static void test_create_channel_stack(void) { const grpc_channel_filter filter = { call_func, channel_func, sizeof(int), call_init_func, grpc_call_stack_ignore_set_pollset_or_pollset_set, call_destroy_func, sizeof(int), channel_init_func, channel_destroy_func, get_peer, grpc_channel_next_get_info, "some_test_filter"}; const grpc_channel_filter *filters = &filter; grpc_channel_stack *channel_stack; grpc_call_stack *call_stack; grpc_channel_element *channel_elem; grpc_call_element *call_elem; grpc_arg arg; grpc_channel_args chan_args; int *channel_data; int *call_data; grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; grpc_mdstr *path = grpc_mdstr_from_string("/service/method"); arg.type = GRPC_ARG_INTEGER; arg.key = "test_key"; arg.value.integer = 42; chan_args.num_args = 1; chan_args.args = &arg; channel_stack = gpr_malloc(grpc_channel_stack_size(&filters, 1)); grpc_channel_stack_init(&exec_ctx, 1, free_channel, channel_stack, &filters, 1, &chan_args, NULL, "test", channel_stack); GPR_ASSERT(channel_stack->count == 1); channel_elem = grpc_channel_stack_element(channel_stack, 0); channel_data = (int *)channel_elem->channel_data; GPR_ASSERT(*channel_data == 0); call_stack = gpr_malloc(channel_stack->call_stack_size); grpc_error *error = grpc_call_stack_init(&exec_ctx, channel_stack, 1, free_call, call_stack, NULL, NULL, path, gpr_now(GPR_CLOCK_MONOTONIC), gpr_inf_future(GPR_CLOCK_MONOTONIC), call_stack); GPR_ASSERT(error == GRPC_ERROR_NONE); GPR_ASSERT(call_stack->count == 1); call_elem = grpc_call_stack_element(call_stack, 0); GPR_ASSERT(call_elem->filter == channel_elem->filter); GPR_ASSERT(call_elem->channel_data == channel_elem->channel_data); call_data = (int *)call_elem->call_data; GPR_ASSERT(*call_data == 0); GPR_ASSERT(*channel_data == 1); GRPC_CALL_STACK_UNREF(&exec_ctx, call_stack, "done"); grpc_exec_ctx_flush(&exec_ctx); GPR_ASSERT(*channel_data == 2); GRPC_CHANNEL_STACK_UNREF(&exec_ctx, channel_stack, "done"); grpc_exec_ctx_finish(&exec_ctx); GRPC_MDSTR_UNREF(path); }
/* Do both reading and writing using the grpc_endpoint API. This also includes a test of the shutdown behavior. */ static void read_and_write_test(grpc_endpoint_test_config config, size_t num_bytes, size_t write_size, size_t slice_size, int shutdown) { struct read_and_write_test_state state; gpr_timespec deadline = GRPC_TIMEOUT_SECONDS_TO_DEADLINE(20); grpc_endpoint_test_fixture f = begin_test(config, "read_and_write_test", slice_size); grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; gpr_log(GPR_DEBUG, "num_bytes=%d write_size=%d slice_size=%d shutdown=%d", num_bytes, write_size, slice_size, shutdown); if (shutdown) { gpr_log(GPR_INFO, "Start read and write shutdown test"); } else { gpr_log(GPR_INFO, "Start read and write test with %d bytes, slice size %d", num_bytes, slice_size); } state.read_ep = f.client_ep; state.write_ep = f.server_ep; state.target_bytes = num_bytes; state.bytes_read = 0; state.current_write_size = write_size; state.bytes_written = 0; state.read_done = 0; state.write_done = 0; state.current_read_data = 0; state.current_write_data = 0; grpc_closure_init(&state.done_read, read_and_write_test_read_handler, &state); grpc_closure_init(&state.done_write, read_and_write_test_write_handler, &state); gpr_slice_buffer_init(&state.outgoing); gpr_slice_buffer_init(&state.incoming); /* Get started by pretending an initial write completed */ /* NOTE: Sets up initial conditions so we can have the same write handler for the first iteration as for later iterations. It does the right thing even when bytes_written is unsigned. */ state.bytes_written -= state.current_write_size; read_and_write_test_write_handler(&exec_ctx, &state, 1); grpc_exec_ctx_finish(&exec_ctx); grpc_endpoint_read(&exec_ctx, state.read_ep, &state.incoming, &state.done_read); if (shutdown) { gpr_log(GPR_DEBUG, "shutdown read"); grpc_endpoint_shutdown(&exec_ctx, state.read_ep); gpr_log(GPR_DEBUG, "shutdown write"); grpc_endpoint_shutdown(&exec_ctx, state.write_ep); } grpc_exec_ctx_finish(&exec_ctx); gpr_mu_lock(GRPC_POLLSET_MU(g_pollset)); while (!state.read_done || !state.write_done) { grpc_pollset_worker worker; GPR_ASSERT(gpr_time_cmp(gpr_now(GPR_CLOCK_MONOTONIC), deadline) < 0); grpc_pollset_work(&exec_ctx, g_pollset, &worker, gpr_now(GPR_CLOCK_MONOTONIC), deadline); } gpr_mu_unlock(GRPC_POLLSET_MU(g_pollset)); grpc_exec_ctx_finish(&exec_ctx); end_test(config); gpr_slice_buffer_destroy(&state.outgoing); gpr_slice_buffer_destroy(&state.incoming); grpc_endpoint_destroy(&exec_ctx, state.read_ep); grpc_endpoint_destroy(&exec_ctx, state.write_ep); grpc_exec_ctx_finish(&exec_ctx); }
/* Takes ownership of ctx. */ static void retrieve_key_and_verify(verifier_cb_ctx *ctx) { const char *at_sign; grpc_httpcli_response_cb http_cb; char *path_prefix = NULL; const char *iss; grpc_httpcli_request req; memset(&req, 0, sizeof(grpc_httpcli_request)); req.use_ssl = 1; GPR_ASSERT(ctx != NULL && ctx->header != NULL && ctx->claims != NULL); iss = ctx->claims->iss; if (ctx->header->kid == NULL) { gpr_log(GPR_ERROR, "Missing kid in jose header."); goto error; } if (iss == NULL) { gpr_log(GPR_ERROR, "Missing iss in claims."); goto error; } /* This code relies on: https://openid.net/specs/openid-connect-discovery-1_0.html Nobody seems to implement the account/email/webfinger part 2. of the spec so we will rely instead on email/url mappings if we detect such an issuer. Part 4, on the other hand is implemented by both google and salesforce. */ /* Very non-sophisticated way to detect an email address. Should be good enough for now... */ at_sign = strchr(iss, '@'); if (at_sign != NULL) { email_key_mapping *mapping; const char *email_domain = at_sign + 1; GPR_ASSERT(ctx->verifier != NULL); mapping = verifier_get_mapping(ctx->verifier, email_domain); if (mapping == NULL) { gpr_log(GPR_ERROR, "Missing mapping for issuer email."); goto error; } req.host = gpr_strdup(mapping->key_url_prefix); path_prefix = strchr(req.host, '/'); if (path_prefix == NULL) { gpr_asprintf(&req.path, "/%s", iss); } else { *(path_prefix++) = '\0'; gpr_asprintf(&req.path, "/%s/%s", path_prefix, iss); } http_cb = on_keys_retrieved; } else { req.host = gpr_strdup(strstr(iss, "https://") == iss ? iss + 8 : iss); path_prefix = strchr(req.host, '/'); if (path_prefix == NULL) { req.path = gpr_strdup(GRPC_OPENID_CONFIG_URL_SUFFIX); } else { *(path_prefix++) = 0; gpr_asprintf(&req.path, "/%s%s", path_prefix, GRPC_OPENID_CONFIG_URL_SUFFIX); } http_cb = on_openid_config_retrieved; } grpc_httpcli_get( &ctx->verifier->http_ctx, ctx->pollset, &req, gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), grpc_jwt_verifier_max_delay), http_cb, ctx); gpr_free(req.host); gpr_free(req.path); return; error: ctx->user_cb(ctx->user_data, GRPC_JWT_VERIFIER_KEY_RETRIEVAL_ERROR, NULL); verifier_cb_ctx_destroy(ctx); }
static int is_stack_running_on_compute_engine(grpc_exec_ctx *exec_ctx) { compute_engine_detector detector; grpc_httpcli_request request; grpc_httpcli_context context; grpc_closure destroy_closure; /* The http call is local. If it takes more than one sec, it is for sure not on compute engine. */ gpr_timespec max_detection_delay = gpr_time_from_seconds(1, GPR_TIMESPAN); grpc_pollset *pollset = gpr_malloc(grpc_pollset_size()); grpc_pollset_init(pollset, &g_polling_mu); detector.pollent = grpc_polling_entity_create_from_pollset(pollset); detector.is_done = 0; detector.success = 0; memset(&detector.response, 0, sizeof(detector.response)); memset(&request, 0, sizeof(grpc_httpcli_request)); request.host = GRPC_COMPUTE_ENGINE_DETECTION_HOST; request.http.path = "/"; grpc_httpcli_context_init(&context); grpc_resource_quota *resource_quota = grpc_resource_quota_create("google_default_credentials"); grpc_httpcli_get( exec_ctx, &context, &detector.pollent, resource_quota, &request, gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), max_detection_delay), grpc_closure_create(on_compute_engine_detection_http_response, &detector, grpc_schedule_on_exec_ctx), &detector.response); grpc_resource_quota_unref_internal(exec_ctx, resource_quota); grpc_exec_ctx_flush(exec_ctx); /* Block until we get the response. This is not ideal but this should only be called once for the lifetime of the process by the default credentials. */ gpr_mu_lock(g_polling_mu); while (!detector.is_done) { grpc_pollset_worker *worker = NULL; if (!GRPC_LOG_IF_ERROR( "pollset_work", grpc_pollset_work(exec_ctx, grpc_polling_entity_pollset(&detector.pollent), &worker, gpr_now(GPR_CLOCK_MONOTONIC), gpr_inf_future(GPR_CLOCK_MONOTONIC)))) { detector.is_done = 1; detector.success = 0; } } gpr_mu_unlock(g_polling_mu); grpc_httpcli_context_destroy(exec_ctx, &context); grpc_closure_init(&destroy_closure, destroy_pollset, grpc_polling_entity_pollset(&detector.pollent), grpc_schedule_on_exec_ctx); grpc_pollset_shutdown(exec_ctx, grpc_polling_entity_pollset(&detector.pollent), &destroy_closure); g_polling_mu = NULL; grpc_exec_ctx_flush(exec_ctx); gpr_free(grpc_polling_entity_pollset(&detector.pollent)); grpc_http_response_destroy(&detector.response); return detector.success; }
/* Tries to issue one async connection, then schedules both an IOCP notification request for the connection, and one timeout alert. */ void grpc_tcp_client_connect(grpc_exec_ctx *exec_ctx, grpc_closure *on_done, grpc_endpoint **endpoint, grpc_pollset_set *interested_parties, const struct sockaddr *addr, size_t addr_len, gpr_timespec deadline) { SOCKET sock = INVALID_SOCKET; BOOL success; int status; struct sockaddr_in6 addr6_v4mapped; struct sockaddr_in6 local_address; async_connect *ac; grpc_winsocket *socket = NULL; LPFN_CONNECTEX ConnectEx; GUID guid = WSAID_CONNECTEX; DWORD ioctl_num_bytes; const char *message = NULL; char *utf8_message; grpc_winsocket_callback_info *info; *endpoint = NULL; /* Use dualstack sockets where available. */ if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = (const struct sockaddr *)&addr6_v4mapped; addr_len = sizeof(addr6_v4mapped); } sock = WSASocket(AF_INET6, SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED); if (sock == INVALID_SOCKET) { message = "Unable to create socket: %s"; goto failure; } if (!grpc_tcp_prepare_socket(sock)) { message = "Unable to set socket options: %s"; goto failure; } /* Grab the function pointer for ConnectEx for that specific socket. It may change depending on the interface. */ status = WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER, &guid, sizeof(guid), &ConnectEx, sizeof(ConnectEx), &ioctl_num_bytes, NULL, NULL); if (status != 0) { message = "Unable to retrieve ConnectEx pointer: %s"; goto failure; } grpc_sockaddr_make_wildcard6(0, &local_address); status = bind(sock, (struct sockaddr *)&local_address, sizeof(local_address)); if (status != 0) { message = "Unable to bind socket: %s"; goto failure; } socket = grpc_winsocket_create(sock, "client"); info = &socket->write_info; success = ConnectEx(sock, addr, (int)addr_len, NULL, 0, NULL, &info->overlapped); /* It wouldn't be unusual to get a success immediately. But we'll still get an IOCP notification, so let's ignore it. */ if (!success) { int error = WSAGetLastError(); if (error != ERROR_IO_PENDING) { message = "ConnectEx failed: %s"; goto failure; } } ac = gpr_malloc(sizeof(async_connect)); ac->on_done = on_done; ac->socket = socket; gpr_mu_init(&ac->mu); ac->refs = 2; ac->addr_name = grpc_sockaddr_to_uri(addr); ac->endpoint = endpoint; grpc_closure_init(&ac->on_connect, on_connect, ac); grpc_timer_init(exec_ctx, &ac->alarm, deadline, on_alarm, ac, gpr_now(GPR_CLOCK_MONOTONIC)); grpc_socket_notify_on_write(exec_ctx, socket, &ac->on_connect); return; failure: utf8_message = gpr_format_message(WSAGetLastError()); gpr_log(GPR_ERROR, message, utf8_message); gpr_free(utf8_message); if (socket != NULL) { grpc_winsocket_destroy(socket); } else if (sock != INVALID_SOCKET) { closesocket(sock); } grpc_exec_ctx_enqueue(exec_ctx, on_done, false, NULL); }
static void tcp_client_connect_impl(grpc_exec_ctx *exec_ctx, grpc_closure *closure, grpc_endpoint **ep, grpc_pollset_set *interested_parties, const grpc_channel_args *channel_args, const grpc_resolved_address *addr, gpr_timespec deadline) { int fd; grpc_dualstack_mode dsmode; int err; async_connect *ac; grpc_resolved_address addr6_v4mapped; grpc_resolved_address addr4_copy; grpc_fd *fdobj; char *name; char *addr_str; grpc_error *error; *ep = NULL; /* Use dualstack sockets where available. */ if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = &addr6_v4mapped; } error = grpc_create_dualstack_socket(addr, SOCK_STREAM, 0, &dsmode, &fd); if (error != GRPC_ERROR_NONE) { grpc_closure_sched(exec_ctx, closure, error); return; } if (dsmode == GRPC_DSMODE_IPV4) { /* If we got an AF_INET socket, map the address back to IPv4. */ GPR_ASSERT(grpc_sockaddr_is_v4mapped(addr, &addr4_copy)); addr = &addr4_copy; } if ((error = prepare_socket(addr, fd, channel_args)) != GRPC_ERROR_NONE) { grpc_closure_sched(exec_ctx, closure, error); return; } do { GPR_ASSERT(addr->len < ~(socklen_t)0); err = connect(fd, (const struct sockaddr *)addr->addr, (socklen_t)addr->len); } while (err < 0 && errno == EINTR); addr_str = grpc_sockaddr_to_uri(addr); gpr_asprintf(&name, "tcp-client:%s", addr_str); fdobj = grpc_fd_create(fd, name); if (err >= 0) { *ep = grpc_tcp_client_create_from_fd(exec_ctx, fdobj, channel_args, addr_str); grpc_closure_sched(exec_ctx, closure, GRPC_ERROR_NONE); goto done; } if (errno != EWOULDBLOCK && errno != EINPROGRESS) { grpc_fd_orphan(exec_ctx, fdobj, NULL, NULL, "tcp_client_connect_error"); grpc_closure_sched(exec_ctx, closure, GRPC_OS_ERROR(errno, "connect")); goto done; } grpc_pollset_set_add_fd(exec_ctx, interested_parties, fdobj); ac = gpr_malloc(sizeof(async_connect)); ac->closure = closure; ac->ep = ep; ac->fd = fdobj; ac->interested_parties = interested_parties; ac->addr_str = addr_str; addr_str = NULL; gpr_mu_init(&ac->mu); ac->refs = 2; grpc_closure_init(&ac->write_closure, on_writable, ac, grpc_schedule_on_exec_ctx); ac->channel_args = grpc_channel_args_copy(channel_args); if (grpc_tcp_trace) { gpr_log(GPR_DEBUG, "CLIENT_CONNECT: %s: asynchronously connecting", ac->addr_str); } gpr_mu_lock(&ac->mu); grpc_closure_init(&ac->on_alarm, tc_on_alarm, ac, grpc_schedule_on_exec_ctx); grpc_timer_init(exec_ctx, &ac->alarm, gpr_convert_clock_type(deadline, GPR_CLOCK_MONOTONIC), &ac->on_alarm, gpr_now(GPR_CLOCK_MONOTONIC)); grpc_fd_notify_on_write(exec_ctx, ac->fd, &ac->write_closure); gpr_mu_unlock(&ac->mu); done: gpr_free(name); gpr_free(addr_str); }
static void add_test(void) { gpr_timespec start = gpr_now(GPR_CLOCK_REALTIME); int i; grpc_alarm alarms[20]; grpc_alarm_list_init(start); memset(cb_called, 0, sizeof(cb_called)); /* 10 ms alarms. will expire in the current epoch */ for (i = 0; i < 10; i++) { grpc_alarm_init(&alarms[i], gpr_time_add(start, gpr_time_from_millis(10, GPR_TIMESPAN)), cb, (void *)(gpr_intptr)i, start); } /* 1010 ms alarms. will expire in the next epoch */ for (i = 10; i < 20; i++) { grpc_alarm_init(&alarms[i], gpr_time_add(start, gpr_time_from_millis( 1010, GPR_TIMESPAN)), cb, (void *)(gpr_intptr)i, start); } /* collect alarms. Only the first batch should be ready. */ GPR_ASSERT(10 == grpc_alarm_check(NULL, gpr_time_add(start, gpr_time_from_millis( 500, GPR_TIMESPAN)), NULL)); for (i = 0; i < 20; i++) { GPR_ASSERT(cb_called[i][1] == (i < 10)); GPR_ASSERT(cb_called[i][0] == 0); } GPR_ASSERT(0 == grpc_alarm_check( NULL, gpr_time_add( start, gpr_time_from_millis(600, GPR_TIMESPAN)), NULL)); for (i = 0; i < 30; i++) { GPR_ASSERT(cb_called[i][1] == (i < 10)); GPR_ASSERT(cb_called[i][0] == 0); } /* collect the rest of the alarms */ GPR_ASSERT( 10 == grpc_alarm_check(NULL, gpr_time_add(start, gpr_time_from_millis( 1500, GPR_TIMESPAN)), NULL)); for (i = 0; i < 30; i++) { GPR_ASSERT(cb_called[i][1] == (i < 20)); GPR_ASSERT(cb_called[i][0] == 0); } GPR_ASSERT(0 == grpc_alarm_check(NULL, gpr_time_add(start, gpr_time_from_millis( 1600, GPR_TIMESPAN)), NULL)); for (i = 0; i < 30; i++) { GPR_ASSERT(cb_called[i][1] == (i < 20)); GPR_ASSERT(cb_called[i][0] == 0); } grpc_alarm_list_shutdown(); }
static void on_initial_header(void *tp, grpc_mdelem *md) { grpc_chttp2_transport_parsing *transport_parsing = tp; grpc_chttp2_stream_parsing *stream_parsing = transport_parsing->incoming_stream; GPR_TIMER_BEGIN("on_initial_header", 0); GPR_ASSERT(stream_parsing); GRPC_CHTTP2_IF_TRACING(gpr_log( GPR_INFO, "HTTP:%d:HDR:%s: %s: %s", stream_parsing->id, transport_parsing->is_client ? "CLI" : "SVR", grpc_mdstr_as_c_string(md->key), grpc_mdstr_as_c_string(md->value))); if (md->key == GRPC_MDSTR_GRPC_STATUS && md != GRPC_MDELEM_GRPC_STATUS_0) { /* TODO(ctiller): check for a status like " 0" */ stream_parsing->seen_error = true; } if (md->key == GRPC_MDSTR_GRPC_TIMEOUT) { gpr_timespec *cached_timeout = grpc_mdelem_get_user_data(md, free_timeout); if (!cached_timeout) { /* not already parsed: parse it now, and store the result away */ cached_timeout = gpr_malloc(sizeof(gpr_timespec)); if (!grpc_chttp2_decode_timeout(grpc_mdstr_as_c_string(md->value), cached_timeout)) { gpr_log(GPR_ERROR, "Ignoring bad timeout value '%s'", grpc_mdstr_as_c_string(md->value)); *cached_timeout = gpr_inf_future(GPR_TIMESPAN); } grpc_mdelem_set_user_data(md, free_timeout, cached_timeout); } grpc_chttp2_incoming_metadata_buffer_set_deadline( &stream_parsing->metadata_buffer[0], gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC), *cached_timeout)); GRPC_MDELEM_UNREF(md); } else { const size_t new_size = stream_parsing->metadata_buffer[0].size + GRPC_MDELEM_LENGTH(md); grpc_chttp2_transport_global *transport_global = &TRANSPORT_FROM_PARSING(transport_parsing)->global; const size_t metadata_size_limit = transport_global->settings[GRPC_LOCAL_SETTINGS] [GRPC_CHTTP2_SETTINGS_MAX_HEADER_LIST_SIZE]; if (new_size > metadata_size_limit) { if (!stream_parsing->exceeded_metadata_size) { gpr_log(GPR_DEBUG, "received initial metadata size exceeds limit (%" PRIuPTR " vs. %" PRIuPTR ")", new_size, metadata_size_limit); stream_parsing->seen_error = true; stream_parsing->exceeded_metadata_size = true; } GRPC_MDELEM_UNREF(md); } else { grpc_chttp2_incoming_metadata_buffer_add( &stream_parsing->metadata_buffer[0], md); } } grpc_chttp2_list_add_parsing_seen_stream(transport_parsing, stream_parsing); GPR_TIMER_END("on_initial_header", 0); }
/* Test that changing the callback we use for notify_on_read actually works. Note that we have two different but almost identical callbacks above -- the point is to have two different function pointers and two different data pointers and make sure that changing both really works. */ static void test_grpc_fd_change(void) { grpc_fd *em_fd; fd_change_data a, b; int flags; int sv[2]; char data; ssize_t result; grpc_closure first_closure; grpc_closure second_closure; grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; GRPC_CLOSURE_INIT(&first_closure, first_read_callback, &a, grpc_schedule_on_exec_ctx); GRPC_CLOSURE_INIT(&second_closure, second_read_callback, &b, grpc_schedule_on_exec_ctx); init_change_data(&a); init_change_data(&b); GPR_ASSERT(socketpair(AF_UNIX, SOCK_STREAM, 0, sv) == 0); flags = fcntl(sv[0], F_GETFL, 0); GPR_ASSERT(fcntl(sv[0], F_SETFL, flags | O_NONBLOCK) == 0); flags = fcntl(sv[1], F_GETFL, 0); GPR_ASSERT(fcntl(sv[1], F_SETFL, flags | O_NONBLOCK) == 0); em_fd = grpc_fd_create(sv[0], "test_grpc_fd_change"); grpc_pollset_add_fd(&exec_ctx, g_pollset, em_fd); /* Register the first callback, then make its FD readable */ grpc_fd_notify_on_read(&exec_ctx, em_fd, &first_closure); data = 0; result = write(sv[1], &data, 1); GPR_ASSERT(result == 1); /* And now wait for it to run. */ gpr_mu_lock(g_mu); while (a.cb_that_ran == NULL) { grpc_pollset_worker *worker = NULL; GPR_ASSERT(GRPC_LOG_IF_ERROR( "pollset_work", grpc_pollset_work(&exec_ctx, g_pollset, &worker, gpr_now(GPR_CLOCK_MONOTONIC), gpr_inf_future(GPR_CLOCK_MONOTONIC)))); gpr_mu_unlock(g_mu); grpc_exec_ctx_finish(&exec_ctx); gpr_mu_lock(g_mu); } GPR_ASSERT(a.cb_that_ran == first_read_callback); gpr_mu_unlock(g_mu); /* And drain the socket so we can generate a new read edge */ result = read(sv[0], &data, 1); GPR_ASSERT(result == 1); /* Now register a second callback with distinct change data, and do the same thing again. */ grpc_fd_notify_on_read(&exec_ctx, em_fd, &second_closure); data = 0; result = write(sv[1], &data, 1); GPR_ASSERT(result == 1); gpr_mu_lock(g_mu); while (b.cb_that_ran == NULL) { grpc_pollset_worker *worker = NULL; GPR_ASSERT(GRPC_LOG_IF_ERROR( "pollset_work", grpc_pollset_work(&exec_ctx, g_pollset, &worker, gpr_now(GPR_CLOCK_MONOTONIC), gpr_inf_future(GPR_CLOCK_MONOTONIC)))); gpr_mu_unlock(g_mu); grpc_exec_ctx_finish(&exec_ctx); gpr_mu_lock(g_mu); } /* Except now we verify that second_read_callback ran instead */ GPR_ASSERT(b.cb_that_ran == second_read_callback); gpr_mu_unlock(g_mu); grpc_fd_orphan(&exec_ctx, em_fd, NULL, NULL, "d"); grpc_exec_ctx_finish(&exec_ctx); destroy_change_data(&a); destroy_change_data(&b); close(sv[1]); }
int main(int argc, char **argv) { grpc_test_init(argc, argv); srand(gpr_now().tv_nsec); test_multiple_writers_circular_log(); return 0; }
/** * Returns the current time as a timeval object * @return Timeval The current time */ PHP_METHOD(Timeval, now) { grpc_php_wrap_timeval(gpr_now(GPR_CLOCK_REALTIME), return_value); RETURN_DESTROY_ZVAL(return_value); }
void grpc_mdctx_global_init(void) { size_t i, j; if (!g_forced_hash_seed) { g_hash_seed = (uint32_t)gpr_now(GPR_CLOCK_REALTIME).tv_nsec; } g_static_strtab_maxprobe = 0; g_static_mdtab_maxprobe = 0; /* build static tables */ memset(g_static_mdtab, 0, sizeof(g_static_mdtab)); memset(g_static_strtab, 0, sizeof(g_static_strtab)); for (i = 0; i < GRPC_STATIC_MDSTR_COUNT; i++) { grpc_mdstr *elem = &grpc_static_mdstr_table[i]; const char *str = grpc_static_metadata_strings[i]; uint32_t hash = gpr_murmur_hash3(str, strlen(str), g_hash_seed); *(gpr_slice *)&elem->slice = gpr_slice_from_static_string(str); *(uint32_t *)&elem->hash = hash; for (j = 0;; j++) { size_t idx = (hash + j) % GPR_ARRAY_SIZE(g_static_strtab); if (g_static_strtab[idx] == NULL) { g_static_strtab[idx] = &grpc_static_mdstr_table[i]; break; } } if (j > g_static_strtab_maxprobe) { g_static_strtab_maxprobe = j; } } for (i = 0; i < GRPC_STATIC_MDELEM_COUNT; i++) { grpc_mdelem *elem = &grpc_static_mdelem_table[i]; grpc_mdstr *key = &grpc_static_mdstr_table[grpc_static_metadata_elem_indices[2 * i + 0]]; grpc_mdstr *value = &grpc_static_mdstr_table[grpc_static_metadata_elem_indices[2 * i + 1]]; uint32_t hash = GRPC_MDSTR_KV_HASH(key->hash, value->hash); *(grpc_mdstr **)&elem->key = key; *(grpc_mdstr **)&elem->value = value; for (j = 0;; j++) { size_t idx = (hash + j) % GPR_ARRAY_SIZE(g_static_mdtab); if (g_static_mdtab[idx] == NULL) { g_static_mdtab[idx] = elem; break; } } if (j > g_static_mdtab_maxprobe) { g_static_mdtab_maxprobe = j; } } /* initialize shards */ for (i = 0; i < STRTAB_SHARD_COUNT; i++) { strtab_shard *shard = &g_strtab_shard[i]; gpr_mu_init(&shard->mu); shard->count = 0; shard->capacity = INITIAL_STRTAB_CAPACITY; shard->strs = gpr_malloc(sizeof(*shard->strs) * shard->capacity); memset(shard->strs, 0, sizeof(*shard->strs) * shard->capacity); } for (i = 0; i < MDTAB_SHARD_COUNT; i++) { mdtab_shard *shard = &g_mdtab_shard[i]; gpr_mu_init(&shard->mu); shard->count = 0; gpr_atm_no_barrier_store(&shard->free_estimate, 0); shard->capacity = INITIAL_MDTAB_CAPACITY; shard->elems = gpr_malloc(sizeof(*shard->elems) * shard->capacity); memset(shard->elems, 0, sizeof(*shard->elems) * shard->capacity); } }
grpc_mdctx *grpc_mdctx_create(void) { /* This seed is used to prevent remote connections from controlling hash table * collisions. It needs to be somewhat unpredictable to a remote connection. */ return grpc_mdctx_create_with_seed(gpr_now().tv_nsec); }
static gpr_timespec n_millis_time(int n) { return gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(n, GPR_TIMESPAN)); }
int main(int argc, char **argv) { grpc_closure destroyed; grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; gpr_subprocess *server; char *me = argv[0]; char *lslash = strrchr(me, '/'); char *args[5]; int port = grpc_pick_unused_port_or_die(); int arg_shift = 0; /* figure out where we are */ char *root; if (lslash) { root = gpr_malloc((size_t)(lslash - me + 1)); memcpy(root, me, (size_t)(lslash - me)); root[lslash - me] = 0; } else { root = gpr_strdup("."); } GPR_ASSERT(argc <= 2); if (argc == 2) { args[0] = gpr_strdup(argv[1]); } else { arg_shift = 1; gpr_asprintf(&args[0], "%s/../../tools/distrib/python_wrapper.sh", root); gpr_asprintf(&args[1], "%s/../../test/core/http/test_server.py", root); } /* start the server */ args[1 + arg_shift] = "--port"; gpr_asprintf(&args[2 + arg_shift], "%d", port); args[3 + arg_shift] = "--ssl"; server = gpr_subprocess_create(4 + arg_shift, (const char **)args); GPR_ASSERT(server); gpr_free(args[0]); if (arg_shift) gpr_free(args[1]); gpr_free(args[2 + arg_shift]); gpr_free(root); gpr_sleep_until(gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(5, GPR_TIMESPAN))); grpc_test_init(argc, argv); grpc_init(); grpc_httpcli_context_init(&g_context); grpc_pollset *pollset = gpr_malloc(grpc_pollset_size()); grpc_pollset_init(pollset, &g_mu); g_pops = grpc_polling_entity_create_from_pollset(pollset); test_get(port); test_post(port); grpc_httpcli_context_destroy(&g_context); grpc_closure_init(&destroyed, destroy_pops, &g_pops); grpc_pollset_shutdown(&exec_ctx, grpc_polling_entity_pollset(&g_pops), &destroyed); grpc_exec_ctx_finish(&exec_ctx); grpc_shutdown(); gpr_free(grpc_polling_entity_pollset(&g_pops)); gpr_subprocess_destroy(server); return 0; }
void grpc_tcp_client_connect(grpc_exec_ctx *exec_ctx, grpc_closure *closure, grpc_endpoint **ep, grpc_pollset_set *interested_parties, const struct sockaddr *addr, size_t addr_len, gpr_timespec deadline) { int fd; grpc_dualstack_mode dsmode; int err; async_connect *ac; struct sockaddr_in6 addr6_v4mapped; struct sockaddr_in addr4_copy; grpc_fd *fdobj; char *name; char *addr_str; *ep = NULL; /* Use dualstack sockets where available. */ if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = (const struct sockaddr *)&addr6_v4mapped; addr_len = sizeof(addr6_v4mapped); } fd = grpc_create_dualstack_socket(addr, SOCK_STREAM, 0, &dsmode); if (fd < 0) { gpr_log(GPR_ERROR, "Unable to create socket: %s", strerror(errno)); } if (dsmode == GRPC_DSMODE_IPV4) { /* If we got an AF_INET socket, map the address back to IPv4. */ GPR_ASSERT(grpc_sockaddr_is_v4mapped(addr, &addr4_copy)); addr = (struct sockaddr *)&addr4_copy; addr_len = sizeof(addr4_copy); } if (!prepare_socket(addr, fd)) { grpc_exec_ctx_enqueue(exec_ctx, closure, 0); return; } do { GPR_ASSERT(addr_len < ~(socklen_t)0); err = connect(fd, addr, (socklen_t)addr_len); } while (err < 0 && errno == EINTR); addr_str = grpc_sockaddr_to_uri(addr); gpr_asprintf(&name, "tcp-client:%s", addr_str); fdobj = grpc_fd_create(fd, name); if (err >= 0) { *ep = grpc_tcp_create(fdobj, GRPC_TCP_DEFAULT_READ_SLICE_SIZE, addr_str); grpc_exec_ctx_enqueue(exec_ctx, closure, 1); goto done; } if (errno != EWOULDBLOCK && errno != EINPROGRESS) { gpr_log(GPR_ERROR, "connect error to '%s': %s", addr_str, strerror(errno)); grpc_fd_orphan(exec_ctx, fdobj, NULL, "tcp_client_connect_error"); grpc_exec_ctx_enqueue(exec_ctx, closure, 0); goto done; } grpc_pollset_set_add_fd(exec_ctx, interested_parties, fdobj); ac = gpr_malloc(sizeof(async_connect)); ac->closure = closure; ac->ep = ep; ac->fd = fdobj; ac->interested_parties = interested_parties; ac->addr_str = addr_str; addr_str = NULL; gpr_mu_init(&ac->mu); ac->refs = 2; ac->write_closure.cb = on_writable; ac->write_closure.cb_arg = ac; if (grpc_tcp_trace) { gpr_log(GPR_DEBUG, "CLIENT_CONNECT: %s: asynchronously connecting", ac->addr_str); } gpr_mu_lock(&ac->mu); grpc_alarm_init(exec_ctx, &ac->alarm, gpr_convert_clock_type(deadline, GPR_CLOCK_MONOTONIC), tc_on_alarm, ac, gpr_now(GPR_CLOCK_MONOTONIC)); grpc_fd_notify_on_write(exec_ctx, ac->fd, &ac->write_closure); gpr_mu_unlock(&ac->mu); done: gpr_free(name); gpr_free(addr_str); }
static void test_code(void) { /* iomgr.h */ grpc_iomgr_init(); grpc_iomgr_shutdown(); /* closure.h */ grpc_closure closure; closure.cb = NULL; closure.cb_arg = NULL; closure.final_data = 0; grpc_closure_list closure_list = GRPC_CLOSURE_LIST_INIT; closure_list.head = NULL; closure_list.tail = NULL; grpc_closure_init(&closure, NULL, NULL); grpc_closure_create(NULL, NULL); grpc_closure_list_move(NULL, NULL); grpc_closure_list_add(NULL, NULL, true); bool x = grpc_closure_list_empty(closure_list); grpc_closure_next(&closure); /* exec_ctx.h */ grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; grpc_exec_ctx_flush(&exec_ctx); grpc_exec_ctx_finish(&exec_ctx); grpc_exec_ctx_enqueue(&exec_ctx, &closure, x, NULL); grpc_exec_ctx_enqueue_list(&exec_ctx, &closure_list, NULL); /* endpoint.h */ grpc_endpoint endpoint; grpc_endpoint_vtable vtable = { grpc_endpoint_read, grpc_endpoint_write, grpc_endpoint_add_to_pollset, grpc_endpoint_add_to_pollset_set, grpc_endpoint_shutdown, grpc_endpoint_destroy, grpc_endpoint_get_peer}; endpoint.vtable = &vtable; grpc_endpoint_read(&exec_ctx, &endpoint, NULL, NULL); grpc_endpoint_get_peer(&endpoint); grpc_endpoint_write(&exec_ctx, &endpoint, NULL, NULL); grpc_endpoint_shutdown(&exec_ctx, &endpoint); grpc_endpoint_destroy(&exec_ctx, &endpoint); grpc_endpoint_add_to_pollset(&exec_ctx, &endpoint, NULL); grpc_endpoint_add_to_pollset_set(&exec_ctx, &endpoint, NULL); /* executor.h */ grpc_executor_init(); grpc_executor_enqueue(&closure, x); grpc_executor_shutdown(); /* pollset.h */ grpc_pollset_size(); grpc_pollset_init(NULL, NULL); grpc_pollset_shutdown(NULL, NULL, NULL); grpc_pollset_reset(NULL); grpc_pollset_destroy(NULL); grpc_pollset_work(NULL, NULL, NULL, gpr_now(GPR_CLOCK_REALTIME), gpr_now(GPR_CLOCK_MONOTONIC)); grpc_pollset_kick(NULL, NULL); }
/* Tries to issue one async connection, then schedules both an IOCP notification request for the connection, and one timeout alert. */ void grpc_tcp_client_connect(grpc_exec_ctx *exec_ctx, grpc_closure *on_done, grpc_endpoint **endpoint, grpc_pollset_set *interested_parties, const grpc_channel_args *channel_args, const grpc_resolved_address *addr, gpr_timespec deadline) { SOCKET sock = INVALID_SOCKET; BOOL success; int status; grpc_resolved_address addr6_v4mapped; grpc_resolved_address local_address; async_connect *ac; grpc_winsocket *socket = NULL; LPFN_CONNECTEX ConnectEx; GUID guid = WSAID_CONNECTEX; DWORD ioctl_num_bytes; grpc_winsocket_callback_info *info; grpc_error *error = GRPC_ERROR_NONE; grpc_resource_quota *resource_quota = grpc_resource_quota_create(NULL); if (channel_args != NULL) { for (size_t i = 0; i < channel_args->num_args; i++) { if (0 == strcmp(channel_args->args[i].key, GRPC_ARG_RESOURCE_QUOTA)) { grpc_resource_quota_internal_unref(exec_ctx, resource_quota); resource_quota = grpc_resource_quota_internal_ref( channel_args->args[i].value.pointer.p); } } } *endpoint = NULL; /* Use dualstack sockets where available. */ if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = &addr6_v4mapped; } sock = WSASocket(AF_INET6, SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED); if (sock == INVALID_SOCKET) { error = GRPC_WSA_ERROR(WSAGetLastError(), "WSASocket"); goto failure; } error = grpc_tcp_prepare_socket(sock); if (error != GRPC_ERROR_NONE) { goto failure; } /* Grab the function pointer for ConnectEx for that specific socket. It may change depending on the interface. */ status = WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER, &guid, sizeof(guid), &ConnectEx, sizeof(ConnectEx), &ioctl_num_bytes, NULL, NULL); if (status != 0) { error = GRPC_WSA_ERROR(WSAGetLastError(), "WSAIoctl(SIO_GET_EXTENSION_FUNCTION_POINTER)"); goto failure; } grpc_sockaddr_make_wildcard6(0, &local_address); status = bind(sock, (struct sockaddr *)&local_address.addr, (int)local_address.len); if (status != 0) { error = GRPC_WSA_ERROR(WSAGetLastError(), "bind"); goto failure; } socket = grpc_winsocket_create(sock, "client"); info = &socket->write_info; success = ConnectEx(sock, (struct sockaddr *)&addr->addr, (int)addr->len, NULL, 0, NULL, &info->overlapped); /* It wouldn't be unusual to get a success immediately. But we'll still get an IOCP notification, so let's ignore it. */ if (!success) { int last_error = WSAGetLastError(); if (last_error != ERROR_IO_PENDING) { error = GRPC_WSA_ERROR(last_error, "ConnectEx"); goto failure; } } ac = gpr_malloc(sizeof(async_connect)); ac->on_done = on_done; ac->socket = socket; gpr_mu_init(&ac->mu); ac->refs = 2; ac->addr_name = grpc_sockaddr_to_uri(addr); ac->endpoint = endpoint; ac->resource_quota = resource_quota; grpc_closure_init(&ac->on_connect, on_connect, ac); grpc_timer_init(exec_ctx, &ac->alarm, deadline, on_alarm, ac, gpr_now(GPR_CLOCK_MONOTONIC)); grpc_socket_notify_on_write(exec_ctx, socket, &ac->on_connect); return; failure: GPR_ASSERT(error != GRPC_ERROR_NONE); char *target_uri = grpc_sockaddr_to_uri(addr); grpc_error *final_error = grpc_error_set_str( GRPC_ERROR_CREATE_REFERENCING("Failed to connect", &error, 1), GRPC_ERROR_STR_TARGET_ADDRESS, target_uri); GRPC_ERROR_UNREF(error); if (socket != NULL) { grpc_winsocket_destroy(socket); } else if (sock != INVALID_SOCKET) { closesocket(sock); } grpc_resource_quota_internal_unref(exec_ctx, resource_quota); grpc_exec_ctx_sched(exec_ctx, on_done, final_error, NULL); }
static double now(void) { gpr_timespec tv = gpr_now(GPR_CLOCK_REALTIME); return 1e9 * (double)tv.tv_sec + (double)tv.tv_nsec; }
int main(int argc, char **argv) { grpc_event *ev; call_state *s; char *addr_buf = NULL; gpr_cmdline *cl; int shutdown_started = 0; int shutdown_finished = 0; int secure = 0; char *addr = NULL; char *fake_argv[1]; #define MAX_ARGS 4 grpc_arg arge[MAX_ARGS]; grpc_arg *e; grpc_channel_args args = {0, NULL}; grpc_http_server_page home_page = {"/", "text/html", "<head>\n" "<title>Echo Server</title>\n" "</head>\n" "<body>\n" "Welcome to the world of the future!\n" "</body>\n"}; GPR_ASSERT(argc >= 1); fake_argv[0] = argv[0]; grpc_test_init(1, fake_argv); grpc_init(); srand(clock()); memset(arge, 0, sizeof(arge)); args.args = arge; cl = gpr_cmdline_create("echo server"); gpr_cmdline_add_string(cl, "bind", "Bind host:port", &addr); gpr_cmdline_add_flag(cl, "secure", "Run with security?", &secure); gpr_cmdline_parse(cl, argc, argv); gpr_cmdline_destroy(cl); e = &arge[args.num_args++]; e->type = GRPC_ARG_POINTER; e->key = GRPC_ARG_SERVE_OVER_HTTP; e->value.pointer.p = &home_page; if (addr == NULL) { gpr_join_host_port(&addr_buf, "::", grpc_pick_unused_port_or_die()); addr = addr_buf; } gpr_log(GPR_INFO, "creating server on: %s", addr); cq = grpc_completion_queue_create(); if (secure) { grpc_ssl_pem_key_cert_pair pem_key_cert_pair = {test_server1_key, test_server1_cert}; grpc_server_credentials *ssl_creds = grpc_ssl_server_credentials_create(NULL, &pem_key_cert_pair, 1); server = grpc_secure_server_create(ssl_creds, cq, &args); GPR_ASSERT(grpc_server_add_secure_http2_port(server, addr)); grpc_server_credentials_release(ssl_creds); } else { server = grpc_server_create(cq, &args); GPR_ASSERT(grpc_server_add_http2_port(server, addr)); } grpc_server_start(server); gpr_free(addr_buf); addr = addr_buf = NULL; request_call(); signal(SIGINT, sigint_handler); while (!shutdown_finished) { if (got_sigint && !shutdown_started) { gpr_log(GPR_INFO, "Shutting down due to SIGINT"); grpc_server_shutdown(server); grpc_completion_queue_shutdown(cq); shutdown_started = 1; } ev = grpc_completion_queue_next( cq, gpr_time_add(gpr_now(), gpr_time_from_seconds(1))); if (!ev) continue; s = ev->tag; switch (ev->type) { case GRPC_SERVER_RPC_NEW: if (ev->call != NULL) { /* initial ops are already started in request_call */ grpc_call_server_accept_old(ev->call, cq, s); grpc_call_server_end_initial_metadata_old(ev->call, GRPC_WRITE_BUFFER_HINT); GPR_ASSERT(grpc_call_start_read_old(ev->call, s) == GRPC_CALL_OK); request_call(); } else { GPR_ASSERT(shutdown_started); gpr_free(s); } break; case GRPC_WRITE_ACCEPTED: GPR_ASSERT(ev->data.write_accepted == GRPC_OP_OK); GPR_ASSERT(grpc_call_start_read_old(ev->call, s) == GRPC_CALL_OK); break; case GRPC_READ: if (ev->data.read) { assert_read_ok(ev->tag, ev->data.read); GPR_ASSERT(grpc_call_start_write_old(ev->call, ev->data.read, s, GRPC_WRITE_BUFFER_HINT) == GRPC_CALL_OK); } else { GPR_ASSERT(grpc_call_start_write_status_old(ev->call, GRPC_STATUS_OK, NULL, s) == GRPC_CALL_OK); } break; case GRPC_FINISH_ACCEPTED: case GRPC_FINISHED: if (gpr_unref(&s->pending_ops)) { grpc_call_destroy(ev->call); gpr_free(s); } break; case GRPC_QUEUE_SHUTDOWN: GPR_ASSERT(shutdown_started); shutdown_finished = 1; break; default: GPR_ASSERT(0); } grpc_event_finish(ev); } grpc_server_destroy(server); grpc_completion_queue_destroy(cq); grpc_shutdown(); return 0; }
void grpc_tcp_client_connect(void (*cb)(void *arg, grpc_endpoint *ep), void *arg, const struct sockaddr *addr, int addr_len, gpr_timespec deadline) { int fd; grpc_dualstack_mode dsmode; int err; async_connect *ac; struct sockaddr_in6 addr6_v4mapped; struct sockaddr_in addr4_copy; /* Use dualstack sockets where available. */ if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = (const struct sockaddr *)&addr6_v4mapped; addr_len = sizeof(addr6_v4mapped); } fd = grpc_create_dualstack_socket(addr, SOCK_STREAM, 0, &dsmode); if (fd < 0) { gpr_log(GPR_ERROR, "Unable to create socket: %s", strerror(errno)); } if (dsmode == GRPC_DSMODE_IPV4) { /* If we got an AF_INET socket, map the address back to IPv4. */ GPR_ASSERT(grpc_sockaddr_is_v4mapped(addr, &addr4_copy)); addr = (struct sockaddr *)&addr4_copy; addr_len = sizeof(addr4_copy); } if (!prepare_socket(addr, fd)) { cb(arg, NULL); return; } do { err = connect(fd, addr, addr_len); } while (err < 0 && errno == EINTR); if (err >= 0) { gpr_log(GPR_DEBUG, "instant connect"); cb(arg, grpc_tcp_create(grpc_fd_create(fd), GRPC_TCP_DEFAULT_READ_SLICE_SIZE)); return; } if (errno != EWOULDBLOCK && errno != EINPROGRESS) { gpr_log(GPR_ERROR, "connect error: %s", strerror(errno)); close(fd); cb(arg, NULL); return; } ac = gpr_malloc(sizeof(async_connect)); ac->cb = cb; ac->cb_arg = arg; ac->fd = grpc_fd_create(fd); gpr_mu_init(&ac->mu); ac->refs = 2; ac->write_closure.cb = on_writable; ac->write_closure.cb_arg = ac; grpc_alarm_init(&ac->alarm, deadline, on_alarm, ac, gpr_now()); grpc_fd_notify_on_write(ac->fd, &ac->write_closure); }
GPR_EXPORT gpr_timespec GPR_CALLTYPE gprsharp_now(gpr_clock_type clock_type) { return gpr_now(clock_type); }
census_timestamp census_start_rpc_op_timestamp(void) { census_timestamp ct; /* TODO(aveitch): assumes gpr_timespec implementation of census_timestamp. */ ct.ts = gpr_now(GPR_CLOCK_MONOTONIC); return ct; }
void grpc_iomgr_shutdown(void) { grpc_iomgr_closure *closure; gpr_timespec shutdown_deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(10, GPR_TIMESPAN)); gpr_timespec last_warning_time = gpr_now(GPR_CLOCK_REALTIME); gpr_mu_lock(&g_mu); g_shutdown = 1; while (g_cbs_head != NULL || g_root_object.next != &g_root_object) { if (gpr_time_cmp( gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME), last_warning_time), gpr_time_from_seconds(1, GPR_TIMESPAN)) >= 0) { if (g_cbs_head != NULL && g_root_object.next != &g_root_object) { gpr_log(GPR_DEBUG, "Waiting for %d iomgr objects to be destroyed and executing " "final callbacks", count_objects()); } else if (g_cbs_head != NULL) { gpr_log(GPR_DEBUG, "Executing final iomgr callbacks"); } else { gpr_log(GPR_DEBUG, "Waiting for %d iomgr objects to be destroyed", count_objects()); } last_warning_time = gpr_now(GPR_CLOCK_REALTIME); } if (g_cbs_head) { do { closure = g_cbs_head; g_cbs_head = closure->next; if (!g_cbs_head) g_cbs_tail = NULL; gpr_mu_unlock(&g_mu); closure->cb(closure->cb_arg, 0); gpr_mu_lock(&g_mu); } while (g_cbs_head); continue; } if (grpc_alarm_check(&g_mu, gpr_inf_future(GPR_CLOCK_MONOTONIC), NULL)) { continue; } if (g_root_object.next != &g_root_object) { int timeout = 0; while (g_cbs_head == NULL) { gpr_timespec short_deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(100, GPR_TIMESPAN)); if (gpr_cv_wait(&g_rcv, &g_mu, short_deadline) && g_cbs_head == NULL) { if (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), shutdown_deadline) > 0) { timeout = 1; break; } } } if (timeout) { gpr_log(GPR_DEBUG, "Failed to free %d iomgr objects before shutdown deadline: " "memory leaks are likely", count_objects()); dump_objects("LEAKED"); break; } } } gpr_mu_unlock(&g_mu); grpc_kick_poller(); gpr_event_wait(&g_background_callback_executor_done, gpr_inf_future(GPR_CLOCK_REALTIME)); grpc_alarm_list_shutdown(); grpc_iomgr_platform_shutdown(); gpr_mu_destroy(&g_mu); gpr_cv_destroy(&g_rcv); }
// Simple request via a server filter that saves the reported latency value. static void test_request(grpc_end2end_test_config config) { grpc_call *c; grpc_call *s; grpc_slice request_payload_slice = grpc_slice_from_copied_string("hello world"); grpc_byte_buffer *request_payload = grpc_raw_byte_buffer_create(&request_payload_slice, 1); grpc_end2end_test_fixture f = begin_test(config, "filter_latency", NULL, NULL); cq_verifier *cqv = cq_verifier_create(f.cq); grpc_op ops[6]; grpc_op *op; grpc_metadata_array initial_metadata_recv; grpc_metadata_array trailing_metadata_recv; grpc_metadata_array request_metadata_recv; grpc_byte_buffer *request_payload_recv = NULL; grpc_call_details call_details; grpc_status_code status; grpc_call_error error; grpc_slice details; int was_cancelled = 2; gpr_mu_lock(&g_mu); g_client_latency = gpr_time_0(GPR_TIMESPAN); g_server_latency = gpr_time_0(GPR_TIMESPAN); gpr_mu_unlock(&g_mu); const gpr_timespec start_time = gpr_now(GPR_CLOCK_MONOTONIC); gpr_timespec deadline = five_seconds_from_now(); c = grpc_channel_create_call( f.client, NULL, GRPC_PROPAGATE_DEFAULTS, f.cq, grpc_slice_from_static_string("/foo"), get_host_override_slice("foo.test.google.fr", config), deadline, NULL); GPR_ASSERT(c); grpc_metadata_array_init(&initial_metadata_recv); grpc_metadata_array_init(&trailing_metadata_recv); grpc_metadata_array_init(&request_metadata_recv); grpc_call_details_init(&call_details); memset(ops, 0, sizeof(ops)); op = ops; op->op = GRPC_OP_SEND_INITIAL_METADATA; op->data.send_initial_metadata.count = 0; op->data.send_initial_metadata.metadata = NULL; op->flags = 0; op->reserved = NULL; op++; op->op = GRPC_OP_SEND_MESSAGE; op->data.send_message.send_message = request_payload; op->flags = 0; op->reserved = NULL; op++; op->op = GRPC_OP_SEND_CLOSE_FROM_CLIENT; op->flags = 0; op->reserved = NULL; op++; op->op = GRPC_OP_RECV_INITIAL_METADATA; op->data.recv_initial_metadata.recv_initial_metadata = &initial_metadata_recv; op->flags = 0; op->reserved = NULL; op++; op->op = GRPC_OP_RECV_STATUS_ON_CLIENT; op->data.recv_status_on_client.trailing_metadata = &trailing_metadata_recv; op->data.recv_status_on_client.status = &status; op->data.recv_status_on_client.status_details = &details; op->flags = 0; op->reserved = NULL; op++; error = grpc_call_start_batch(c, ops, (size_t)(op - ops), tag(1), NULL); GPR_ASSERT(GRPC_CALL_OK == error); error = grpc_server_request_call(f.server, &s, &call_details, &request_metadata_recv, f.cq, f.cq, tag(101)); GPR_ASSERT(GRPC_CALL_OK == error); CQ_EXPECT_COMPLETION(cqv, tag(101), 1); cq_verify(cqv); memset(ops, 0, sizeof(ops)); op = ops; op->op = GRPC_OP_SEND_INITIAL_METADATA; op->data.send_initial_metadata.count = 0; op->flags = 0; op->reserved = NULL; op++; op->op = GRPC_OP_SEND_STATUS_FROM_SERVER; op->data.send_status_from_server.trailing_metadata_count = 0; op->data.send_status_from_server.status = GRPC_STATUS_UNIMPLEMENTED; grpc_slice status_string = grpc_slice_from_static_string("xyz"); op->data.send_status_from_server.status_details = &status_string; op->flags = 0; op->reserved = NULL; op++; op->op = GRPC_OP_RECV_CLOSE_ON_SERVER; op->data.recv_close_on_server.cancelled = &was_cancelled; op->flags = 0; op->reserved = NULL; op++; error = grpc_call_start_batch(s, ops, (size_t)(op - ops), tag(102), NULL); GPR_ASSERT(GRPC_CALL_OK == error); CQ_EXPECT_COMPLETION(cqv, tag(102), 1); CQ_EXPECT_COMPLETION(cqv, tag(1), 1); cq_verify(cqv); GPR_ASSERT(status == GRPC_STATUS_UNIMPLEMENTED); GPR_ASSERT(0 == grpc_slice_str_cmp(details, "xyz")); grpc_slice_unref(details); grpc_metadata_array_destroy(&initial_metadata_recv); grpc_metadata_array_destroy(&trailing_metadata_recv); grpc_metadata_array_destroy(&request_metadata_recv); grpc_call_details_destroy(&call_details); grpc_call_unref(s); grpc_call_unref(c); cq_verifier_destroy(cqv); grpc_byte_buffer_destroy(request_payload); grpc_byte_buffer_destroy(request_payload_recv); end_test(&f); config.tear_down_data(&f); const gpr_timespec end_time = gpr_now(GPR_CLOCK_MONOTONIC); const gpr_timespec max_latency = gpr_time_sub(end_time, start_time); // Perform checks after test tear-down // Guards against the case that there's outstanding channel-related work on a // call prior to verification gpr_mu_lock(&g_mu); GPR_ASSERT(gpr_time_cmp(max_latency, g_client_latency) >= 0); GPR_ASSERT(gpr_time_cmp(gpr_time_0(GPR_TIMESPAN), g_client_latency) <= 0); GPR_ASSERT(gpr_time_cmp(max_latency, g_server_latency) >= 0); GPR_ASSERT(gpr_time_cmp(gpr_time_0(GPR_TIMESPAN), g_server_latency) <= 0); // Server latency should always be smaller than client latency, however since // we only calculate latency at destruction time, and that might mean that we // need to wait for outstanding channel-related work, this isn't verifiable // right now (the server MAY hold on to the call for longer than the client). // GPR_ASSERT(gpr_time_cmp(g_server_latency, g_client_latency) < 0); gpr_mu_unlock(&g_mu); }
int main(int argc, char **argv) { grpc_test_init(argc, argv); srand(gpr_now(GPR_CLOCK_REALTIME).tv_nsec); test_multiple_writers(); return 0; }
static void on_initial_header(grpc_exec_ctx *exec_ctx, void *tp, grpc_mdelem md) { grpc_chttp2_transport *t = (grpc_chttp2_transport *)tp; grpc_chttp2_stream *s = t->incoming_stream; GPR_TIMER_BEGIN("on_initial_header", 0); GPR_ASSERT(s != NULL); if (GRPC_TRACER_ON(grpc_http_trace)) { char *key = grpc_slice_to_c_string(GRPC_MDKEY(md)); char *value = grpc_dump_slice(GRPC_MDVALUE(md), GPR_DUMP_HEX | GPR_DUMP_ASCII); gpr_log(GPR_INFO, "HTTP:%d:HDR:%s: %s: %s", s->id, t->is_client ? "CLI" : "SVR", key, value); gpr_free(key); gpr_free(value); } if (grpc_slice_eq(GRPC_MDKEY(md), GRPC_MDSTR_GRPC_STATUS) && !grpc_mdelem_eq(md, GRPC_MDELEM_GRPC_STATUS_0)) { /* TODO(ctiller): check for a status like " 0" */ s->seen_error = true; } if (grpc_slice_eq(GRPC_MDKEY(md), GRPC_MDSTR_GRPC_TIMEOUT)) { gpr_timespec *cached_timeout = (gpr_timespec *)grpc_mdelem_get_user_data(md, free_timeout); gpr_timespec timeout; if (cached_timeout == NULL) { /* not already parsed: parse it now, and store the result away */ cached_timeout = (gpr_timespec *)gpr_malloc(sizeof(gpr_timespec)); if (!grpc_http2_decode_timeout(GRPC_MDVALUE(md), cached_timeout)) { char *val = grpc_slice_to_c_string(GRPC_MDVALUE(md)); gpr_log(GPR_ERROR, "Ignoring bad timeout value '%s'", val); gpr_free(val); *cached_timeout = gpr_inf_future(GPR_TIMESPAN); } timeout = *cached_timeout; grpc_mdelem_set_user_data(md, free_timeout, cached_timeout); } else { timeout = *cached_timeout; } grpc_chttp2_incoming_metadata_buffer_set_deadline( &s->metadata_buffer[0], gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC), timeout)); GRPC_MDELEM_UNREF(exec_ctx, md); } else { const size_t new_size = s->metadata_buffer[0].size + GRPC_MDELEM_LENGTH(md); const size_t metadata_size_limit = t->settings[GRPC_ACKED_SETTINGS] [GRPC_CHTTP2_SETTINGS_MAX_HEADER_LIST_SIZE]; if (new_size > metadata_size_limit) { gpr_log(GPR_DEBUG, "received initial metadata size exceeds limit (%" PRIuPTR " vs. %" PRIuPTR ")", new_size, metadata_size_limit); grpc_chttp2_cancel_stream( exec_ctx, t, s, grpc_error_set_int( GRPC_ERROR_CREATE_FROM_STATIC_STRING( "received initial metadata size exceeds limit"), GRPC_ERROR_INT_GRPC_STATUS, GRPC_STATUS_RESOURCE_EXHAUSTED)); grpc_chttp2_parsing_become_skip_parser(exec_ctx, t); s->seen_error = true; GRPC_MDELEM_UNREF(exec_ctx, md); } else { grpc_error *error = grpc_chttp2_incoming_metadata_buffer_add( exec_ctx, &s->metadata_buffer[0], md); if (error != GRPC_ERROR_NONE) { grpc_chttp2_cancel_stream(exec_ctx, t, s, error); grpc_chttp2_parsing_become_skip_parser(exec_ctx, t); s->seen_error = true; GRPC_MDELEM_UNREF(exec_ctx, md); } } } GPR_TIMER_END("on_initial_header", 0); }
static gpr_timespec n_sec_deadline(int seconds) { return gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(seconds, GPR_TIMESPAN)); }
static void test_connectivity(grpc_end2end_test_config config) { grpc_end2end_test_fixture f = config.create_fixture(NULL, NULL); grpc_connectivity_state state; cq_verifier *cqv = cq_verifier_create(f.cq); child_events ce; gpr_thd_options thdopt = gpr_thd_options_default(); gpr_thd_id thdid; config.init_client(&f, NULL); ce.channel = f.client; ce.cq = f.cq; gpr_event_init(&ce.started); gpr_thd_options_set_joinable(&thdopt); GPR_ASSERT(gpr_thd_new(&thdid, child_thread, &ce, &thdopt)); gpr_event_wait(&ce.started, gpr_inf_future(GPR_CLOCK_MONOTONIC)); /* channels should start life in IDLE, and stay there */ GPR_ASSERT(grpc_channel_check_connectivity_state(f.client, 0) == GRPC_CHANNEL_IDLE); gpr_sleep_until(GRPC_TIMEOUT_MILLIS_TO_DEADLINE(100)); GPR_ASSERT(grpc_channel_check_connectivity_state(f.client, 0) == GRPC_CHANNEL_IDLE); /* start watching for a change */ gpr_log(GPR_DEBUG, "watching"); grpc_channel_watch_connectivity_state( f.client, GRPC_CHANNEL_IDLE, gpr_now(GPR_CLOCK_MONOTONIC), f.cq, tag(1)); /* eventually the child thread completion should trigger */ gpr_thd_join(thdid); /* check that we're still in idle, and start connecting */ GPR_ASSERT(grpc_channel_check_connectivity_state(f.client, 1) == GRPC_CHANNEL_IDLE); /* start watching for a change */ grpc_channel_watch_connectivity_state(f.client, GRPC_CHANNEL_IDLE, GRPC_TIMEOUT_SECONDS_TO_DEADLINE(3), f.cq, tag(2)); /* and now the watch should trigger */ cq_expect_completion(cqv, tag(2), 1); cq_verify(cqv); state = grpc_channel_check_connectivity_state(f.client, 0); GPR_ASSERT(state == GRPC_CHANNEL_TRANSIENT_FAILURE || state == GRPC_CHANNEL_CONNECTING); /* quickly followed by a transition to TRANSIENT_FAILURE */ grpc_channel_watch_connectivity_state(f.client, GRPC_CHANNEL_CONNECTING, GRPC_TIMEOUT_SECONDS_TO_DEADLINE(3), f.cq, tag(3)); cq_expect_completion(cqv, tag(3), 1); cq_verify(cqv); state = grpc_channel_check_connectivity_state(f.client, 0); GPR_ASSERT(state == GRPC_CHANNEL_TRANSIENT_FAILURE || state == GRPC_CHANNEL_CONNECTING); gpr_log(GPR_DEBUG, "*** STARTING SERVER ***"); /* now let's bring up a server to connect to */ config.init_server(&f, NULL); gpr_log(GPR_DEBUG, "*** STARTED SERVER ***"); /* we'll go through some set of transitions (some might be missed), until READY is reached */ while (state != GRPC_CHANNEL_READY) { grpc_channel_watch_connectivity_state( f.client, state, GRPC_TIMEOUT_SECONDS_TO_DEADLINE(3), f.cq, tag(4)); cq_expect_completion(cqv, tag(4), 1); cq_verify(cqv); state = grpc_channel_check_connectivity_state(f.client, 0); GPR_ASSERT(state == GRPC_CHANNEL_READY || state == GRPC_CHANNEL_CONNECTING || state == GRPC_CHANNEL_TRANSIENT_FAILURE); } /* bring down the server again */ /* we should go immediately to TRANSIENT_FAILURE */ gpr_log(GPR_DEBUG, "*** SHUTTING DOWN SERVER ***"); grpc_channel_watch_connectivity_state(f.client, GRPC_CHANNEL_READY, GRPC_TIMEOUT_SECONDS_TO_DEADLINE(3), f.cq, tag(5)); grpc_server_shutdown_and_notify(f.server, f.cq, tag(0xdead)); cq_expect_completion(cqv, tag(5), 1); cq_expect_completion(cqv, tag(0xdead), 1); cq_verify(cqv); state = grpc_channel_check_connectivity_state(f.client, 0); GPR_ASSERT(state == GRPC_CHANNEL_TRANSIENT_FAILURE || state == GRPC_CHANNEL_CONNECTING || state == GRPC_CHANNEL_IDLE); /* cleanup server */ grpc_server_destroy(f.server); gpr_log(GPR_DEBUG, "*** SHUTDOWN SERVER ***"); grpc_channel_destroy(f.client); grpc_completion_queue_shutdown(f.cq); grpc_completion_queue_destroy(f.cq); config.tear_down_data(&f); cq_verifier_destroy(cqv); }
/* Do a read_test, then release fd and try to read/write again. Verify that grpc_tcp_fd() is available before the fd is released. */ static void release_fd_test(size_t num_bytes, size_t slice_size) { int sv[2]; grpc_endpoint *ep; struct read_socket_state state; size_t written_bytes; int fd; gpr_timespec deadline = GRPC_TIMEOUT_SECONDS_TO_DEADLINE(20); grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; grpc_closure fd_released_cb; int fd_released_done = 0; grpc_closure_init(&fd_released_cb, &on_fd_released, &fd_released_done); gpr_log(GPR_INFO, "Release fd read_test of size %d, slice size %d", num_bytes, slice_size); create_sockets(sv); ep = grpc_tcp_create(grpc_fd_create(sv[1], "read_test"), slice_size, "test"); GPR_ASSERT(grpc_tcp_fd(ep) == sv[1] && sv[1] >= 0); grpc_endpoint_add_to_pollset(&exec_ctx, ep, &g_pollset); written_bytes = fill_socket_partial(sv[0], num_bytes); gpr_log(GPR_INFO, "Wrote %d bytes", written_bytes); state.ep = ep; state.read_bytes = 0; state.target_read_bytes = written_bytes; gpr_slice_buffer_init(&state.incoming); grpc_closure_init(&state.read_cb, read_cb, &state); grpc_endpoint_read(&exec_ctx, ep, &state.incoming, &state.read_cb); gpr_mu_lock(GRPC_POLLSET_MU(&g_pollset)); while (state.read_bytes < state.target_read_bytes) { grpc_pollset_worker *worker = NULL; grpc_pollset_work(&exec_ctx, &g_pollset, &worker, gpr_now(GPR_CLOCK_MONOTONIC), deadline); gpr_mu_unlock(GRPC_POLLSET_MU(&g_pollset)); grpc_exec_ctx_finish(&exec_ctx); gpr_mu_lock(GRPC_POLLSET_MU(&g_pollset)); } GPR_ASSERT(state.read_bytes == state.target_read_bytes); gpr_mu_unlock(GRPC_POLLSET_MU(&g_pollset)); gpr_slice_buffer_destroy(&state.incoming); grpc_tcp_destroy_and_release_fd(&exec_ctx, ep, &fd, &fd_released_cb); gpr_mu_lock(GRPC_POLLSET_MU(&g_pollset)); while (!fd_released_done) { grpc_pollset_worker *worker = NULL; grpc_pollset_work(&exec_ctx, &g_pollset, &worker, gpr_now(GPR_CLOCK_MONOTONIC), deadline); } gpr_mu_unlock(GRPC_POLLSET_MU(&g_pollset)); GPR_ASSERT(fd_released_done == 1); GPR_ASSERT(fd == sv[1]); grpc_exec_ctx_finish(&exec_ctx); written_bytes = fill_socket_partial(sv[0], num_bytes); drain_socket_blocking(fd, written_bytes, written_bytes); written_bytes = fill_socket_partial(fd, num_bytes); drain_socket_blocking(sv[0], written_bytes, written_bytes); close(fd); }