Beispiel #1
0
// SIR model with Euler multinomial step
// forced transmission (basis functions passed as covariates)
// constant population size as a parameter
// environmental stochasticity on transmission
void _sir_euler_simulator (double *x, const double *p, 
			   const int *stateindex, const int *parindex, const int *covindex,
			   int covdim, const double *covar, 
			   double t, double dt)
{
  int nrate = 6;
  double rate[nrate];		// transition rates
  double trans[nrate];		// transition numbers
  double beta;
  double dW;
  int nbasis = *(get_pomp_userdata_int("nbasis"));
  int deg = *(get_pomp_userdata_int("degree"));
  double period = *(get_pomp_userdata_double("period"));
  double seasonality[nbasis];
  int k;

  if (nbasis <= 0) return;
  periodic_bspline_basis_eval(t,period,deg,nbasis,&seasonality[0]);
  for (k = 0, beta = 0; k < nbasis; k++)
    beta += seasonality[k]*BETA[k];

  //  test to make sure the parameters and state variable values are sane
  if (!(R_FINITE(beta)) || 
      !(R_FINITE(GAMMA)) ||
      !(R_FINITE(MU)) ||
      !(R_FINITE(BETA_SD)) ||
      !(R_FINITE(IOTA)) ||
      !(R_FINITE(POPSIZE)) ||
      !(R_FINITE(SUSC)) ||
      !(R_FINITE(INFD)) ||
      !(R_FINITE(RCVD)) ||
      !(R_FINITE(CASE)) ||
      !(R_FINITE(W)))
    return;

  dW = rgammawn(BETA_SD,dt); // gamma noise, mean=dt, variance=(beta_sd^2 dt)

  // compute the transition rates
  rate[0] = MU*POPSIZE;		// birth into susceptible class
  rate[1] = (IOTA+beta*INFD*dW/dt)/POPSIZE; // force of infection
  rate[2] = MU;			// death from susceptible class
  rate[3] = GAMMA;		// recovery
  rate[4] = MU;			// death from infectious class
  rate[5] = MU; 		// death from recovered class

  // compute the transition numbers
  trans[0] = rpois(rate[0]*dt);	// births are Poisson
  reulermultinom(2,SUSC,&rate[1],dt,&trans[1]);
  reulermultinom(2,INFD,&rate[3],dt,&trans[3]);
  reulermultinom(1,RCVD,&rate[5],dt,&trans[5]);

  // balance the equations
  SUSC += trans[0]-trans[1]-trans[2];
  INFD += trans[1]-trans[3]-trans[4];
  RCVD += trans[3]-trans[5];
  CASE += trans[3];		// cases are cumulative recoveries
  if (BETA_SD > 0.0)  W += (dW-dt)/BETA_SD; // mean = 0, variance = dt

}
Beispiel #2
0
Datei: sir.c Projekt: kingaa/pomp
void _sir_ODE (double *f, double *x, const double *p, 
	       const int *stateindex, const int *parindex, const int *covindex,
	       int covdim, const double *covar, double t) 
{
  int nrate = 6;
  double rate[nrate];		// transition rates
  double term[nrate];		// terms in the equations
  double beta;
  int nbasis = *(get_pomp_userdata_int("nbasis"));
  int deg = *(get_pomp_userdata_int("degree"));
  double period = *(get_pomp_userdata_double("period"));
  double seasonality[nbasis];
  int k;

  if (nbasis <= 0) return;
  periodic_bspline_basis_eval(t,period,deg,nbasis,&seasonality[0]);
  for (k = 0, beta = 0; k < nbasis; k++)
    beta += seasonality[k]*BETA[k];

  // compute the transition rates
  rate[0] = MU*POPSIZE;		// birth into susceptible class
  rate[1] = (IOTA+beta*INFD)/POPSIZE; // force of infection
  rate[2] = MU;			// death from susceptible class
  rate[3] = GAMMA;		// recovery
  rate[4] = MU;			// death from infectious class
  rate[5] = MU; 		// death from recovered class

  // compute the several terms
  term[0] = rate[0];
  term[1] = rate[1]*SUSC;
  term[2] = rate[2]*SUSC;
  term[3] = rate[3]*INFD;
  term[4] = rate[4]*INFD;
  term[5] = rate[5]*RCVD;

  // balance the equations
  DSDT = term[0]-term[1]-term[2];
  DIDT = term[1]-term[3]-term[4];
  DRDT = term[3]-term[5];
  DCDT = term[3];		// accumulate the new I->R transitions
  DWDT = 0;			// no noise, so no noise accumulation

}
Beispiel #3
0
Datei: sir.c Projekt: kingaa/pomp
void _sir_par_trans (double *pt, double *p, int *parindex) 
{
  int nbasis = *(get_pomp_userdata_int("nbasis"));
  int k;
  pt[parindex[0]] = exp(GAMMA);
  pt[parindex[1]] = exp(MU);
  pt[parindex[2]] = exp(IOTA);
  for (k = 0; k < nbasis; k++)
    pt[parindex[3]+k] = exp(BETA[k]);
  pt[parindex[4]] = exp(BETA_SD);
  pt[parindex[6]] = expit(RHO);
  from_log_barycentric(pt+parindex[7],&S0,3);
}
Beispiel #4
0
double _sir_rates (int j, double t, double *x, double *p,
		   int *stateindex, int *parindex, int *covindex,
		   int ncovar, double *covar) {
  double beta;
  double rate = 0.0;
  int nbasis = *(get_pomp_userdata_int("nbasis"));
  int deg = *(get_pomp_userdata_int("degree"));
  double period = *(get_pomp_userdata_double("period"));
  double seasonality[nbasis];
  int k;

  switch (j) {
  case 1: 			// birth
    rate = MU*POPN;
    break;
  case 2:			// susceptible death
    rate = MU*SUSC;
    break;
  case 3:			// infection
    periodic_bspline_basis_eval(t,period,deg,nbasis,&seasonality[0]);
    for (k = 0, beta = 0; k < nbasis; k++)
      beta += seasonality[k]*BETA[k];
    rate = (beta*INFD+IOTA)*SUSC/POPSIZE;
    break;
  case 4:			// infected death
    rate = MU*INFD;
    break;
  case 5:			// recovery
    rate = GAMMA*INFD;
    break;
  case 6:			// recovered death
    rate = MU*RCVD;
    break;
  default:
    error("unrecognized rate code %d",j);
    break;
  }
  return rate;
}