Beispiel #1
0
static PyObject *getbonds(PyObject *self, PyObject *args) {
  int molid;
  PyObject *atomlist;
   
  if (!PyArg_ParseTuple(args, (char *)"iO!:getbonds", &molid, 
                        &PyTuple_Type, &atomlist)) 
    return NULL;  // bad args
 
  Molecule *mol = get_vmdapp()->moleculeList->mol_from_id(molid);
  if (!mol) {
    PyErr_SetString(PyExc_ValueError, "molecule no longer exists");
    return NULL;
  }
  int num_atoms = mol->nAtoms;
  int num_selected = PyTuple_Size(atomlist);
  PyObject *newlist = PyList_New(num_selected);
  for (int i=0; i< num_selected; i++) {
    int id = PyInt_AsLong(PyTuple_GET_ITEM(atomlist, i));
    if (PyErr_Occurred()) {
      Py_DECREF(newlist);
      return NULL;
    }
    if (id < 0 || id >= num_atoms) {
      PyErr_SetString(PyExc_ValueError, (char *)"invalid atom id found");
      Py_DECREF(newlist);
      return NULL;
    }
    const MolAtom *atom = mol->atom(id);
    PyObject *bondlist = PyList_New(atom->bonds);
    for (int j=0; j<atom->bonds; j++) {
      PyList_SET_ITEM(bondlist, j, PyInt_FromLong(atom->bondTo[j]));
    }
    PyList_SET_ITEM(newlist, i, bondlist);
  }
  return newlist;
}
Beispiel #2
0
// listall(category) - return a list of labels for the given label category. 
// labels will be returned as dictionary objects with the following keys:
// molid, atomid, value, on.  molid and atomid will be tuples, value will
// be either a float or PyNone, and on will be 1 or 0.
static PyObject *listall(PyObject *self, PyObject *args) {
  char *type;
  if (!PyArg_ParseTuple(args, (char *)"s:label.listall", &type))
    return NULL;

  VMDApp *app = get_vmdapp();
  int cat = app->geometryList->geom_list_index(type);
  if (cat < 0) {
    PyErr_SetString(PyExc_ValueError, (char *)"Unknown label category");
    return NULL;
  }
  GeomListPtr glist = app->geometryList->geom_list(cat);
  int gnum = glist->num(); 
  PyObject *newlist = PyList_New(gnum);
  for (int i=0; i<gnum; i++) {
    PyObject *obj = geom2dict((*glist)[i]);
    if (obj == NULL) {
      Py_DECREF(newlist);
      return NULL;
    }
    PyList_SET_ITEM(newlist, i, geom2dict((*glist)[i]));
  }
  return newlist;
} 
Beispiel #3
0
static PyObject *set_colormap(PyObject *self, PyObject *args) {
  char *name;
  PyObject *newdict;

  if (!PyArg_ParseTuple(args, (char *)"sO!", &name, &PyDict_Type, &newdict))
    return NULL;

  VMDApp *app = get_vmdapp();
  PyObject *keys = PyDict_Keys(newdict);
  PyObject *vals = PyDict_Values(newdict);
  int error = 0;
  for (int i=0; i<PyList_Size(keys); i++) {
    char *keyname = PyString_AsString(PyList_GET_ITEM(keys, i));
    if (PyErr_Occurred()) {
      error = 1;
      break;
    }
    char *valname = PyString_AsString(PyList_GET_ITEM(vals, i));
    if (PyErr_Occurred()) {
      error = 1;
      break;
    }
    if (!app->color_changename(name, keyname, valname)) {
      PyErr_SetString(PyExc_ValueError, 
        (char *)"Invalid color category or item specified");
      return NULL;
    }
  }
  Py_DECREF(keys);
  Py_DECREF(vals);
  if (error)
    return NULL;
  
  Py_INCREF(Py_None);
  return Py_None;
}
static PyObject *sasa(PyObject *self, PyObject *args, PyObject *keywds) {
  int molid = -1, frame = -1;
  float srad = 0;
  PyObject *selobj = NULL, *restrictobj = NULL;
  int samples = -1;
  const int *sampleptr = NULL;
  PyObject *pointsobj = NULL;

  static char *kwlist[] = {
    (char *)"srad", (char *)"molid", (char *)"frame", (char *)"selected",
    (char *)"samples", (char *)"points", (char *)"restrict"
  };
  if (!PyArg_ParseTupleAndKeywords(args, keywds, 
        (char *)"fiiO!|iO!O!:atomselection.sasa", kwlist, 
        &srad, &molid, &frame, &PyTuple_Type, &selobj, 
        &samples, &PyList_Type, &pointsobj, &PyTuple_Type, &restrictobj))
    return NULL;

  // validate srad
  if (srad < 0) {
    PyErr_SetString(PyExc_ValueError, (char *)"atomselect.sasa: srad must be non-negative.");
    return NULL;
  }

  // validate selection
  VMDApp *app = get_vmdapp();
  AtomSel *sel = sel_from_py(molid, frame, selobj, app);
  if (!sel) return NULL;

  // fetch the radii and coordinates
  const float *radii = 
    app->moleculeList->mol_from_id(sel->molid())->extraflt.data("radius");
  const float *coords = sel->coordinates(app->moleculeList);

  // if samples was given and is valid, use it
  if (samples > 1) sampleptr = &samples;

  // if restrict is given, validate it
  AtomSel *restrictsel = NULL;
  if (restrictobj) {
    if (!(restrictsel = sel_from_py(molid, frame, restrictobj, app))) {
      delete sel;
      return NULL;
    }
  }

  // if points are requested, fetch them
  ResizeArray<float> sasapts;
  ResizeArray<float> *sasaptsptr = pointsobj ? &sasapts : NULL;
 
  // go!
  float sasa = 0;
  int rc = measure_sasa(sel, coords, radii, srad, &sasa, 
        sasaptsptr, restrictsel, sampleptr);
  delete sel;
  delete restrictsel;
  if (rc) {
    PyErr_SetString(PyExc_ValueError, (char *)measure_error(rc));
    return NULL;
  }

  // append surface points to the provided list object.
  if (pointsobj) {
    for (int i=0; i<sasapts.num(); i++) {
      PyList_Append(pointsobj, PyFloat_FromDouble(sasapts[i]));
    }
  }

  // return the total SASA.
  return PyFloat_FromDouble(sasa);
}
static PyObject *get(PyObject *self, PyObject *args) {
  int i, molid, frame;
  PyObject *selected;
  int num_selected;
  char *attr = 0;

  //
  // get molid, list, and attribute
  //
  if (!PyArg_ParseTuple(args, (char *)"iiO!s", 
                        &molid, &frame, &PyTuple_Type, &selected, &attr))
    return NULL;  // bad args

  //
  // check molecule
  //
  VMDApp *app = get_vmdapp();
  Molecule *mol = app->moleculeList->mol_from_id(molid);
  if (!mol) {
    PyErr_SetString(PyExc_ValueError, "molecule no longer exists");
    return NULL;
  }
  const int num_atoms = mol->nAtoms;
 
  // 
  // Check for a valid attribute
  //
  SymbolTable *table = app->atomSelParser;
  int attrib_index = table->find_attribute(attr);
  if (attrib_index == -1) {
    PyErr_SetString(PyExc_ValueError, "unknown atom attribute");
    return NULL;
  }
  SymbolTableElement *elem = table->fctns.data(attrib_index);
  if (elem->is_a != SymbolTableElement::KEYWORD &&
      elem->is_a != SymbolTableElement::SINGLEWORD) {
    PyErr_SetString(PyExc_ValueError, "attribute is not a keyword or singleword");
    return NULL;
  }
 
  // 
  // fetch the data
  //

  atomsel_ctxt context(table, mol, frame, attr);
  num_selected = PyTuple_Size(selected);
  PyObject *newlist = PyList_New(num_selected); 

  // XXX should check that selected contains valid indices
  int *flgs = new int[num_atoms];
  memset(flgs,0,num_atoms*sizeof(int));
  for (i=0; i<num_selected; i++) 
    flgs[PyInt_AsLong(PyTuple_GET_ITEM(selected,i))] = 1;

  if (elem->is_a == SymbolTableElement::SINGLEWORD) {
    int *tmp = new int[num_atoms];
    memcpy(tmp, flgs, num_atoms*sizeof(int));
    elem->keyword_single(&context, num_atoms, tmp);
    int j=0;
    for (i=0; i<num_atoms; i++) {
      if (flgs[i]) {
        if (tmp[i]) {
          PyList_SET_ITEM(newlist, j++, PyInt_FromLong(1));       
        } else {
          PyList_SET_ITEM(newlist, j++, PyInt_FromLong(0));       
        }
      }
    }
    delete [] tmp;
  } else {
    switch(table->fctns.data(attrib_index)->returns_a) {
      case (SymbolTableElement::IS_STRING):
      {
        const char **tmp= new const char *[num_atoms];
        elem->keyword_string(&context, num_atoms, tmp, flgs);
        int j=0;
        for (int i=0; i<num_atoms; i++) {
          if (flgs[i]) {
            PyList_SET_ITEM(newlist, j++, PyString_FromString(tmp[i]));
          }
        }
        delete [] tmp;
      }
      break;
      case (SymbolTableElement::IS_INT):
      {
        int *tmp = new int[num_atoms];
        elem->keyword_int(&context, num_atoms, tmp, flgs);
        int j=0;
        for (int i=0; i<num_atoms; i++) {
          if (flgs[i]) {
            PyList_SET_ITEM(newlist, j++, PyInt_FromLong(tmp[i]));
          }
        }
        delete [] tmp;
      }
      break;
      case (SymbolTableElement::IS_FLOAT):
      {
        double *tmp = new double[num_atoms];
        elem->keyword_double(&context, num_atoms, tmp, flgs);
        int j=0;
        for (int i=0; i<num_atoms; i++) {
          if (flgs[i])  
            PyList_SET_ITEM(newlist, j++, PyFloat_FromDouble(tmp[i]));
        }
        delete [] tmp;
      }
      break;
    } // end switch
  }   // end else
  delete [] flgs;
  return newlist;
}
static PyObject *py_align(PyObject *self, PyObject *args) {
  int selmol, selframe, refmol, refframe, movemol, moveframe;
  PyObject *selobj, *refobj, *moveobj, *weightobj = NULL;
  if (!PyArg_ParseTuple(args, (char *)"iiO!iiO!iiO!O:atomselection.align",
        &selmol, &selframe, &PyTuple_Type, &selobj,
        &refmol, &refframe, &PyTuple_Type, &refobj,
        &movemol, &moveframe, &PyTuple_Type, &moveobj,
        &weightobj))
    return NULL;

  // check if movemol is -1.  If so, use the sel molecule and timestep instead
  if (movemol == -1) {
    movemol = selmol;
    moveobj = NULL;
  }
  VMDApp *app = get_vmdapp();
  AtomSel *sel=NULL, *ref=NULL, *move=NULL;
  if (!(sel = sel_from_py(selmol, selframe, selobj, app)) ||
      !(ref = sel_from_py(refmol, refframe, refobj, app)) ||
      !(move = sel_from_py(movemol, moveframe, moveobj, app))) {
    delete sel;
    delete ref;
    delete move;
    return NULL;
  }
  const float *selts, *refts;
  float *movets;
  if (!(selts = sel->coordinates(app->moleculeList)) ||
      !(refts = ref->coordinates(app->moleculeList)) || 
      !(movets = move->coordinates(app->moleculeList))) {
    delete sel;
    delete ref;
    delete move;
    PyErr_SetString(PyExc_ValueError, "No coordinates in selection");
    return NULL;
  }
  float *weight = parse_weight(sel, weightobj);
  if (!weight) {
    delete sel;
    delete ref;
    delete move;
    return NULL;
  }
  // Find the matrix that aligns sel with ref.  Apply the transformation to
  // the atoms in move.
  // XXX need to add support for the "order" parameter as in Tcl.
  Matrix4 mat;
  int rc = measure_fit(sel, ref, selts, refts, weight, NULL, &mat);
  delete [] weight;
  delete sel;
  delete ref;
  if (rc < 0) {
    delete move;
    PyErr_SetString(PyExc_ValueError, (char *)measure_error(rc));
    return NULL;
  }
  for (int i=0; i<move->num_atoms; i++) {
    if (move->on[i]) {
      float *pos = movets+3*i;
      mat.multpoint3d(pos, pos);
    }
  }
  Molecule *mol = app->moleculeList->mol_from_id(move->molid());
  mol->force_recalc(DrawMolItem::MOL_REGEN);
  delete move;
  Py_INCREF(Py_None);
  return Py_None;
}
static PyObject *set(PyObject *self, PyObject *args) {
  int i, molid, frame;
  PyObject *selected, *val;
  char *attr = 0;

  //
  // get molid, frame, list, attribute, and value
  //
  if (!PyArg_ParseTuple(args, (char *)"iiO!sO!", &molid, &frame,
                        &PyTuple_Type, &selected, 
                        &attr, &PyTuple_Type, &val ))
    return NULL;  // bad args

  // 
  // check that we have been given either one value or one for each selected
  // atom
  //
  int num_selected = PyTuple_Size(selected);
  int tuplesize = PyTuple_Size(val);
  if (tuplesize != 1 && tuplesize != num_selected) {
    PyErr_SetString(PyExc_ValueError, "wrong number of items");
    return NULL; 
  }
 
  //
  // check molecule
  //
  VMDApp *app = get_vmdapp();
  Molecule *mol = app->moleculeList->mol_from_id(molid);
  if (!mol) {
    PyErr_SetString(PyExc_ValueError, "molecule no longer exists");
    return NULL;
  }
  const int num_atoms = mol->nAtoms;

  //
  // Check for a valid attribute
  //
  SymbolTable *table = app->atomSelParser;
  int attrib_index = table->find_attribute(attr);
  if (attrib_index == -1) {
    PyErr_SetString(PyExc_ValueError, "unknown atom attribute");
    return NULL;
  }
  SymbolTableElement *elem = table->fctns.data(attrib_index);
  if (elem->is_a != SymbolTableElement::KEYWORD &&
      elem->is_a != SymbolTableElement::SINGLEWORD) {
    PyErr_SetString(PyExc_ValueError, "attribute is not a keyword or singleword");
    return NULL;
  }
  if (!table->is_changeable(attrib_index)) {
    PyErr_SetString(PyExc_ValueError, "attribute is not modifiable");
    return NULL; 
  }

  // 
  // convert the list of selected atoms into an array of integer flags
  //
  // XXX should check that selected contains valid indices
  int *flgs = new int[num_atoms];
  memset(flgs,0,num_atoms*sizeof(int));
  for (i=0; i<num_selected; i++)
    flgs[PyInt_AsLong(PyTuple_GET_ITEM(selected,i))] = 1;
 
  //  
  // set the data
  //

  // singlewords can never be set, so macro is NULL.
  atomsel_ctxt context(table, mol, frame, NULL);
  if (elem->returns_a == SymbolTableElement::IS_INT) {
    int *list = new int[num_atoms];
    if (tuplesize > 1) {
      int j=0;
      for (int i=0; i<num_atoms; i++) {
        if (flgs[i])
          list[i] = PyInt_AsLong(PyTuple_GET_ITEM(val, j++));
      }
    } else {
      for (int i=0; i<num_atoms; i++) {
        if (flgs[i])
          list[i] = PyInt_AsLong(PyTuple_GET_ITEM(val, 0));
      }
    }
    elem->set_keyword_int(&context, num_atoms, list, flgs);
    delete [] list;

  } else if (elem->returns_a == SymbolTableElement::IS_FLOAT) {
    double *list = new double[num_atoms];
    if (tuplesize > 1) { 
      int j=0;
      for (int i=0; i<num_atoms; i++) { 
        if (flgs[i])
          list[i] = PyFloat_AsDouble(PyTuple_GET_ITEM(val, j++));
      }
    } else {
      for (int i=0; i<num_atoms; i++) {
        if (flgs[i])
          list[i] = PyFloat_AsDouble(PyTuple_GET_ITEM(val, 0));
      }
    }
    elem->set_keyword_double(&context, num_atoms, list, flgs);
    delete [] list;


  } else if (elem->returns_a == SymbolTableElement::IS_STRING) {

    const char **list = new const char *[num_atoms];
    if (tuplesize > 1) { 
      int j=0;
      for (int i=0; i<num_atoms; i++) { 
        if (flgs[i])
          list[i] = PyString_AsString(PyTuple_GET_ITEM(val, j++));
      }
    } else {
      for (int i=0; i<num_atoms; i++) {
        if (flgs[i])
          list[i] = PyString_AsString(PyTuple_GET_ITEM(val, 0));
      }
    }
    elem->set_keyword_string(&context, num_atoms, list, flgs);
    delete [] list;
  }

  // Recompute the color assignments if certain atom attributes are changed.
  if (!strcmp(attr, "name") ||
      !strcmp(attr, "type") ||
      !strcmp(attr, "resname") ||
      !strcmp(attr, "chain") ||
      !strcmp(attr, "segid") ||
      !strcmp(attr, "segname")) 
    app->moleculeList->add_color_names(molid);

  mol->force_recalc(DrawMolItem::SEL_REGEN | DrawMolItem::COL_REGEN); 
  delete [] flgs;
  Py_INCREF(Py_None);
  return Py_None;
}
Beispiel #8
0
void initvmd() {
  // Assume that VMD should not initialize or use MPI
  // It is conceivable we would want to be able to load the VMD
  // Python module into a MPI-based Python run, and enable the 
  // MPI features of VMD, but we'll have to determine the best way
  // to detect this and it will need to be tested since we may have
  // to handle this case differently than the normal MPI case where
  // VMD explicitly does MPI initialization and shutdown itself. 
  int mpienabled = 0;

  // If there's already a VMDapp in get_vmdapp, then we must be running
  // inside a standalone VMD instead of being loaded as a python extension.
  // Don't throw an error - just load the methods for interoperability
  // in case vmd.so is in the PYTHONPATH of the standalone application.
  if (get_vmdapp() != NULL) {
    (void)Py_InitModule((char *)"vmd", VMDAppMethods);
    return;
  }

  int argc=1;
  char *argv[1];
  argv[0] = Py_GetProgramFullPath();
  if (!VMDinitialize(&argc, (char ***) &argv, mpienabled)) {
    return;
  }

  // XXX this is a hack, and it would be better to tie this into 
  //     VMDApp more directly at some later point, but the regular
  //     VMD startup code is similarly lame, so we'll use it for now.
  const char *disp = getenv("VMDDISPLAYDEVICE");
  if (!disp) disp="text";

  int loc[2] = { 50, 50 };
  int size[2] = { 400, 400 };
  VMDgetDisplayFrame(loc, size);

  VMDApp *app = new VMDApp(1, argv, mpienabled);
  app->VMDinit(1, argv, disp, loc, size);

  // read application defaults
  VMDreadInit(app);

  // read user-defined startup files
  VMDreadStartup(app);

  set_vmdapp(app);

  // set my local static
  the_app = app;

  PyObject *vmdmodule = Py_InitModule((char *)"vmd", VMDAppMethods);

  initanimate();
  initatomsel();
  initaxes();
  initcolor();
  initdisplay();
  initgraphics();
  initimd();
  initlabel();
  initmaterial();
  initmolecule();
  initmolrep();
  initmouse();
  initrender();
  inittrans();
  initvmdmenu();

#ifdef VMDNUMPY
  initvmdnumpy();
#endif

  if (PyErr_Occurred()) return;

  static const char *modules[] = {
    "animate", "atomsel", "axes", "color", "display", "graphics",
    "imd", "label", "material", "molecule", "molrep", "mouse", 
    "render", "trans", "vmdmenu", "vmdnumpy"
  };
  for (unsigned i=0; i<sizeof(modules)/sizeof(const char *); i++) {
    const char *m = modules[i];
#if (PY_MAJOR_VERSION == 2) && (PY_MINOR_VERSION < 5)
#define CAST_HACK (char *)
#else 
#define CAST_HACK
#endif
    PyModule_AddObject(vmdmodule, CAST_HACK m, PyImport_ImportModule( CAST_HACK m));
  }
  event_tstate = PyThreadState_Get();
#if defined(VMD_SHARED)
  PyOS_InputHook = vmd_input_hook;
#endif
}
Beispiel #9
0
static PyObject *contacts(PyObject *self, PyObject *args) {
  
  int mol1, frame1, mol2, frame2;
  PyObject *selected1, *selected2;
  float cutoff;
  if (!PyArg_ParseTuple(args, (char *)"iiO!iiO!f:atomselection.contacts",
        &mol1, &frame1, &PyTuple_Type, &selected1,
        &mol2, &frame2, &PyTuple_Type, &selected2,
        &cutoff))
    return NULL;
  VMDApp *app = get_vmdapp();
  AtomSel *sel1 = sel_from_py(mol1, frame1, selected1, app);
  AtomSel *sel2 = sel_from_py(mol2, frame2, selected2, app);
  if (!sel1 || !sel2) {
    delete sel1;
    delete sel2;
    return NULL;
  }
  const float *ts1 = sel1->coordinates(app->moleculeList);
  const float *ts2 = sel2->coordinates(app->moleculeList);
  if (!ts1 || !ts2) {
    PyErr_SetString(PyExc_ValueError, "No coordinates in selection");
    delete sel1;
    delete sel2;
    return NULL;
  }
  Molecule *mol = app->moleculeList->mol_from_id(mol1);

  GridSearchPair *pairlist = vmd_gridsearch3(
      ts1, sel1->num_atoms, sel1->on,
      ts2, sel2->num_atoms, sel2->on,
      cutoff, -1, (sel1->num_atoms + sel2->num_atoms) * 27);

  delete sel1;
  delete sel2;
  GridSearchPair *p, *tmp;
  PyObject *list1 = PyList_New(0);
  PyObject *list2 = PyList_New(0);
  PyObject *tmp1;
  PyObject *tmp2;
  for (p=pairlist; p != NULL; p=tmp) {
    // throw out pairs that are already bonded
    MolAtom *a1 = mol->atom(p->ind1);
    if (mol1 != mol2 || !a1->bonded(p->ind2)) {
      // Needed to avoid a memory leak. Append increments the refcount 
      // of whatever gets added to it, but so does PyInt_FromLong.
      // Without a decref, the integers created never have their refcount
      //  go to zero, and you leak memory.
      tmp1 = PyInt_FromLong(p->ind1);
      tmp2 = PyInt_FromLong(p->ind2);
      PyList_Append(list1, tmp1);
      PyList_Append(list2, tmp2);
      Py_DECREF(tmp1);
      Py_DECREF(tmp2);
    }
    tmp = p->next;
    free(p);
  }
  PyObject *result = PyList_New(2);
  PyList_SET_ITEM(result, 0, list1);
  PyList_SET_ITEM(result, 1, list2);
  return result;
}
Beispiel #10
0
static PyObject* py_set_colors(PyObject *self, PyObject *args, PyObject *kwargs)
{
  PyObject *newdict, *newtuple, *keys, *vals;
  const char *kwnames[] = {"colors", NULL};
  PyObject *retval = NULL;
  char *keyname;
  float rgb[3];
  VMDApp *app;

  if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O!:color.set_colors",
                                   (char**) kwnames, &PyDict_Type, &newdict))
    return NULL;

  if (!(app = get_vmdapp()))
    return NULL;

  keys = PyDict_Keys(newdict);
  vals = PyDict_Values(newdict);

  for (int i=0; i<PyList_Size(keys); i++) {
    // Get color name from input dictionary
    keyname = as_charptr(PyList_GetItem(keys, i));
    if (PyErr_Occurred())
        goto cleanup;

    // Check this color name actually exists
    if (app->color_index(keyname) < 0) {
      PyErr_Format(PyExc_ValueError, "Unknown color '%s'", keyname);
      goto cleanup;
    }

    // Unpack value tuples into 3 floats
    newtuple = PyList_GetItem(vals, i);
    if (!PyTuple_Check(newtuple) || PyTuple_Size(newtuple) != 3) {
      PyErr_SetString(PyExc_ValueError,
                      "color definition must be 3-tuple of floats");
      goto cleanup;
    }

    for (int j=0; j<3; j++) {
      rgb[j] = (float)PyFloat_AsDouble(PyTuple_GET_ITEM(newtuple, j));

      if (PyErr_Occurred()) {
        PyErr_SetString(PyExc_ValueError, "color definition must be floats");
        goto cleanup;
      }
    }

    // Finally actually change the color
    app->color_change_rgb(keyname, rgb[0], rgb[1], rgb[2]);
  }
  retval = Py_None;

  // Getting the keys and values from the dictionary makes a new reference.
  // We tell Python we're done with it so as to not leak memory.
  // This needs to happen even if there was a problem setting color, which is
  // why we don't return NULL from the error checking statements above.
cleanup:
  Py_DECREF(keys);
  Py_DECREF(vals);

  Py_XINCREF(retval);
  return retval;
}
Beispiel #11
0
static PyObject *imdconnected(PyObject *self, PyObject *args) {
  if (!PyArg_ParseTuple(args, (char *)"")) return NULL;
  VMDApp *app = get_vmdapp();
  return Py_BuildValue( "O", 
      app->imdMgr->connected() ? Py_True : Py_False );
}