "0");
	}

	if (MI->csh->detail)
		MI->flat_insn->detail->x86.op_count++;
}
Beispiel #11
0
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
	MCOperand *Op  = MCInst_getOperand(MI, OpNo);
	if (MCOperand_isReg(Op)) {
		unsigned int reg = MCOperand_getReg(Op);
		printRegName(O, reg);
		if (MI->csh->detail) {
			if (MI->csh->doing_mem) {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg;
			} else {
				uint8_t access[6];

				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg];

				get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];

				MI->flat_insn->detail->x86.op_count++;
			}
		}
	} else if (MCOperand_isImm(Op)) {
		// Print X86 immediates as signed values.
		uint8_t encsize;
		int64_t imm = MCOperand_getImm(Op);
		uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize);

		if (opsize == 1)    // print 1 byte immediate in positive form
			imm = imm & 0xff;

		switch(MI->flat_insn->id) {
			default:
				if (imm >= 0) {
					if (imm > HEX_THRESHOLD)
						SStream_concat(O, "$0x%"PRIx64, imm);
					else
						SStream_concat(O, "$%"PRIu64, imm);
				} else {
					if (MI->csh->imm_unsigned) {
						if (opsize) {
							switch(opsize) {
								default:
									break;
								case 1:
									imm &= 0xff;
									break;
								case 2:
									imm &= 0xffff;
									break;
								case 4:
									imm &= 0xffffffff;
									break;
							}
						}

						SStream_concat(O, "$0x%"PRIx64, imm);
					} else {
						if (imm == 0x8000000000000000LL)  // imm == -imm
							SStream_concat0(O, "$0x8000000000000000");
						else if (imm < -HEX_THRESHOLD)
							SStream_concat(O, "$-0x%"PRIx64, -imm);
						else
							SStream_concat(O, "$-%"PRIu64, -imm);
					}
				}
				break;

			case X86_INS_MOVABS:
				// do not print number in negative form
				SStream_concat(O, "$0x%"PRIx64, imm);
				break;

			case X86_INS_IN:
			case X86_INS_OUT:
			case X86_INS_INT:
				// do not print number in negative form
				imm = imm & 0xff;
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					SStream_concat(O, "$%u", imm);
				else {
					SStream_concat(O, "$0x%x", imm);
				}
				break;

			case X86_INS_LCALL:
			case X86_INS_LJMP:
				// always print address in positive form
				if (OpNo == 1) {	// selector is ptr16
					imm = imm & 0xffff;
					opsize = 2;
				}
				SStream_concat(O, "$0x%"PRIx64, imm);
				break;

			case X86_INS_AND:
			case X86_INS_OR:
			case X86_INS_XOR:
				// do not print number in negative form
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					SStream_concat(O, "$%u", imm);
				else {
					imm = arch_masks[opsize? opsize : MI->imm_size] & imm;
					SStream_concat(O, "$0x%"PRIx64, imm);
				}
				break;

			case X86_INS_RET:
			case X86_INS_RETF:
				// RET imm16
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					SStream_concat(O, "$%u", imm);
				else {
					imm = 0xffff & imm;
					SStream_concat(O, "$0x%x", imm);
				}
				break;
		}

		if (MI->csh->detail) {
			if (MI->csh->doing_mem) {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
			} else {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
				MI->has_imm = true;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;

				if (opsize > 0) {
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
					MI->flat_insn->detail->x86.encoding.imm_size = encsize;
				} else if (MI->op1_size > 0)
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->op1_size;
				else
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;

				MI->flat_insn->detail->x86.op_count++;
			}
		}
	}
}
Beispiel #12
0
static void printMemReference(MCInst *MI, unsigned Op, SStream *O)
{
	bool NeedPlus = false;
	MCOperand *BaseReg  = MCInst_getOperand(MI, Op + X86_AddrBaseReg);
	uint64_t ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt));
	MCOperand *IndexReg  = MCInst_getOperand(MI, Op + X86_AddrIndexReg);
	MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp);
	MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg);
	int reg;

	if (MI->csh->detail) {
#ifndef CAPSTONE_DIET
		uint8_t access[6];
#endif

		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal;
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif
	}

	// If this has a segment register, print it.
	reg = MCOperand_getReg(SegReg);
	if (reg) {
		_printOperand(MI, Op + X86_AddrSegmentReg, O);
		if (MI->csh->detail) {
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
		}
		SStream_concat0(O, ":");
	}

	SStream_concat0(O, "[");

	if (MCOperand_getReg(BaseReg)) {
		_printOperand(MI, Op + X86_AddrBaseReg, O);
		NeedPlus = true;
	}

	if (MCOperand_getReg(IndexReg)) {
		if (NeedPlus) SStream_concat0(O, " + ");
		_printOperand(MI, Op + X86_AddrIndexReg, O);
		if (ScaleVal != 1)
			SStream_concat(O, "*%u", ScaleVal);
		NeedPlus = true;
	}

	if (MCOperand_isImm(DispSpec)) {
		int64_t DispVal = MCOperand_getImm(DispSpec);
		if (MI->csh->detail)
			MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal;
		if (DispVal) {
			if (NeedPlus) {
				if (DispVal < 0) {
					SStream_concat0(O, " - ");
					printImm(MI->csh->syntax, O, -DispVal, true);
				} else {
					SStream_concat0(O, " + ");
					printImm(MI->csh->syntax, O, DispVal, true);
				}
			} else {
				// memory reference to an immediate address
				if (DispVal < 0) {
					printImm(MI->csh->syntax, O, arch_masks[MI->csh->mode] & DispVal, true);
				} else {
					printImm(MI->csh->syntax, O, DispVal, true);
				}
			}

		} else {
			// DispVal = 0
			if (!NeedPlus)	// [0]
				SStream_concat0(O, "0");
		}
	}

	SStream_concat0(O, "]");

	if (MI->csh->detail)
		MI->flat_insn->detail->x86.op_count++;

	if (MI->op1_size == 0)
		MI->op1_size = MI->x86opsize;
}
Beispiel #13
0
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
	MCOperand *Op  = MCInst_getOperand(MI, OpNo);

	if (MCOperand_isReg(Op)) {
		unsigned int reg = MCOperand_getReg(Op);

		printRegName(O, reg);
		if (MI->csh->detail) {
			if (MI->csh->doing_mem) {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg;
			} else {
#ifndef CAPSTONE_DIET
				uint8_t access[6];
#endif

				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg];

#ifndef CAPSTONE_DIET
				get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

				MI->flat_insn->detail->x86.op_count++;
			}
		}

		if (MI->op1_size == 0)
			MI->op1_size = MI->csh->regsize_map[reg];
	} else if (MCOperand_isImm(Op)) {
		int64_t imm = MCOperand_getImm(Op);
		int opsize = X86_immediate_size(MCInst_getOpcode(MI));
		if (opsize == 1)    // print 1 byte immediate in positive form
			imm = imm & 0xff;

		switch(MI->flat_insn->id) {
			default:
				printImm(MI->csh->syntax, O, imm, false);
				break;

			case X86_INS_INT:
				// do not print number in negative form
				imm = imm & 0xff;
				printImm(MI->csh->syntax, O, imm, true);
				break;

			case X86_INS_LCALL:
			case X86_INS_LJMP:
				// always print address in positive form
				if (OpNo == 1) {	// ptr16 part
					imm = imm & 0xffff;
					opsize = 2;
				}
				printImm(MI->csh->syntax, O, imm, true);
				break;

			case X86_INS_AND:
			case X86_INS_OR:
			case X86_INS_XOR:
				// do not print number in negative form
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					printImm(MI->csh->syntax, O, imm, true);
				else {
					imm = arch_masks[opsize? opsize : MI->imm_size] & imm;
					printImm(MI->csh->syntax, O, imm, true);
				}
				break;

			case X86_INS_RET:
				// RET imm16
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					printImm(MI->csh->syntax, O, imm, true);
				else {
					imm = 0xffff & imm;
					printImm(MI->csh->syntax, O, imm, true);
				}
				break;
		}

		if (MI->csh->detail) {
			if (MI->csh->doing_mem) {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
			} else {
#ifndef CAPSTONE_DIET
				uint8_t access[6];
#endif

				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
				if (opsize > 0)
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
				else if (MI->flat_insn->detail->x86.op_count > 0) {
					if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) {
						MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size =
							MI->flat_insn->detail->x86.operands[0].size;
					} else
						MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
				} else
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;

#ifndef CAPSTONE_DIET
				get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

				MI->flat_insn->detail->x86.op_count++;
			}
		}
	}
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
	int opsize = 0;
	MCOperand *Op  = MCInst_getOperand(MI, OpNo);

	if (MCOperand_isReg(Op)) {
		unsigned int reg = MCOperand_getReg(Op);

		printRegName(O, reg);
		if (MI->csh->detail) {
			if (MI->csh->doing_mem) {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg;
			} else {
#ifndef CAPSTONE_DIET
				uint8_t access[6];
#endif

				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg];

#ifndef CAPSTONE_DIET
				get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

				MI->flat_insn->detail->x86.op_count++;
			}
		}

		if (MI->op1_size == 0)
			MI->op1_size = MI->csh->regsize_map[reg];
	} else if (MCOperand_isImm(Op)) {
		int64_t imm = MCOperand_getImm(Op);

		switch(MCInst_getOpcode(MI)) {
			default:
				break;

			case X86_AAD8i8:
			case X86_AAM8i8:
			case X86_ADC8i8:
			case X86_ADD8i8:
			case X86_AND8i8:
			case X86_CMP8i8:
			case X86_OR8i8:
			case X86_SBB8i8:
			case X86_SUB8i8:
			case X86_TEST8i8:
			case X86_XOR8i8:
			case X86_ROL8ri:
			case X86_ADC8ri:
			case X86_ADC8ri8:
			case X86_ADD8ri:
			case X86_ADD8ri8:
			case X86_AND8ri:
			case X86_AND8ri8:
			case X86_CMP8ri:
			case X86_CMP8ri8:
			case X86_IN8ri:
			case X86_MOV8ri:
			case X86_MOV8ri_alt:
			case X86_OR8ri:
			case X86_OR8ri8:
			case X86_RCL8ri:
			case X86_RCR8ri:
			case X86_ROR8ri:
			case X86_SAL8ri:
			case X86_SAR8ri:
			case X86_SBB8ri:
			case X86_SBB8ri8:
			case X86_SHL8ri:
			case X86_SHR8ri:
			case X86_SUB8ri:
			case X86_SUB8ri8:
			case X86_TEST8ri:
			case X86_TEST8ri_NOREX:
			case X86_TEST8ri_alt:
			case X86_XOR8ri:
			case X86_XOR8ri8:
			case X86_OUT8ir:

			case X86_ADC8mi:
			case X86_ADC8mi8:
			case X86_ADD8mi:
			case X86_ADD8mi8:
			case X86_AND8mi:
			case X86_AND8mi8:
			case X86_CMP8mi:
			case X86_CMP8mi8:
			case X86_LOCK_ADD8mi:
			case X86_LOCK_AND8mi:
			case X86_LOCK_OR8mi:
			case X86_LOCK_SUB8mi:
			case X86_LOCK_XOR8mi:
			case X86_MOV8mi:
			case X86_OR8mi:
			case X86_OR8mi8:
			case X86_RCL8mi:
			case X86_RCR8mi:
			case X86_ROL8mi:
			case X86_ROR8mi:
			case X86_SAL8mi:
			case X86_SAR8mi:
			case X86_SBB8mi:
			case X86_SBB8mi8:
			case X86_SHL8mi:
			case X86_SHR8mi:
			case X86_SUB8mi:
			case X86_SUB8mi8:
			case X86_TEST8mi:
			case X86_TEST8mi_alt:
			case X86_XOR8mi:
			case X86_XOR8mi8:
			case X86_PUSH64i8:
			case X86_CMP32ri8:
			case X86_CMP64ri8:

				imm = imm & 0xff;
				opsize = 1;	// immediate of 1 byte
				break;
		}

		switch(MI->flat_insn->id) {
			default:
				if (imm >= 0) {
					if (imm > HEX_THRESHOLD)
						SStream_concat(O, "0x%"PRIx64, imm);
					else
						SStream_concat(O, "%"PRIu64, imm);
				} else {
					if (imm < -HEX_THRESHOLD)
						SStream_concat(O, "-0x%"PRIx64, -imm);
					else
						SStream_concat(O, "-%"PRIu64, -imm);
				}

				break;

			case X86_INS_INT:
				// do not print number in negative form
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					SStream_concat(O, "%u", imm);
				else
					SStream_concat(O, "0x%x", imm & 0xff);
				break;

			case X86_INS_AND:
			case X86_INS_OR:
			case X86_INS_XOR:
				// do not print number in negative form
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					SStream_concat(O, "%u", imm);
				else
					SStream_concat(O, "0x%"PRIx64, arch_masks[MI->op1_size? MI->op1_size : MI->imm_size] & imm);
				break;

			case X86_INS_RET:
				// RET imm16
				if (imm >= 0 && imm <= HEX_THRESHOLD)
					SStream_concat(O, "%u", imm);
				else {
					imm = 0xffff & imm;
					SStream_concat(O, "0x%x", 0xffff & imm);
				}
				break;
		}

		if (MI->csh->detail) {
			if (MI->csh->doing_mem) {
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
			} else {
#ifndef CAPSTONE_DIET
				uint8_t access[6];
#endif

				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
				if (opsize > 0)
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
				else if (MI->flat_insn->detail->x86.op_count > 0)
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size;
				else
					MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;

#ifndef CAPSTONE_DIET
				get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
				MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
#endif

				MI->flat_insn->detail->x86.op_count++;
			}
		}

		//if (MI->op1_size == 0)
		//	MI->op1_size = MI->imm_size;
	}
}
Beispiel #15
0
void X86_ATT_printInst(MCInst *MI, SStream *OS, void *info)
{
	char *mnem;
	x86_reg reg, reg2;
	int i;

	// Output CALLpcrel32 as "callq" in 64-bit mode.
	// In Intel annotation it's always emitted as "call".
	//
	// TODO: Probably this hack should be redesigned via InstAlias in
	// InstrInfo.td as soon as Requires clause is supported properly
	// for InstAlias.
	if (MI->csh->mode == CS_MODE_64 && MCInst_getOpcode(MI) == X86_CALLpcrel32) {
		SStream_concat0(OS, "callq\t");
		MCInst_setOpcodePub(MI, X86_INS_CALL);
		printPCRelImm(MI, 0, OS);
		return;
	}

	// Try to print any aliases first.
	mnem = printAliasInstr(MI, OS, info);
	if (mnem)
		cs_mem_free(mnem);
	else
		printInstruction(MI, OS, info);

	if (MI->has_imm) {
		// if op_count > 1, then this operand's size is taken from the destination op
		if (MI->flat_insn->detail->x86.op_count > 1) {
			for (i = 0; i < MI->flat_insn->detail->x86.op_count; i++) {
				if (MI->flat_insn->detail->x86.operands[i].type == X86_OP_IMM)
					MI->flat_insn->detail->x86.operands[i].size = MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count - 1].size;
			}
		} else
			MI->flat_insn->detail->x86.operands[0].size = MI->imm_size;
	}

	if (MI->csh->detail) {
		uint8_t access[6];
		// special instruction needs to supply register op
		// first op can be embedded in the asm by llvm.
		// so we have to add the missing register as the first operand

		//printf(">>> opcode = %u\n", MCInst_getOpcode(MI));

		reg = X86_insn_reg_att(MCInst_getOpcode(MI));
		if (reg) {
			// shift all the ops right to leave 1st slot for this new register op
			memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
					sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
			MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
			MI->flat_insn->detail->x86.operands[0].reg = reg;
			MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];

			MI->flat_insn->detail->x86.op_count++;
		} else {
			if (X86_insn_reg_att2(MCInst_getOpcode(MI), &reg, &reg2)) {

				MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[0].reg = reg;
				MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
				MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG;
				MI->flat_insn->detail->x86.operands[1].reg = reg2;
				MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2];
				MI->flat_insn->detail->x86.op_count = 2;
			}
		}

#ifndef CAPSTONE_DIET
		get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
		MI->flat_insn->detail->x86.operands[0].access = access[0];
		MI->flat_insn->detail->x86.operands[1].access = access[1];
#endif
	}
}