/* Computes scalar*point and stores the result in r. * point can not equal r. * Uses a modified algorithm 2P of * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over * GF(2^m) without precomputation" (CHES '99, LNCS 1717). * * To protect against side-channel attack the function uses constant time swap, * avoiding conditional branches. */ static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) { BIGNUM *x1, *x2, *z1, *z2; int ret = 0, i; BN_ULONG mask,word; if (r == point) { ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); return 0; } /* if result should be point at infinity */ if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || EC_POINT_is_at_infinity(group, point)) { return EC_POINT_set_to_infinity(group, r); } /* only support affine coordinates */ if (!point->Z_is_one) return 0; /* Since point_multiply is static we can guarantee that ctx != NULL. */ BN_CTX_start(ctx); x1 = BN_CTX_get(ctx); z1 = BN_CTX_get(ctx); if (z1 == NULL) goto err; x2 = &r->X; z2 = &r->Y; bn_wexpand(x1, group->field.top); bn_wexpand(z1, group->field.top); bn_wexpand(x2, group->field.top); bn_wexpand(z2, group->field.top); if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ if (!BN_one(z1)) goto err; /* z1 = 1 */ if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ /* find top most bit and go one past it */ i = scalar->top - 1; mask = BN_TBIT; word = scalar->d[i]; while (!(word & mask)) mask >>= 1; mask >>= 1; /* if top most bit was at word break, go to next word */ if (!mask) { i--; mask = BN_TBIT; } for (; i >= 0; i--) { word = scalar->d[i]; while (mask) { BN_consttime_swap(word & mask, x1, x2, group->field.top); BN_consttime_swap(word & mask, z1, z2, group->field.top); if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; BN_consttime_swap(word & mask, x1, x2, group->field.top); BN_consttime_swap(word & mask, z1, z2, group->field.top); mask >>= 1; } mask = BN_TBIT; } /* convert out of "projective" coordinates */ i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); if (i == 0) goto err; else if (i == 1) { if (!EC_POINT_set_to_infinity(group, r)) goto err; } else { if (!BN_one(&r->Z)) goto err; r->Z_is_one = 1; } /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ BN_set_negative(&r->X, 0); BN_set_negative(&r->Y, 0); ret = 1; err: BN_CTX_end(ctx); return ret; }
/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast * multiplication on elliptic curves over GF(2^m) without * precomputation". Elliptic curve points P and R can be identical. Uses * Montgomery projective coordinates. */ mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int x1, x2, z1, z2; int i, j; mp_digit top_bit, mask; MP_DIGITS(&x1) = 0; MP_DIGITS(&x2) = 0; MP_DIGITS(&z1) = 0; MP_DIGITS(&z2) = 0; MP_CHECKOK(mp_init(&x1, FLAG(n))); MP_CHECKOK(mp_init(&x2, FLAG(n))); MP_CHECKOK(mp_init(&z1, FLAG(n))); MP_CHECKOK(mp_init(&z2, FLAG(n))); /* if result should be point at infinity */ if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) { MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); goto CLEANUP; } MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */ MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */ MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 = * x1^2 = * px^2 */ MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth)); MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2 * = * px^4 * + * b */ /* find top-most bit and go one past it */ i = MP_USED(n) - 1; j = MP_DIGIT_BIT - 1; top_bit = 1; top_bit <<= MP_DIGIT_BIT - 1; mask = top_bit; while (!(MP_DIGITS(n)[i] & mask)) { mask >>= 1; j--; } mask >>= 1; j--; /* if top most bit was at word break, go to next word */ if (!mask) { i--; j = MP_DIGIT_BIT - 1; mask = top_bit; } for (; i >= 0; i--) { for (; j >= 0; j--) { if (MP_DIGITS(n)[i] & mask) { MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n))); MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n))); } else { MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n))); MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n))); } mask >>= 1; } j = MP_DIGIT_BIT - 1; mask = top_bit; } /* convert out of "projective" coordinates */ i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group); if (i == 0) { res = MP_BADARG; goto CLEANUP; } else if (i == 1) { MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); } else { MP_CHECKOK(mp_copy(&x2, rx)); MP_CHECKOK(mp_copy(&z2, ry)); } CLEANUP: mp_clear(&x1); mp_clear(&x2); mp_clear(&z1); mp_clear(&z2); return res; }