void set_tag(const char* file_name, ID3v2_tag* tag)
{
    if(tag == NULL)
    {
        return;
    }

    int padding = 2048;
    int old_size = tag->tag_header->tag_size;

    // Set the new tag header
    tag->tag_header = new_header();
    memcpy(tag->tag_header->tag, "ID3", 3);
    tag->tag_header->major_version = '\x03';
    tag->tag_header->minor_version = '\x00';
    tag->tag_header->flags = '\x00';
    tag->tag_header->tag_size = get_tag_size(tag) + padding;

    // Create temp file and prepare to write
    FILE* file;
    FILE* temp_file;
    file = fopen(file_name, "r+b");
    temp_file = tmpfile();

    // Write to file
    write_header(tag->tag_header, temp_file);
    ID3v2_frame_list* frame_list = tag->frames->start;
    while(frame_list != NULL)
    {
        write_frame(frame_list->frame, temp_file);
        frame_list = frame_list->next;
    }

    // Write padding
    int i;
    for(i = 0; i < padding; i++)
    {
        putc('\x00', temp_file);
    }

    fseek(file, old_size + 10, SEEK_SET);
    int c;
    while((c = getc(file)) != EOF)
    {
        putc(c, temp_file);
    }

    // Write temp file data back to original file
    fseek(temp_file, 0, SEEK_SET);
    fseek(file, 0, SEEK_SET);
    while((c = getc(temp_file)) != EOF)
    {
        putc(c, file);
    }

    fclose(file);
    fclose(temp_file);
}
Beispiel #2
0
int
mk_tag(fru_tagtype_t type, uint32_t dense, size_t pl_len,
	fru_tag_t *tag)
{
	static fru_tag_t max = { 0xFFFFFFFFFFFFFFFFULL };
	/* make sure the tag is clear. */
	tag->raw_data = 0;

	/* then fill it in with data. */
	switch (type) {
		case FRU_A:
			if ((dense > max.a.dense) || (pl_len > max.a.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->a.type = FRU_A_ID;
			tag->a.dense = dense;
			tag->a.pl_len = pl_len;
			break;
		case FRU_B:
			if ((dense > max.b.dense) || (pl_len > max.b.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->b.type = FRU_B_ID;
			tag->b.dense = dense;
			tag->b.pl_len = pl_len;
			break;
		case FRU_C:
			if ((dense > max.c.dense) || (pl_len > max.c.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->c.type = FRU_C_ID;
			tag->c.dense = dense;
			tag->c.pl_len = pl_len;
			break;
		case FRU_D:
			if ((dense > max.d.dense) || (pl_len > max.d.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->d.type = FRU_D_ID;
			tag->d.dense = dense;
			tag->d.pl_len = pl_len;
			break;
		case FRU_E:
			if ((dense > max.e.dense) || (pl_len > max.e.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->e.type = FRU_E_ID;
			tag->e.dense = dense;
			tag->e.pl_len = pl_len;
			break;
		case FRU_F:
			if ((dense > max.f.dense) || (pl_len > max.f.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->f.type = FRU_F_ID;
			tag->f.dense = dense;
			tag->f.pl_len = pl_len;
			break;
		case FRU_G:
			if ((dense > max.g.dense) || (pl_len > max.g.pl_len)) {
				errno = EINVAL;
				return (-1);
			}
			tag->g.type = FRU_G_ID;
			tag->g.dense = dense;
			tag->g.pl_len = pl_len;
			break;
		default:
			errno = EINVAL;
			return (-1);
	}

	return (get_tag_size(type));
}
Beispiel #3
0
static void lx_init(const LxBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
    int be = 1;
#else
    int be = 0;
#endif
    MemoryRegion *system_memory = get_system_memory();
    XtensaCPU *cpu = NULL;
    CPUXtensaState *env = NULL;
    MemoryRegion *ram, *rom, *system_io;
    DriveInfo *dinfo;
    pflash_t *flash = NULL;
    QemuOpts *machine_opts = qemu_get_machine_opts();
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
    int n;

    if (!cpu_model) {
        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
    }

    for (n = 0; n < smp_cpus; n++) {
        cpu = cpu_xtensa_init(cpu_model);
        if (cpu == NULL) {
            error_report("unable to find CPU definition '%s'",
                         cpu_model);
            exit(EXIT_FAILURE);
        }
        env = &cpu->env;

        env->sregs[PRID] = n;
        qemu_register_reset(lx60_reset, cpu);
        /* Need MMU initialized prior to ELF loading,
         * so that ELF gets loaded into virtual addresses
         */
        cpu_reset(CPU(cpu));
    }

    ram = g_malloc(sizeof(*ram));
    memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
                           &error_fatal);
    vmstate_register_ram_global(ram);
    memory_region_add_subregion(system_memory, 0, ram);

    system_io = g_malloc(sizeof(*system_io));
    memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
                          224 * 1024 * 1024);
    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
    lx60_fpga_init(system_io, 0x0d020000);
    if (nd_table[0].used) {
        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
                xtensa_get_extint(env, 1), nd_table);
    }

    if (!serial_hds[0]) {
        serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
    }

    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (dinfo) {
        flash = xtfpga_flash_init(system_io, board, dinfo, be);
    }

    /* Use presence of kernel file name as 'boot from SRAM' switch. */
    if (kernel_filename) {
        uint32_t entry_point = env->pc;
        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
        uint32_t tagptr = 0xfe000000 + board->sram_size;
        uint32_t cur_tagptr;
        BpMemInfo memory_location = {
            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
            .start = tswap32(0),
            .end = tswap32(machine->ram_size),
        };
        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
            machine->ram_size : 0x08000000;
        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);

        rom = g_malloc(sizeof(*rom));
        memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
                               &error_fatal);
        vmstate_register_ram_global(rom);
        memory_region_add_subregion(system_memory, 0xfe000000, rom);

        if (kernel_cmdline) {
            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
        }
        if (dtb_filename) {
            bp_size += get_tag_size(sizeof(uint32_t));
        }
        if (initrd_filename) {
            bp_size += get_tag_size(sizeof(BpMemInfo));
        }

        /* Put kernel bootparameters to the end of that SRAM */
        tagptr = (tagptr - bp_size) & ~0xff;
        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
                             sizeof(memory_location), &memory_location);

        if (kernel_cmdline) {
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
        }
        if (dtb_filename) {
            int fdt_size;
            void *fdt = load_device_tree(dtb_filename, &fdt_size);
            uint32_t dtb_addr = tswap32(cur_lowmem);

            if (!fdt) {
                error_report("could not load DTB '%s'", dtb_filename);
                exit(EXIT_FAILURE);
            }

            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
                                 sizeof(dtb_addr), &dtb_addr);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
        }
        if (initrd_filename) {
            BpMemInfo initrd_location = { 0 };
            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
                                           lowmem_end - cur_lowmem);

            if (initrd_size < 0) {
                initrd_size = load_image_targphys(initrd_filename,
                                                  cur_lowmem,
                                                  lowmem_end - cur_lowmem);
            }
            if (initrd_size < 0) {
                error_report("could not load initrd '%s'", initrd_filename);
                exit(EXIT_FAILURE);
            }
            initrd_location.start = tswap32(cur_lowmem);
            initrd_location.end = tswap32(cur_lowmem + initrd_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
                                 sizeof(initrd_location), &initrd_location);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
        }
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
        env->regs[2] = tagptr;

        uint64_t elf_entry;
        uint64_t elf_lowaddr;
        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
        if (success > 0) {
            entry_point = elf_entry;
        } else {
            hwaddr ep;
            int is_linux;
            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
                                  translate_phys_addr, cpu);
            if (success > 0 && is_linux) {
                entry_point = ep;
            } else {
                error_report("could not load kernel '%s'",
                             kernel_filename);
                exit(EXIT_FAILURE);
            }
        }
        if (entry_point != env->pc) {
            static const uint8_t jx_a0[] = {
#ifdef TARGET_WORDS_BIGENDIAN
                0x0a, 0, 0,
#else
                0xa0, 0, 0,
#endif
            };
            env->regs[0] = entry_point;
            cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
        }
    } else {
        if (flash) {
            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));

            memory_region_init_alias(flash_io, NULL, "lx60.flash",
                    flash_mr, board->flash_boot_base,
                    board->flash_size - board->flash_boot_base < 0x02000000 ?
                    board->flash_size - board->flash_boot_base : 0x02000000);
            memory_region_add_subregion(system_memory, 0xfe000000,
                    flash_io);
        }
    }
}
Beispiel #4
0
static double parse_wav_header_buffer(char* buffer, int buffer_size, int* sample_rate, int* num_of_channels, int* sample_size, int* data_start_offset, int* type){
    int n_ch;
    int sam_siz;
    int sr;
    char* cp;
    int wav_file_size;
    int data_size;
    int data_offset;
    int audio_format;
    int byte_rate;
    int block_align;

    if (buffer_size < 44)
        return 0.0;

    if (!check_tag(buffer,"RIFF"))
    	return 0.0;

    wav_file_size = get_tag_size(buffer);

    if (!check_tag(buffer + 8 ,"WAVE"))
    	return 0.0;

    cp = buffer + 12;

    while (cp - buffer <= buffer_size - 8){

		if (check_tag(cp, "fmt ")){
	//20        2   AudioFormat      PCM = 1 (i.e. Linear quantization)
	//                               Values other than 1 indicate some
	//                               form of compression.
	//				 MuLaw = 7
	//				 ALaw = 6
	//22        2   NumChannels      Mono = 1, Stereo = 2, etc.
	//24        4   SampleRate       8000, 44100, etc.
	//28        4   ByteRate         == SampleRate * NumChannels * BitsPerSample/8
	//32        2   BlockAlign       == NumChannels * BitsPerSample/8
	//                               The number of bytes for one sample including
	//                               all channels. I wonder what happens when
	//                               this number isn't an integer?
	//34        2   BitsPerSample    8 bits = 8, 16 bits = 16, etc.
	//	    2   ExtraInfoSize
			audio_format = ((unsigned short*)(cp+8) )[0];
			n_ch 		= ((unsigned short*)(cp+10) )[0];
			sr   		= ((unsigned int*)(cp+12) )[0];
			byte_rate   = ((unsigned int*)(cp+16) )[0];
			block_align = ((unsigned short*)(cp+20) )[0];
			sam_siz     = ((unsigned short*)(cp+22) )[0];


		}else if (check_tag(cp, "data")){
			data_size = get_tag_size(cp);
			data_offset = (cp - buffer) + 8;
			break;
		}
		cp += 8 + get_tag_size(cp);
    }

    if (type)
    	*type = audio_format;

    if (sample_rate)
        *sample_rate = sr;
    if (num_of_channels)
        *num_of_channels = n_ch;
    if (sample_size)
        *sample_size = sam_siz;
    if (data_start_offset)
        *data_start_offset = data_offset;

    return (double)data_size / (double)(n_ch * (sam_siz / 8) * sr);
}
Beispiel #5
0
static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
    int be = 1;
#else
    int be = 0;
#endif
    MemoryRegion *system_memory = get_system_memory();
    XtensaCPU *cpu = NULL;
    CPUXtensaState *env = NULL;
    MemoryRegion *system_io;
    DriveInfo *dinfo;
    pflash_t *flash = NULL;
    QemuOpts *machine_opts = qemu_get_machine_opts();
    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
    const unsigned system_io_size = 224 * 1024 * 1024;
    int n;

    for (n = 0; n < smp_cpus; n++) {
        cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
        env = &cpu->env;

        env->sregs[PRID] = n;
        qemu_register_reset(xtfpga_reset, cpu);
        /* Need MMU initialized prior to ELF loading,
         * so that ELF gets loaded into virtual addresses
         */
        cpu_reset(CPU(cpu));
    }

    if (env) {
        XtensaMemory sysram = env->config->sysram;

        sysram.location[0].size = machine->ram_size;
        xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
                                     system_memory);
        xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
                                     system_memory);
        xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
                                     system_memory);
        xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
                                     system_memory);
        xtensa_create_memory_regions(&sysram, "xtensa.sysram",
                                     system_memory);
    }

    system_io = g_malloc(sizeof(*system_io));
    memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
                          system_io_size);
    memory_region_add_subregion(system_memory, board->io[0], system_io);
    if (board->io[1]) {
        MemoryRegion *io = g_malloc(sizeof(*io));

        memory_region_init_alias(io, NULL, "xtfpga.io.cached",
                                 system_io, 0, system_io_size);
        memory_region_add_subregion(system_memory, board->io[1], io);
    }
    xtfpga_fpga_init(system_io, 0x0d020000);
    if (nd_table[0].used) {
        xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
                xtensa_get_extint(env, 1), nd_table);
    }

    if (!serial_hds[0]) {
        serial_hds[0] = qemu_chr_new("serial0", "null");
    }

    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (dinfo) {
        flash = xtfpga_flash_init(system_io, board, dinfo, be);
    }

    /* Use presence of kernel file name as 'boot from SRAM' switch. */
    if (kernel_filename) {
        uint32_t entry_point = env->pc;
        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
        uint32_t tagptr = env->config->sysrom.location[0].addr +
            board->sram_size;
        uint32_t cur_tagptr;
        BpMemInfo memory_location = {
            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
            .start = tswap32(env->config->sysram.location[0].addr),
            .end = tswap32(env->config->sysram.location[0].addr +
                           machine->ram_size),
        };
        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
            machine->ram_size : 0x08000000;
        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);

        lowmem_end += env->config->sysram.location[0].addr;
        cur_lowmem += env->config->sysram.location[0].addr;

        xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
                                     system_memory);

        if (kernel_cmdline) {
            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
        }
        if (dtb_filename) {
            bp_size += get_tag_size(sizeof(uint32_t));
        }
        if (initrd_filename) {
            bp_size += get_tag_size(sizeof(BpMemInfo));
        }

        /* Put kernel bootparameters to the end of that SRAM */
        tagptr = (tagptr - bp_size) & ~0xff;
        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
                             sizeof(memory_location), &memory_location);

        if (kernel_cmdline) {
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
        }
#ifdef CONFIG_FDT
        if (dtb_filename) {
            int fdt_size;
            void *fdt = load_device_tree(dtb_filename, &fdt_size);
            uint32_t dtb_addr = tswap32(cur_lowmem);

            if (!fdt) {
                error_report("could not load DTB '%s'", dtb_filename);
                exit(EXIT_FAILURE);
            }

            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
                                 sizeof(dtb_addr), &dtb_addr);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
        }
#else
        if (dtb_filename) {
            error_report("could not load DTB '%s': "
                         "FDT support is not configured in QEMU",
                         dtb_filename);
            exit(EXIT_FAILURE);
        }
#endif
        if (initrd_filename) {
            BpMemInfo initrd_location = { 0 };
            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
                                           lowmem_end - cur_lowmem);

            if (initrd_size < 0) {
                initrd_size = load_image_targphys(initrd_filename,
                                                  cur_lowmem,
                                                  lowmem_end - cur_lowmem);
            }
            if (initrd_size < 0) {
                error_report("could not load initrd '%s'", initrd_filename);
                exit(EXIT_FAILURE);
            }
            initrd_location.start = tswap32(cur_lowmem);
            initrd_location.end = tswap32(cur_lowmem + initrd_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
                                 sizeof(initrd_location), &initrd_location);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
        }
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
        env->regs[2] = tagptr;

        uint64_t elf_entry;
        uint64_t elf_lowaddr;
        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
        if (success > 0) {
            entry_point = elf_entry;
        } else {
            hwaddr ep;
            int is_linux;
            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
                                  translate_phys_addr, cpu);
            if (success > 0 && is_linux) {
                entry_point = ep;
            } else {
                error_report("could not load kernel '%s'",
                             kernel_filename);
                exit(EXIT_FAILURE);
            }
        }
        if (entry_point != env->pc) {
            uint8_t boot[] = {
#ifdef TARGET_WORDS_BIGENDIAN
                0x60, 0x00, 0x08,       /* j    1f */
                0x00,                   /* .literal_position */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
                                        /* 1: */
                0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
                0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
                0x0a, 0x00, 0x00,       /* jx   a0 */
#else
                0x06, 0x02, 0x00,       /* j    1f */
                0x00,                   /* .literal_position */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
                                        /* 1: */
                0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
                0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
                0xa0, 0x00, 0x00,       /* jx   a0 */
#endif
            };
            uint32_t entry_pc = tswap32(entry_point);
            uint32_t entry_a2 = tswap32(tagptr);

            memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
            memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
            cpu_physical_memory_write(env->pc, boot, sizeof(boot));
        }
    } else {
        if (flash) {
            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
            uint32_t size = env->config->sysrom.location[0].size;

            if (board->flash->size - board->flash->boot_base < size) {
                size = board->flash->size - board->flash->boot_base;
            }

            memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
                                     flash_mr, board->flash->boot_base, size);
            memory_region_add_subregion(system_memory,
                                        env->config->sysrom.location[0].addr,
                                        flash_io);
        } else {
            xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
                                         system_memory);
        }
    }
}
Beispiel #6
0
static int
get_packets(hash_obj_t *seg_hash, raw_list_t *rawlist, int offset, int length)
{
	int tag_size;
	int paylen;
	int retval;
	int seg_limit = 0;
	int pktcnt = 0;
	char *data;
	uint32_t crc;
	uint32_t origcrc;
	fru_tag_t tag;
	hash_obj_t *pkt_hash_obj;
	hash_obj_t *sec_hash;
	fru_segdesc_t *segdesc;
	fru_tagtype_t tagtype;
	char *ignore_flag;

	retval = get_packet(rawlist, &tag, sizeof (fru_tag_t), offset);
	if (retval == -1) {
		return (-1);
	}

	/* section hash object */
	sec_hash = lookup_handle_object(seg_hash->u.seg_obj->section_hdl,
	    SECTION_TYPE);

	if (sec_hash == NULL) {
		return (-1);
	}

	seg_hash->u.seg_obj->trailer_offset = offset;

	data = (char *)&tag;
	while (data[0] != SEG_TRAILER_TAG) {
		tagtype	= get_tag_type(&tag); /* verify tag type */
		if (tagtype == -1) {
			return (-1);
		}

		tag_size = get_tag_size(tagtype);
		if (tag_size == -1) {
			return (-1);
		}

		seg_limit += tag_size;
		if (seg_limit > length) {
			return (-1);
		}

		paylen = get_payload_length((void *)&tag);
		if (paylen == -1) {
			return (-1);
		}

		seg_limit += paylen;
		if (seg_limit > length) {
			return (-1);
		}
		if ((offset + tag_size + paylen) >
		    (sec_hash->u.sec_obj->section.offset +
		    sec_hash->u.sec_obj->section.length)) {
			return (-1);
		}

		pkt_hash_obj = create_packet_hash_object();
		if (pkt_hash_obj == NULL) {
			return (-1);
		}

		pkt_hash_obj->u.pkt_obj->payload = malloc(paylen);
		if (pkt_hash_obj->u.pkt_obj->payload == NULL) {
			free(pkt_hash_obj);
			return (-1);
		}

		offset += tag_size;

		retval = raw_memcpy(pkt_hash_obj->u.pkt_obj->payload, rawlist,
		    offset, paylen);

		if (retval != paylen) {
			free(pkt_hash_obj->u.pkt_obj->payload);
			free(pkt_hash_obj);
			return (-1);
		}

		/* don't change this */
		pkt_hash_obj->u.pkt_obj->tag.raw_data = 0;
		(void) memcpy(&pkt_hash_obj->u.pkt_obj->tag, &tag, tag_size);
		pkt_hash_obj->u.pkt_obj->paylen = paylen;
		pkt_hash_obj->u.pkt_obj->tag_size = tag_size;
		pkt_hash_obj->u.pkt_obj->payload_offset = offset;

		offset += paylen;

		add_hashobject_to_hashtable(pkt_hash_obj);
		add_to_pkt_object_list(seg_hash, pkt_hash_obj);

		pktcnt++;

		retval = get_packet(rawlist, &tag, sizeof (fru_tag_t),
		    offset);
		if (retval == -1) {
			return (retval);
		}

		data = (char *)&tag;
	}

	segdesc	= (fru_segdesc_t *)&seg_hash->u.seg_obj->segment.descriptor;

	seg_hash->u.seg_obj->trailer_offset = offset;

	if (!segdesc->field.ignore_checksum)  {
		crc = get_checksum_crc(seg_hash, seg_limit);
		offset = seg_hash->u.seg_obj->segment.offset;

		retval = raw_memcpy(&origcrc, rawlist, offset + seg_limit + 1,
		    sizeof (origcrc));

		ignore_flag = getenv(IGNORE_CHECK);
		if (ignore_flag != NULL) {
			return (pktcnt);
		}

		if (retval != sizeof (origcrc)) {
			return (-1);
		}

		origcrc = BE_32(origcrc);
		if (origcrc != crc) {
			seg_hash->u.seg_obj->trailer_offset = offset;
			return (-1);
		}
	}

	return (pktcnt);
}