Beispiel #1
0
void compare_functionals(const Functional &f1, const Functional &f2,
                         double kT, const Grid &n, double fraccuracy = 1e-15,
                         double x = 0.001, double fraccuracydoub = 1e-15) {
  printf("\n************");
  for (unsigned i=0;i<f1.get_name().size();i++) printf("*");
  printf("\n* Testing %s *\n", f1.get_name().c_str());
  for (unsigned i=0;i<f1.get_name().size();i++) printf("*");
  printf("************\n\n");

  printf("First energy:\n");
  double f1n = f1.integral(kT, n);
  print_double("first energy is:               ", f1n);
  printf("\n");
  f1.print_summary("", f1n, f1.get_name().c_str());
  printf("Second energy:\n");
  double f2n = f2.integral(kT, n);
  print_double("second energy is:              ", f2n);
  printf("\n");
  f2.print_summary("", f2n, f2.get_name().c_str());
  if (fabs(f1n/f2n - 1) > fraccuracy) {
    printf("E1 = %g\n", f1n);
    printf("E2 = %g\n", f2n);
    printf("FAIL: Error in f(n) is %g\n", f1n/f2n - 1);
    errors++;
  }
  Grid gr1(gd), gr2(gd);
  gr1.setZero();
  gr2.setZero();
  f1.integralgrad(kT, n, &gr1);
  f2.integralgrad(kT, n, &gr2);
  double err = (gr1-gr2).cwise().abs().maxCoeff();
  double mag = gr1.cwise().abs().maxCoeff();
  if (err/mag > fraccuracy) {
    printf("FAIL: Error in grad %s is %g as a fraction of %g\n", f1.get_name().c_str(), err/mag, mag);
    errors++;
  }
  errors += f1.run_finite_difference_test(f1.get_name().c_str(), kT, n);

  double f1x = f1(kT, x);
  double f2x = f2(kT, x);
  if (1 - fabs(f1x/f2x) > fraccuracydoub) {
    printf("FAIL: Error in double %s is %g as a fraction of %g\n", f1.get_name().c_str(),
           1 - fabs(f1x/f2x), f2x);
    errors++;
  }
  
  double f1p = f1.derive(kT, x);
  double f2p = f2.derive(kT, x);
  if (1 - fabs(f1p/f2p) > fraccuracydoub) {
    printf("FAIL: Error in derive double %s is %g as a fraction of %g\n", f1.get_name().c_str(),
           1 - fabs(f1p/f2p), f2p);
    errors++;
  }
  
  //errors += f2.run_finite_difference_test("other version", n);
}
void Instruction_immediate::execute() const
{
  if (operation())
  {
    operation()->execute_immediate(gr1(), data());
  }
  else 
  {
    std::cout << "No operation defined " << opcode_str()  << std::endl;
  }
}
void Instruction_longInstruction::execute() const
{
  if (operation())
  {
    operation()->execute_longInstructionDirectAddr(gr1(), rx(), addr());
  }
  else
  {
    std::cout << "No operation defined " << opcode_str()  << std::endl;
  }
}
void HeatControl2Delta::main()
{
    HeatControl2Delta hc(100, 100, 100);

    hc.O.resize(2*hc.L);
    hc.O[0] = 0.50;
    hc.O[1] = 0.80;
    hc.O[2] = 0.70;
    hc.O[3] = 0.20;
    hc.O[4] = 0.20;
    hc.O[5] = 0.30;

    hc.initialize();

    DoubleVector x(2*hc.L + (hc.M+1)*hc.L);
    x[0] = 0.60; x[1] = 0.70; x[2] = 0.65; x[3] = 0.25; x[4] = 0.25; x[5] = 0.35;

    for (unsigned int k=0; k<=hc.M; k++)
    {
        x[2*hc.L + 0*(hc.M+1) + k] = 1.0;//hc.v1(k*hc.ht);
        x[2*hc.L + 1*(hc.M+1) + k] = 1.0;//hc.v2(k*hc.ht);
        x[2*hc.L + 2*(hc.M+1) + k] = 1.0;//hc.v3(k*hc.ht);
    }

    /* Minimization */
    ConjugateGradient g2;
    g2.setFunction(&hc);
    g2.setGradient(&hc);
    g2.setEpsilon1(0.0001);
    g2.setEpsilon2(0.0001);
    g2.setEpsilon3(0.0001);
    g2.setR1MinimizeEpsilon(1.0, 0.0001);
    g2.setPrinter(&hc);
    g2.setProjection(&hc);
    g2.setNormalize(true);
    g2.calculate(x);

    DoubleVector gr1(x.length());
    IGradient::Gradient(&hc, 0.00001, x, gr1);
    gr1.L2Normalize();

    DoubleVector gr2(x.length());
    hc.gradient(x, gr2);
    gr2.L2Normalize();

    printf("J[%d]: %.16f\n", 0, hc.fx(x));
    printf("eo: [%12.8f, %12.8f] [%12.8f, %12.8f] [%12.8f, %12.8f]\n", hc.O[0], hc.O[1], hc.O[2], hc.O[3], hc.O[4], hc.O[5]);
    printf("e1: [%12.8f, %12.8f] [%12.8f, %12.8f] [%12.8f, %12.8f]\n", x[0], x[1], x[2], x[3], x[4], x[5]);
    printf("gr1: [%12.8f, %12.8f] [%12.8f, %12.8f] [%12.8f, %12.8f]\n", gr1[0], gr1[1], gr1[2], gr1[3], gr1[4], gr1[5]);
    printf("gr2: [%12.8f, %12.8f] [%12.8f, %12.8f] [%12.8f, %12.8f]\n", gr2[0], gr2[1], gr2[2], gr2[3], gr2[4], gr2[5]);
}
Beispiel #5
0
void SSfind::prep_xmap( const clipper::Xmap<float>& xmap, const double radius )
{
  // make a 1-d array of gridded density values covering ASU+border
  grid = xmap.grid_sampling();
  grrot = xmap.operator_orth_grid().rot();
  clipper::Grid_range gr0 = xmap.grid_asu();
  clipper::Grid_range gr1( xmap.cell(), xmap.grid_sampling(), radius );
  mxgr = clipper::Grid_range( gr0.min()+gr1.min(), gr0.max()+gr1.max() );
  mapbox = std::vector<float>( mxgr.size(), 0.0 );

  // make 1d list of densities
  clipper::Xmap<float>::Map_reference_index ix( xmap );
  for ( int i = 0; i < mapbox.size(); i++ ) {
    ix.set_coord( mxgr.deindex( i ) );
    mapbox[i] = xmap[ix];
  }
}
Beispiel #6
0
void FitSignals(TTree * treeB, TCut cut, Int_t max){
  AliSignalProcesor proc;
  TF1 * f1 = proc.GetAsymGauss();
  TTreeSRedirector cstream("FitSignal.root");
  TFile *f = cstream.GetFile();

  char lname[100];
  sprintf(lname,"Fit%s", cut.GetTitle());
  TEventList *list = new TEventList(lname,lname);
  sprintf(lname,">>Fit%s", cut.GetTitle());
  treeB->Draw(lname,cut);
  treeB->SetEventList(list);
  Int_t nFits=0;
  for (Int_t ievent=0; ievent<list->GetN(); ievent++){
    if (nFits>max) break;
    if (nFits%50==0) printf("%d\n",nFits);
    char ename[100];
    sprintf(ename,"Fit%d", ievent);
    Double_t nsample = treeB->Draw("Graph.fY-Mean09:Graph.fX","","",1,ievent);
    Double_t * signal  = treeB->GetV1();
    Double_t * time  = treeB->GetV2();
    Double_t maxpos =0;
    Double_t max = 0;
    for (Int_t ipos = 0; ipos<nsample; ipos++){
      if (signal[ipos]>max){
	max    = signal[ipos];
	maxpos = ipos;
      }
    }

    Int_t first = TMath::Max(maxpos-10,0.);
    Int_t last  = TMath::Min(maxpos+60, nsample);
    //
    f->cd();
    TH1F his(ename,ename,last-first,first,last);
    for (Int_t ipos=0; ipos<last-first; ipos++){
      his.SetBinContent(ipos+1,signal[ipos+first]);
    }
    treeB->Draw("Sector:Row:Pad","","",1,ievent);
    Double_t sector = treeB->GetV1()[0];
    Double_t row    = treeB->GetV2()[0];
    Double_t pad    = treeB->GetV3()[0];
    //    TGraph  graph(last-first,&time[first],&signal[first]);
    f1->SetParameters(0.75*max,maxpos,1.1,0.8,0.25,0.2);
    //    TH1F * his = (TH1F*)graph.GetHistogram();
    his.Fit(f1,"q");
    his.Write(ename);
    gPad->Clear();
    his.Draw();
    gPad->Update();
    Double_t params[6];
    for (Int_t ipar=0; ipar<6; ipar++) params[ipar] = f1->GetParameters()[ipar];
    Double_t chi2 = TFitter::GetFitter()->Chisquare(6,params);
    TMatrixD cov(6,6);
    cov.SetMatrixArray(TFitter::GetFitter()->GetCovarianceMatrix());
    //
    // tail cancellation
    //
    Double_t x0[1000];
    Double_t x1[1000];
    Double_t x2[1000];
    for (Int_t ipos=0; ipos<last-first; ipos++){
      x0[ipos] = signal[ipos+first];
    }
    proc.TailCancelationALTRO1(x0,x1,0.85*0.339,0.09,last-first);
    proc.TailCancelationALTRO1(x1,x2,0.85,0.789,last-first);
    //
    sprintf(ename,"Cancel1_%d", ievent);
    TH1F his1(ename,ename,last-first,first,last);
    for (Int_t ipos=0; ipos<last-first; ipos++){
      his1.SetBinContent(ipos+1,x1[ipos]);
    }
    his1.Write(ename);
    sprintf(ename,"Cancel2_%d", ievent);
    TH1F his2(ename,ename,last-first,first,last);
    for (Int_t ipos=0; ipos<last-first; ipos++){
      his2.SetBinContent(ipos+1,x1[ipos]);
    }
    f1->SetParameters(0.75*max,maxpos,1.1,0.8,0.25,0.2);
    his2.Fit(f1,"q");
    his2.Write(ename);
    Double_t params2[6];
    for (Int_t ipar=0; ipar<6; ipar++) params2[ipar] = f1->GetParameters()[ipar];
    Double_t chi22 = TFitter::GetFitter()->Chisquare(6,params2);    
    TMatrixD cov2(6,6);
    cov2.SetMatrixArray(TFitter::GetFitter()->GetCovarianceMatrix());

    TGraph gr0(last-first, &time[first],x0);
    TGraph gr1(last-first, &time[first],x1);
    TGraph gr2(last-first, &time[first],x2);
    //
    cstream<<"Fit"<<
      "Sector="<<sector<<
      "Row="<<row<<
      "Pad="<<pad<<
      "First="<<first<<
      "Max="<<max<<
      "MaxPos="<<maxpos<<
      "chi2="<<chi2<<
      "chi22="<<chi22<<
      "Cov="<<&cov<<
      "Cov2="<<&cov2<<
      "gr0.="<<&gr0<<
      "gr1.="<<&gr1<<
      "gr2.="<<&gr2<<
      "p0="<<params[0]<<
      "p1="<<params[1]<<
      "p2="<<params[2]<<
      "p3="<<params[3]<<
      "p4="<<params[4]<<
      "p5="<<params[5]<<
      "p02="<<params2[0]<<
      "p12="<<params2[1]<<
      "p22="<<params2[2]<<
      "p32="<<params2[3]<<
      "p42="<<params2[4]<<
      "p52="<<params2[5]<<
      "\n";
    //    delete his;
    nFits++;
  }

}
bool testFloatNbhoodReprBooleanOperations()
{

    /* Testovani booleovskych operaci, tj. sjednoceni, pruniku a rozdilu (doplnek je v jinych testech) */
    
    cout << "------------------------- ";
    cout << "testFloatNbhoodReprBooleanOperations:" << endl;

    vector<string> fileSet;
    string file1, file2;
    string datafile, spacefile;

    /* Kazda sada mnohostenu (kazda sada objahuje mnohosteny se stejnym Space) bude testovana tak, ze
    pro kazdou dvojici teto sady spocitame prunik (resp. sjednoceni, rozdil) ve vertex reprezentaci a otestujeme,
    zda je tento prunik (resp. sjednoceni, rozdil) stejny jako prunik (resp. sjednoceni, rozdil)
    v grid reprezentaci (tu povazujeme za referencni). */

    /* Sada pro 2D prostor o rozmerech 4 x 4 */

    cout << "test 2D polyhedra" << endl;

    fileSet.clear();
    fileSet.push_back("06");
    fileSet.push_back("07");
    fileSet.push_back("08");
    fileSet.push_back("09");
    fileSet.push_back("10");
    fileSet.push_back("11");
    fileSet.push_back("12");

    for (size_t i = 0; i < fileSet.size(); i ++) {
        for (size_t j = 0; j < fileSet.size(); j ++) {


            datafile = "src/test/data/uint/grid_repr/" + fileSet[i] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[i] + "_space.txt";
            GridRepr gr1(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
            datafile = "src/test/data/uint/grid_repr/" + fileSet[j] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[j] + "_space.txt";
            GridRepr gr2(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);

            NbhoodRepr nr1(gr1);
            NbhoodRepr nr2(gr2);
            
            NbhoodRepr intersc = nr1.intersection(nr2);
            assert(gr1.intersection(gr2) == GridRepr(intersc));

            NbhoodRepr unif = nr1.unification(nr2);
            assert(gr1.unification(gr2) == GridRepr(unif));

            NbhoodRepr diff = nr1.difference(nr2);
            assert(gr1.difference(gr2) == GridRepr(diff));

        }
    }

    /* Sada pro 3D prostor o rozmerech 6 x 6 x 6 */

    cout << "test 3D polyhedra" << endl;

    fileSet.clear();
    fileSet.push_back("13");
    fileSet.push_back("14");
    fileSet.push_back("15");
    fileSet.push_back("16");
    fileSet.push_back("17");

    for (size_t i = 0; i < fileSet.size(); i ++) {
        for (size_t j = 0; j < fileSet.size(); j ++) {

            datafile = "src/test/data/uint/grid_repr/" + fileSet[i] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[i] + "_space.txt";
            GridRepr gr1(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
            datafile = "src/test/data/uint/grid_repr/" + fileSet[j] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[j] + "_space.txt";
            GridRepr gr2(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
        
            NbhoodRepr nr1(gr1);
                        NbhoodRepr nr2(gr2);
            
            NbhoodRepr intersc = nr1.intersection(nr2);
            assert(gr1.intersection(gr2) == GridRepr(intersc));

            NbhoodRepr unif = nr1.unification(nr2);
            assert(gr1.unification(gr2) == GridRepr(unif));

            NbhoodRepr diff = nr1.difference(nr2);
            assert(gr1.difference(gr2) == GridRepr(diff));
        }
    }

    /* Sada pro 1D prostor o rozmerech 20 */

    cout << "test 1D polyhedra" << endl;

    fileSet.clear();
    fileSet.push_back("18");
    fileSet.push_back("19");
    fileSet.push_back("20");
    fileSet.push_back("21");

    for (size_t i = 0; i < fileSet.size(); i ++) {
        for (size_t j = 0; j < fileSet.size(); j ++) {

            datafile = "src/test/data/uint/grid_repr/" + fileSet[i] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[i] + "_space.txt";
            GridRepr gr1(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
            datafile = "src/test/data/uint/grid_repr/" + fileSet[j] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[j] + "_space.txt";
            GridRepr gr2(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
        
            NbhoodRepr nr1(gr1);
            NbhoodRepr nr2(gr2);
            
            NbhoodRepr intersc = nr1.intersection(nr2);
            assert(gr1.intersection(gr2) == GridRepr(intersc));

            NbhoodRepr unif = nr1.unification(nr2);
            assert(gr1.unification(gr2) == GridRepr(unif));

            NbhoodRepr diff = nr1.difference(nr2);
            assert(gr1.difference(gr2) == GridRepr(diff));
        }
    }

#if 1
    /* Sada pro 4D prostor o rozmerech 6 x 6 x 6 x 6 */

    cout << "test 4D polyhedra" << endl;

    fileSet.clear();
    fileSet.push_back("22");
    fileSet.push_back("23");
    fileSet.push_back("24");

    for (size_t i = 0; i < fileSet.size(); i ++) {
        for (size_t j = 0; j < fileSet.size(); j ++) {

            datafile = "src/test/data/uint/grid_repr/" + fileSet[i] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[i] + "_space.txt";
            GridRepr gr1(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
            datafile = "src/test/data/uint/grid_repr/" + fileSet[j] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[j] + "_space.txt";
            GridRepr gr2(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
        
            NbhoodRepr nr1(gr1);
                        NbhoodRepr nr2(gr2);
            
            NbhoodRepr intersc = nr1.intersection(nr2);
            assert(gr1.intersection(gr2) == GridRepr(intersc));

            NbhoodRepr unif = nr1.unification(nr2);
            assert(gr1.unification(gr2) == GridRepr(unif));

            NbhoodRepr diff = nr1.difference(nr2);
            assert(gr1.difference(gr2) == GridRepr(diff));
        }
    }
#endif

#if 1
    /* Sada pro 5D prostor o rozmerech 5 x 5 x 5 x 4 x 3 */

    cout << "test 5D polyhedra" << endl;

    fileSet.clear();
    fileSet.push_back("25");
    fileSet.push_back("26");

    for (size_t i = 0; i < fileSet.size(); i ++) {
        for (size_t j = 0; j < fileSet.size(); j ++) {

            datafile = "src/test/data/uint/grid_repr/" + fileSet[i] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[i] + "_space.txt";
            GridRepr gr1(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
            datafile = "src/test/data/uint/grid_repr/" + fileSet[j] + ".txt";
            spacefile = "src/test/data/uint/grid_repr/" + fileSet[j] + "_space.txt";
            GridRepr gr2(createSpaceFromSpacefile(spacefile, true), datafile.c_str(), true);
        
            NbhoodRepr nr1(gr1);
                        NbhoodRepr nr2(gr2);
            
            NbhoodRepr intersc = nr1.intersection(nr2);
            assert(gr1.intersection(gr2) == GridRepr(intersc));

            NbhoodRepr unif = nr1.unification(nr2);
            assert(gr1.unification(gr2) == GridRepr(unif));

            NbhoodRepr diff = nr1.difference(nr2);
            assert(gr1.difference(gr2) == GridRepr(diff));
        }
    }
#endif

    return true;
}
std::string Instruction_immediate::details() const
{
  std::ostringstream os;
  os << std::hex << std::setfill('0') << std::uppercase << "GR(" << std::setw(2) << gr1() << "), DATA(" << std::setw(4) << data() << ")"; 
  return os.str();
}
std::string  Instruction_longInstruction::details() const
{
  std::ostringstream os;
  os << "GR(" << std::hex << std::uppercase << std::setfill('0') << std::setw(2) << gr1() << "), RX(" << std::setw(2) <<rx() << "), ADDR(" << std::hex << std::uppercase << std::setw(4) << addr() << ")"; 
  return os.str();  
}