void Vorticity::element_qoi( libMesh::DiffContext& context, const libMesh::QoISet& )
  {
    libMesh::FEMContext &c = libmesh_cast_ref<libMesh::FEMContext&>(context);

    if( _subdomain_ids.find( (c.elem)->subdomain_id() ) != _subdomain_ids.end() )
      {
	libMesh::FEBase* element_fe;
	c.get_element_fe<libMesh::Real>(this->_u_var, element_fe);
	const std::vector<libMesh::Real> &JxW = element_fe->get_JxW();

	unsigned int n_qpoints = (c.get_element_qrule())->n_points();

	/*! \todo Need to generalize this to the multiple QoI case */
	libMesh::Number& qoi = c.elem_qoi[0];

	for( unsigned int qp = 0; qp != n_qpoints; qp++ )
	  {
	    libMesh::Gradient grad_u = 0.;
	    libMesh::Gradient grad_v = 0.;
	    c.interior_gradient( this->_u_var, qp, grad_u );
	    c.interior_gradient( this->_v_var, qp, grad_v );
	    qoi += (grad_v(0) - grad_u(1)) * JxW[qp];
	  }
      }

    return;
  }
  void LowMachNavierStokes<Mu,SH,TC>::assemble_mass_time_deriv( bool /*compute_jacobian*/, 
								AssemblyContext& context,
								CachedValues& cache )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_u_var)->get_JxW();

    // The pressure shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& p_phi =
      context.get_element_fe(this->_p_var)->get_phi();

    libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_p_var); // R_{p}

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	libMesh::Number u, v, T;
	u = cache.get_cached_values(Cache::X_VELOCITY)[qp];
	v = cache.get_cached_values(Cache::Y_VELOCITY)[qp];

	T = cache.get_cached_values(Cache::TEMPERATURE)[qp];

	libMesh::Gradient grad_u = cache.get_cached_gradient_values(Cache::X_VELOCITY_GRAD)[qp];
	libMesh::Gradient grad_v = cache.get_cached_gradient_values(Cache::Y_VELOCITY_GRAD)[qp];

	libMesh::Gradient grad_T = cache.get_cached_gradient_values(Cache::TEMPERATURE_GRAD)[qp];

	libMesh::NumberVectorValue U(u,v);
	if (this->_dim == 3)
	  U(2) = cache.get_cached_values(Cache::Z_VELOCITY)[qp]; // w

	libMesh::Number divU = grad_u(0) + grad_v(1);
	if (this->_dim == 3)
          {
	    libMesh::Gradient grad_w = cache.get_cached_gradient_values(Cache::Z_VELOCITY_GRAD)[qp];
	    divU += grad_w(2);
          }

	// Now a loop over the pressure degrees of freedom.  This
	// computes the contributions of the continuity equation.
	for (unsigned int i=0; i != n_p_dofs; i++)
	  {
	    Fp(i) += (-U*grad_T/T + divU)*p_phi[i][qp]*JxW[qp];
	  }
      }

    return;
  }
  void LowMachNavierStokes<Mu,SH,TC>::assemble_thermo_press_elem_time_deriv( bool /*compute_jacobian*/,
									     AssemblyContext& context )
  {
    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_T_var)->get_JxW();

    // The number of local degrees of freedom in each variable
    const unsigned int n_p0_dofs = context.get_dof_indices(this->_p0_var).size();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F_p0 = context.get_elem_residual(this->_p0_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	libMesh::Number T;
	T = context.interior_value(this->_T_var, qp);

	libMesh::Gradient grad_u, grad_v, grad_w;
	grad_u = context.interior_gradient(this->_u_var, qp);
	grad_v = context.interior_gradient(this->_v_var, qp);
	if (this->_dim == 3)
	  grad_w = context.interior_gradient(this->_w_var, qp);

	libMesh::Number divU = grad_u(0) + grad_v(1);
	if(this->_dim==3)
	  divU += grad_w(2);

	//libMesh::Number cp = this->_cp(T);
	//libMesh::Number cv = cp + this->_R;
	//libMesh::Number gamma = cp/cv;
	//libMesh::Number gamma_ratio = gamma/(gamma-1.0);

	libMesh::Number p0 = context.interior_value( this->_p0_var, qp );

	for (unsigned int i = 0; i != n_p0_dofs; ++i)
	  {
	    F_p0(i) += (p0/T - this->_p0/this->_T0)*JxW[qp];
	    //F_p0(i) -= p0*gamma_ratio*divU*JxW[qp];
	  } // End DoF loop i
      }

    return;
  }
Beispiel #4
0
 vec3 MapGradient::compute_gradient(
     Map::Halfedge* h1,
     Map::Halfedge* h2,
     Map::Halfedge* h3,
     const vec2& W
 ) {
     double TU[3] ;
     double TV[3] ;
     compute_gradient(h1,h2,h3,TU,TV) ;
     const vec3& p1 = h1->vertex()->point() ;
     const vec3& p2 = h2->vertex()->point() ;
     const vec3& p3 = h3->vertex()->point() ;
     vec3 grad_u(
         real(TU[0] * p1.x + TU[1] * p2.x + TU[2] * p3.x),
         real(TU[0] * p1.y + TU[1] * p2.y + TU[2] * p3.y),
         real(TU[0] * p1.z + TU[1] * p2.z + TU[2] * p3.z)
     ) ; 
     vec3 grad_v(
         real(TV[0] * p1.x + TV[1] * p2.x + TV[2] * p3.x),
         real(TV[0] * p1.y + TV[1] * p2.y + TV[2] * p3.y),
         real(TV[0] * p1.z + TV[1] * p2.z + TV[2] * p3.z)
     ) ; 
     return W.x * grad_u + W.y * grad_v ;
 }
  void ElasticCableRayleighDamping<StressStrainLaw>::damping_residual( bool compute_jacobian,
                                                                       AssemblyContext& context,
                                                                       CachedValues& /*cache*/)
  {
    // First, do the "mass" contribution
    this->mass_residual_impl(compute_jacobian,
                               context,
                               &libMesh::FEMContext::interior_rate,
                               &libMesh::DiffContext::get_elem_solution_rate_derivative,
                               _mu_factor);

    // Now do the stiffness contribution
    const unsigned int n_u_dofs = context.get_dof_indices(this->_disp_vars.u()).size();

    const std::vector<libMesh::Real> &JxW =
      this->get_fe(context)->get_JxW();

    // Residuals that we're populating
    libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_disp_vars.u());
    libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_disp_vars.v());
    libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(this->_disp_vars.w());

    //Grab the Jacobian matrix as submatrices
    //libMesh::DenseMatrix<libMesh::Number> &K = context.get_elem_jacobian();
    libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.u());
    libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.v());
    libMesh::DenseSubMatrix<libMesh::Number> &Kuw = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.w());
    libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.u());
    libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.v());
    libMesh::DenseSubMatrix<libMesh::Number> &Kvw = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.w());
    libMesh::DenseSubMatrix<libMesh::Number> &Kwu = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.u());
    libMesh::DenseSubMatrix<libMesh::Number> &Kwv = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.v());
    libMesh::DenseSubMatrix<libMesh::Number> &Kww = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.w());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    // All shape function gradients are w.r.t. master element coordinates
    const std::vector<std::vector<libMesh::Real> >& dphi_dxi = this->get_fe(context)->get_dphidxi();

    const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( this->_disp_vars.u() );
    const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( this->_disp_vars.v() );
    const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( this->_disp_vars.w() );

    const libMesh::DenseSubVector<libMesh::Number>& dudt_coeffs = context.get_elem_solution_rate( this->_disp_vars.u() );
    const libMesh::DenseSubVector<libMesh::Number>& dvdt_coeffs = context.get_elem_solution_rate( this->_disp_vars.v() );
    const libMesh::DenseSubVector<libMesh::Number>& dwdt_coeffs = context.get_elem_solution_rate( this->_disp_vars.w() );

    // Need these to build up the covariant and contravariant metric tensors
    const std::vector<libMesh::RealGradient>& dxdxi  = this->get_fe(context)->get_dxyzdxi();

    const unsigned int dim = 1; // The cable dimension is always 1 for this physics

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        // Gradients are w.r.t. master element coordinates
        libMesh::Gradient grad_u, grad_v, grad_w;
        libMesh::Gradient dgradu_dt, dgradv_dt, dgradw_dt;

        for( unsigned int d = 0; d < n_u_dofs; d++ )
          {
            libMesh::RealGradient u_gradphi( dphi_dxi[d][qp] );
            grad_u += u_coeffs(d)*u_gradphi;
            grad_v += v_coeffs(d)*u_gradphi;
            grad_w += w_coeffs(d)*u_gradphi;

            dgradu_dt += dudt_coeffs(d)*u_gradphi;
            dgradv_dt += dvdt_coeffs(d)*u_gradphi;
            dgradw_dt += dwdt_coeffs(d)*u_gradphi;
          }

        libMesh::RealGradient grad_x( dxdxi[qp](0) );
        libMesh::RealGradient grad_y( dxdxi[qp](1) );
        libMesh::RealGradient grad_z( dxdxi[qp](2) );

        libMesh::TensorValue<libMesh::Real> a_cov, a_contra, A_cov, A_contra;
        libMesh::Real lambda_sq = 0;

        this->compute_metric_tensors( qp, *(this->get_fe(context)), context,
                                      grad_u, grad_v, grad_w,
                                      a_cov, a_contra, A_cov, A_contra,
                                      lambda_sq );

        // Compute stress tensor
        libMesh::TensorValue<libMesh::Real> tau;
        ElasticityTensor C;
        this->_stress_strain_law.compute_stress_and_elasticity(dim,a_contra,a_cov,A_contra,A_cov,tau,C);

        libMesh::Real jac = JxW[qp];

        for (unsigned int i=0; i != n_u_dofs; i++)
          {
            libMesh::RealGradient u_gradphi( dphi_dxi[i][qp] );

            libMesh::Real u_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradu_dt(0)*u_gradphi(0);
            libMesh::Real v_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradv_dt(0)*u_gradphi(0);
            libMesh::Real w_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradw_dt(0)*u_gradphi(0);

            const libMesh::Real C1 = _lambda_factor*this->_A*jac*C(0,0,0,0)*u_gradphi(0);

            const libMesh::Real gamma_u = (grad_x(0)+grad_u(0));
            const libMesh::Real gamma_v = (grad_y(0)+grad_v(0));
            const libMesh::Real gamma_w = (grad_z(0)+grad_w(0));

            const libMesh::Real x_term = C1*gamma_u;
            const libMesh::Real y_term = C1*gamma_v;
            const libMesh::Real z_term = C1*gamma_w;

            const libMesh::Real dt_term = dgradu_dt(0)*gamma_u + dgradv_dt(0)*gamma_v + dgradw_dt(0)*gamma_w;

            Fu(i) += u_diag_factor + x_term*dt_term;
            Fv(i) += v_diag_factor + y_term*dt_term;
            Fw(i) += w_diag_factor + z_term*dt_term;
          }

        if( compute_jacobian )
          {
            for(unsigned int i=0; i != n_u_dofs; i++)
              {
                libMesh::RealGradient u_gradphi_I( dphi_dxi[i][qp] );

                for(unsigned int j=0; j != n_u_dofs; j++)
                  {
                    libMesh::RealGradient u_gradphi_J( dphi_dxi[j][qp] );

                    libMesh::Real common_factor = _lambda_factor*this->_A*jac*u_gradphi_I(0);

                    const libMesh::Real diag_term_1 = common_factor*tau(0,0)*u_gradphi_J(0)*context.get_elem_solution_rate_derivative();

                    const libMesh::Real dgamma_du = ( u_gradphi_J(0)*(grad_x(0)+grad_u(0)) );

                    const libMesh::Real dgamma_dv = ( u_gradphi_J(0)*(grad_y(0)+grad_v(0)) );

                    const libMesh::Real dgamma_dw = ( u_gradphi_J(0)*(grad_z(0)+grad_w(0)) );

                    const libMesh::Real diag_term_2_factor = common_factor*C(0,0,0,0)*context.get_elem_solution_derivative();

                    Kuu(i,j) += diag_term_1 + dgradu_dt(0)*diag_term_2_factor*dgamma_du;
                    Kuv(i,j) += dgradu_dt(0)*diag_term_2_factor*dgamma_dv;
                    Kuw(i,j) += dgradu_dt(0)*diag_term_2_factor*dgamma_dw;

                    Kvu(i,j) += dgradv_dt(0)*diag_term_2_factor*dgamma_du;
                    Kvv(i,j) += diag_term_1 + dgradv_dt(0)*diag_term_2_factor*dgamma_dv;
                    Kvw(i,j) += dgradv_dt(0)*diag_term_2_factor*dgamma_dw;

                    Kwu(i,j) += dgradw_dt(0)*diag_term_2_factor*dgamma_du;
                    Kwv(i,j) += dgradw_dt(0)*diag_term_2_factor*dgamma_dv;
                    Kww(i,j) += diag_term_1 + dgradw_dt(0)*diag_term_2_factor*dgamma_dw;

                    const libMesh::Real C1 = common_factor*C(0,0,0,0);

                    const libMesh::Real gamma_u = (grad_x(0)+grad_u(0));
                    const libMesh::Real gamma_v = (grad_y(0)+grad_v(0));
                    const libMesh::Real gamma_w = (grad_z(0)+grad_w(0));

                    const libMesh::Real x_term = C1*gamma_u;
                    const libMesh::Real y_term = C1*gamma_v;
                    const libMesh::Real z_term = C1*gamma_w;

                    const libMesh::Real ddtterm_du = u_gradphi_J(0)*(gamma_u*context.get_elem_solution_rate_derivative()
                                                                     + dgradu_dt(0)*context.get_elem_solution_derivative());

                    const libMesh::Real ddtterm_dv = u_gradphi_J(0)*(gamma_v*context.get_elem_solution_rate_derivative()
                                                                     + dgradv_dt(0)*context.get_elem_solution_derivative());

                    const libMesh::Real ddtterm_dw = u_gradphi_J(0)*(gamma_w*context.get_elem_solution_rate_derivative()
                                                                     + dgradw_dt(0)*context.get_elem_solution_derivative());

                    Kuu(i,j) += x_term*ddtterm_du;
                    Kuv(i,j) += x_term*ddtterm_dv;
                    Kuw(i,j) += x_term*ddtterm_dw;

                    Kvu(i,j) += y_term*ddtterm_du;
                    Kvv(i,j) += y_term*ddtterm_dv;
                    Kvw(i,j) += y_term*ddtterm_dw;

                    Kwu(i,j) += z_term*ddtterm_du;
                    Kwv(i,j) += z_term*ddtterm_dv;
                    Kww(i,j) += z_term*ddtterm_dw;

                    const libMesh::Real dt_term = dgradu_dt(0)*gamma_u + dgradv_dt(0)*gamma_v + dgradw_dt(0)*gamma_w;

                    // Here, we're missing derivatives of C(0,0,0,0) w.r.t. strain
                    // Nonzero for hyperelasticity models
                    const libMesh::Real dxterm_du = C1*u_gradphi_J(0)*context.get_elem_solution_derivative();
                    const libMesh::Real dyterm_dv = dxterm_du;
                    const libMesh::Real dzterm_dw = dxterm_du;

                    Kuu(i,j) += dxterm_du*dt_term;
                    Kvv(i,j) += dyterm_dv*dt_term;
                    Kww(i,j) += dzterm_dw*dt_term;

                  } // end j-loop
              } // end i-loop
          } // end if(compute_jacobian)
      } // end qp loop
  }
  void LowMachNavierStokes<Mu,SH,TC>::assemble_momentum_time_deriv( bool /*compute_jacobian*/, 
								    AssemblyContext& context,
								    CachedValues& cache )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_u_dofs = context.get_dof_indices(this->_u_var).size();

    // Check number of dofs is same for _u_var, v_var and w_var.
    libmesh_assert (n_u_dofs == context.get_dof_indices(this->_v_var).size());
    if (this->_dim == 3)
      libmesh_assert (n_u_dofs == context.get_dof_indices(this->_w_var).size());

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_u_var)->get_JxW();

    // The pressure shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& u_phi =
      context.get_element_fe(this->_u_var)->get_phi();

    // The velocity shape function gradients at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& u_gradphi =
      context.get_element_fe(this->_u_var)->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_u_var); // R_{u}
    libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_v_var); // R_{v}
    libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(this->_w_var); // R_{w}

    unsigned int n_qpoints = context.get_element_qrule().n_points();
    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	libMesh::Number u, v, p, p0, T;
	u = cache.get_cached_values(Cache::X_VELOCITY)[qp];
	v = cache.get_cached_values(Cache::Y_VELOCITY)[qp];

	T = cache.get_cached_values(Cache::TEMPERATURE)[qp];
	p = cache.get_cached_values(Cache::PRESSURE)[qp];
	p0 = cache.get_cached_values(Cache::THERMO_PRESSURE)[qp];

	libMesh::Gradient grad_u = cache.get_cached_gradient_values(Cache::X_VELOCITY_GRAD)[qp];
	libMesh::Gradient grad_v = cache.get_cached_gradient_values(Cache::Y_VELOCITY_GRAD)[qp];

	libMesh::Gradient grad_w;
	if (this->_dim == 3)
	  grad_w = cache.get_cached_gradient_values(Cache::Z_VELOCITY_GRAD)[qp];

	libMesh::NumberVectorValue grad_uT( grad_u(0), grad_v(0) ); 
	libMesh::NumberVectorValue grad_vT( grad_u(1), grad_v(1) );
	libMesh::NumberVectorValue grad_wT;
	if( this->_dim == 3 )
	  {
	    grad_uT(2) = grad_w(0);
	    grad_vT(2) = grad_w(1);
	    grad_wT = libMesh::NumberVectorValue( grad_u(2), grad_v(2), grad_w(2) );
	  }

	libMesh::NumberVectorValue U(u,v);
	if (this->_dim == 3)
	  U(2) = cache.get_cached_values(Cache::Z_VELOCITY)[qp]; // w

	libMesh::Number divU = grad_u(0) + grad_v(1);
	if (this->_dim == 3)
	  divU += grad_w(2);

	libMesh::Number rho = this->rho( T, p0 );
      
	// Now a loop over the pressure degrees of freedom.  This
	// computes the contributions of the continuity equation.
	for (unsigned int i=0; i != n_u_dofs; i++)
	  {
	    Fu(i) += ( -rho*U*grad_u*u_phi[i][qp]                 // convection term
		       + p*u_gradphi[i][qp](0)                           // pressure term
		       - this->_mu(T)*(u_gradphi[i][qp]*grad_u + u_gradphi[i][qp]*grad_uT
				       - 2.0/3.0*divU*u_gradphi[i][qp](0) )    // diffusion term
		       + rho*this->_g(0)*u_phi[i][qp]                 // hydrostatic term
		       )*JxW[qp]; 

	    Fv(i) += ( -rho*U*grad_v*u_phi[i][qp]                 // convection term
		       + p*u_gradphi[i][qp](1)                           // pressure term
		       - this->_mu(T)*(u_gradphi[i][qp]*grad_v + u_gradphi[i][qp]*grad_vT
				       - 2.0/3.0*divU*u_gradphi[i][qp](1) )    // diffusion term
		       + rho*this->_g(1)*u_phi[i][qp]                 // hydrostatic term
		       )*JxW[qp];
	    if (this->_dim == 3)
	      {
		Fw(i) += ( -rho*U*grad_w*u_phi[i][qp]                 // convection term
			   + p*u_gradphi[i][qp](2)                           // pressure term
			   - this->_mu(T)*(u_gradphi[i][qp]*grad_w + u_gradphi[i][qp]*grad_wT
					   - 2.0/3.0*divU*u_gradphi[i][qp](2) )    // diffusion term
			   + rho*this->_g(2)*u_phi[i][qp]                 // hydrostatic term
			   )*JxW[qp];
	      }

	    /*
	      if (compute_jacobian && context.get_elem_solution_derivative())
	      {
              libmesh_assert (context.get_elem_solution_derivative() == 1.0);

              for (unsigned int j=0; j != n_u_dofs; j++)
	      {
	      // TODO: precompute some terms like:
	      //   (Uvec*vel_gblgradphivec[j][qp]),
	      //   vel_phi[i][qp]*vel_phi[j][qp],
	      //   (vel_gblgradphivec[i][qp]*vel_gblgradphivec[j][qp])

	      Kuu(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*(Uvec*vel_gblgradphivec[j][qp])       // convection term
	      -_rho*vel_phi[i][qp]*graduvec_x*vel_phi[j][qp]             // convection term
	      -_mu*(vel_gblgradphivec[i][qp]*vel_gblgradphivec[j][qp])); // diffusion term
	      Kuv(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*graduvec_y*vel_phi[j][qp]);           // convection term

	      Kvv(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*(Uvec*vel_gblgradphivec[j][qp])       // convection term
	      -_rho*vel_phi[i][qp]*gradvvec_y*vel_phi[j][qp]             // convection term
	      -_mu*(vel_gblgradphivec[i][qp]*vel_gblgradphivec[j][qp])); // diffusion term
	      Kvu(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*gradvvec_x*vel_phi[j][qp]);           // convection term

	      if (_dim == 3)
	      {
	      Kuw(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*graduvec_z*vel_phi[j][qp]);           // convection term

	      Kvw(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*gradvvec_z*vel_phi[j][qp]);           // convection term

	      Kww(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*(Uvec*vel_gblgradphivec[j][qp])       // convection term
	      -_rho*vel_phi[i][qp]*gradwvec_z*vel_phi[j][qp]             // convection term
	      -_mu*(vel_gblgradphivec[i][qp]*vel_gblgradphivec[j][qp])); // diffusion term
	      Kwu(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*gradwvec_x*vel_phi[j][qp]);           // convection term
	      Kwv(i,j) += JxW[qp] *
	      (-_rho*vel_phi[i][qp]*gradwvec_y*vel_phi[j][qp]);           // convection term
	      }
	      } // end of the inner dof (j) loop

              // Matrix contributions for the up, vp and wp couplings
              for (unsigned int j=0; j != n_p_dofs; j++)
	      {
	      Kup(i,j) += JxW[qp]*vel_gblgradphivec[i][qp](0)*p_phi[j][qp];
	      Kvp(i,j) += JxW[qp]*vel_gblgradphivec[i][qp](1)*p_phi[j][qp];
	      if (_dim == 3)
	      Kwp(i,j) += JxW[qp]*vel_gblgradphivec[i][qp](2)*p_phi[j][qp];
	      } // end of the inner dof (j) loop

	      } // end - if (compute_jacobian && context.get_elem_solution_derivative())

	      } // end of the outer dof (i) loop
	      } // end of the quadrature point (qp) loop
	    */
	  } // End of DoF loop i
      } // End quadrature loop qp

    return;
  }
Beispiel #7
0
bool FEMPhysics::eulerian_residual (bool request_jacobian,
                                    DiffContext &/*c*/)
{
  // Only calculate a mesh movement residual if it's necessary
  if (!_mesh_sys)
    return request_jacobian;

  libmesh_not_implemented();

#if 0
  FEMContext &context = libmesh_cast_ref<FEMContext&>(c);

  // This function only supports fully coupled mesh motion for now
  libmesh_assert_equal_to (_mesh_sys, this);

  unsigned int n_qpoints = (context.get_element_qrule())->n_points();

  const unsigned int n_x_dofs = (_mesh_x_var == libMesh::invalid_uint) ?
                                0 : context.dof_indices_var[_mesh_x_var].size();
  const unsigned int n_y_dofs = (_mesh_y_var == libMesh::invalid_uint) ?
                                0 : context.dof_indices_var[_mesh_y_var].size();
  const unsigned int n_z_dofs = (_mesh_z_var == libMesh::invalid_uint) ?
                                0 : context.dof_indices_var[_mesh_z_var].size();

  const unsigned int mesh_xyz_var = n_x_dofs ? _mesh_x_var :
                                   (n_y_dofs ? _mesh_y_var :
                                   (n_z_dofs ? _mesh_z_var :
                                    libMesh::invalid_uint));

  // If we're our own _mesh_sys, we'd better be in charge of
  // at least one coordinate, and we'd better have the same
  // FE type for all coordinates we are in charge of
  libmesh_assert_not_equal_to (mesh_xyz_var, libMesh::invalid_uint);
  libmesh_assert(!n_x_dofs || context.element_fe_var[_mesh_x_var] ==
                              context.element_fe_var[mesh_xyz_var]);
  libmesh_assert(!n_y_dofs || context.element_fe_var[_mesh_y_var] ==
                              context.element_fe_var[mesh_xyz_var]);
  libmesh_assert(!n_z_dofs || context.element_fe_var[_mesh_z_var] ==
                              context.element_fe_var[mesh_xyz_var]);

  const std::vector<std::vector<Real> >     &psi =
    context.element_fe_var[mesh_xyz_var]->get_phi();

  for (unsigned int var = 0; var != context.n_vars(); ++var)
    {
      // Mesh motion only affects time-evolving variables
      if (this->is_time_evolving(var))
        continue;

      // The mesh coordinate variables themselves are Lagrangian,
      // not Eulerian, and no convective term is desired.
      if (/*_mesh_sys == this && */
          (var == _mesh_x_var ||
           var == _mesh_y_var ||
           var == _mesh_z_var))
        continue;

      // Some of this code currently relies on the assumption that
      // we can pull mesh coordinate data from our own system
      if (_mesh_sys != this)
        libmesh_not_implemented();

      // This residual should only be called by unsteady solvers:
      // if the mesh is steady, there's no mesh convection term!
      UnsteadySolver *unsteady;
      if (this->time_solver->is_steady())
        return request_jacobian;
      else
	unsteady = libmesh_cast_ptr<UnsteadySolver*>(this->time_solver.get());

      const std::vector<Real> &JxW =
        context.element_fe_var[var]->get_JxW();

      const std::vector<std::vector<Real> >     &phi =
        context.element_fe_var[var]->get_phi();

      const std::vector<std::vector<RealGradient> > &dphi =
        context.element_fe_var[var]->get_dphi();

      const unsigned int n_u_dofs = context.dof_indices_var[var].size();

      DenseSubVector<Number> &Fu = *context.elem_subresiduals[var];
      DenseSubMatrix<Number> &Kuu = *context.elem_subjacobians[var][var];

      DenseSubMatrix<Number> *Kux = n_x_dofs ?
        context.elem_subjacobians[var][_mesh_x_var] : NULL;
      DenseSubMatrix<Number> *Kuy = n_y_dofs ?
        context.elem_subjacobians[var][_mesh_y_var] : NULL;
      DenseSubMatrix<Number> *Kuz = n_z_dofs ?
        context.elem_subjacobians[var][_mesh_z_var] : NULL;

      std::vector<Real> delta_x(n_x_dofs, 0.);
      std::vector<Real> delta_y(n_y_dofs, 0.);
      std::vector<Real> delta_z(n_z_dofs, 0.);

      for (unsigned int i = 0; i != n_x_dofs; ++i)
        {
          unsigned int j = context.dof_indices_var[_mesh_x_var][i];
          delta_x[i] = libmesh_real(this->current_solution(j)) -
                       libmesh_real(unsteady->old_nonlinear_solution(j));
        }

      for (unsigned int i = 0; i != n_y_dofs; ++i)
        {
          unsigned int j = context.dof_indices_var[_mesh_y_var][i];
          delta_y[i] = libmesh_real(this->current_solution(j)) -
                       libmesh_real(unsteady->old_nonlinear_solution(j));
        }

      for (unsigned int i = 0; i != n_z_dofs; ++i)
        {
          unsigned int j = context.dof_indices_var[_mesh_z_var][i];
          delta_z[i] = libmesh_real(this->current_solution(j)) -
                       libmesh_real(unsteady->old_nonlinear_solution(j));
        }

      for (unsigned int qp = 0; qp != n_qpoints; ++qp)
        {
          Gradient grad_u = context.interior_gradient(var, qp);
          RealGradient convection(0.);

          for (unsigned int i = 0; i != n_x_dofs; ++i)
	    convection(0) += delta_x[i] * psi[i][qp];
          for (unsigned int i = 0; i != n_y_dofs; ++i)
	    convection(1) += delta_y[i] * psi[i][qp];
          for (unsigned int i = 0; i != n_z_dofs; ++i)
	    convection(2) += delta_z[i] * psi[i][qp];

          for (unsigned int i = 0; i != n_u_dofs; ++i)
            {
              Number JxWxPhiI = JxW[qp] * phi[i][qp];
              Fu(i) += (convection * grad_u) * JxWxPhiI;
              if (request_jacobian)
                {
                  Number JxWxPhiI = JxW[qp] * phi[i][qp];
                  for (unsigned int j = 0; j != n_u_dofs; ++j)
                    Kuu(i,j) += JxWxPhiI * (convection * dphi[j][qp]);

                  Number JxWxPhiIoverDT = JxWxPhiI/this->deltat;

                  Number JxWxPhiIxDUDXoverDT = JxWxPhiIoverDT * grad_u(0);
                  for (unsigned int j = 0; j != n_x_dofs; ++j)
                    (*Kux)(i,j) += JxWxPhiIxDUDXoverDT * psi[j][qp];

                  Number JxWxPhiIxDUDYoverDT = JxWxPhiIoverDT * grad_u(1);
                  for (unsigned int j = 0; j != n_y_dofs; ++j)
                    (*Kuy)(i,j) += JxWxPhiIxDUDYoverDT * psi[j][qp];

                  Number JxWxPhiIxDUDZoverDT = JxWxPhiIoverDT * grad_u(2);
                  for (unsigned int j = 0; j != n_z_dofs; ++j)
                    (*Kuz)(i,j) += JxWxPhiIxDUDZoverDT * psi[j][qp];
                }
            }
        }
    }
#endif // 0

  return request_jacobian;
}
  void ElasticMembranePressure<PressureType>::element_time_derivative
  ( bool compute_jacobian, AssemblyContext & context )
  {
    unsigned int u_var = this->_disp_vars.u();
    unsigned int v_var = this->_disp_vars.v();
    unsigned int w_var = this->_disp_vars.w();

    const unsigned int n_u_dofs = context.get_dof_indices(u_var).size();

    const std::vector<libMesh::Real> &JxW =
      this->get_fe(context)->get_JxW();

    const std::vector<std::vector<libMesh::Real> >& u_phi =
      this->get_fe(context)->get_phi();

    const MultiphysicsSystem & system = context.get_multiphysics_system();

    unsigned int u_dot_var = system.get_second_order_dot_var(u_var);
    unsigned int v_dot_var = system.get_second_order_dot_var(v_var);
    unsigned int w_dot_var = system.get_second_order_dot_var(w_var);

    libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(u_dot_var);
    libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(v_dot_var);
    libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(w_dot_var);

    libMesh::DenseSubMatrix<libMesh::Number>& Kuv = context.get_elem_jacobian(u_dot_var,v_var);
    libMesh::DenseSubMatrix<libMesh::Number>& Kuw = context.get_elem_jacobian(u_dot_var,w_var);

    libMesh::DenseSubMatrix<libMesh::Number>& Kvu = context.get_elem_jacobian(v_dot_var,u_var);
    libMesh::DenseSubMatrix<libMesh::Number>& Kvw = context.get_elem_jacobian(v_dot_var,w_var);

    libMesh::DenseSubMatrix<libMesh::Number>& Kwu = context.get_elem_jacobian(w_dot_var,u_var);
    libMesh::DenseSubMatrix<libMesh::Number>& Kwv = context.get_elem_jacobian(w_dot_var,v_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    // All shape function gradients are w.r.t. master element coordinates
    const std::vector<std::vector<libMesh::Real> >& dphi_dxi =
      this->get_fe(context)->get_dphidxi();

    const std::vector<std::vector<libMesh::Real> >& dphi_deta =
      this->get_fe(context)->get_dphideta();

    const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( u_var );
    const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( v_var );
    const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( w_var );

    const std::vector<libMesh::RealGradient>& dxdxi  = this->get_fe(context)->get_dxyzdxi();
    const std::vector<libMesh::RealGradient>& dxdeta = this->get_fe(context)->get_dxyzdeta();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        // sqrt(det(a_cov)), a_cov being the covariant metric tensor of undeformed body
        libMesh::Real sqrt_a = sqrt( dxdxi[qp]*dxdxi[qp]*dxdeta[qp]*dxdeta[qp]
                                     - dxdxi[qp]*dxdeta[qp]*dxdeta[qp]*dxdxi[qp] );

        // Gradients are w.r.t. master element coordinates
        libMesh::Gradient grad_u, grad_v, grad_w;
        for( unsigned int d = 0; d < n_u_dofs; d++ )
          {
            libMesh::RealGradient u_gradphi( dphi_dxi[d][qp], dphi_deta[d][qp] );
            grad_u += u_coeffs(d)*u_gradphi;
            grad_v += v_coeffs(d)*u_gradphi;
            grad_w += w_coeffs(d)*u_gradphi;
          }

        libMesh::RealGradient dudxi( grad_u(0), grad_v(0), grad_w(0) );
        libMesh::RealGradient dudeta( grad_u(1), grad_v(1), grad_w(1) );

        libMesh::RealGradient A_1 = dxdxi[qp] + dudxi;
        libMesh::RealGradient A_2 = dxdeta[qp] + dudeta;

        libMesh::RealGradient A_3 = A_1.cross(A_2);

        // Compute pressure at this quadrature point
        libMesh::Real press = (*_pressure)(context,qp);

        // Small optimization
        libMesh::Real p_over_sa = press/sqrt_a;

        /* The formula here is actually
           P*\sqrt{\frac{A}{a}}*A_3, where A_3 is a unit vector
           But, |A_3| = \sqrt{A} so the normalizing part kills
           the \sqrt{A} in the numerator, so we can leave it out
           and *not* normalize A_3.
        */
        libMesh::RealGradient traction = p_over_sa*A_3;

        for (unsigned int i=0; i != n_u_dofs; i++)
          {
            // Small optimization
            libMesh::Real phi_times_jac = u_phi[i][qp]*JxW[qp];

            Fu(i) -= traction(0)*phi_times_jac;
            Fv(i) -= traction(1)*phi_times_jac;
            Fw(i) -= traction(2)*phi_times_jac;

            if( compute_jacobian )
              {
                for (unsigned int j=0; j != n_u_dofs; j++)
                  {
                    libMesh::RealGradient u_gradphi( dphi_dxi[j][qp], dphi_deta[j][qp] );

                    const libMesh::Real dt0_dv = p_over_sa*(u_gradphi(0)*A_2(2) - A_1(2)*u_gradphi(1));
                    const libMesh::Real dt0_dw = p_over_sa*(A_1(1)*u_gradphi(1) - u_gradphi(0)*A_2(1));

                    const libMesh::Real dt1_du = p_over_sa*(A_1(2)*u_gradphi(1) - u_gradphi(0)*A_2(2));
                    const libMesh::Real dt1_dw = p_over_sa*(u_gradphi(0)*A_2(0) - A_1(0)*u_gradphi(1));

                    const libMesh::Real dt2_du = p_over_sa*(u_gradphi(0)*A_2(1) - A_1(1)*u_gradphi(1));
                    const libMesh::Real dt2_dv = p_over_sa*(A_1(0)*u_gradphi(1) - u_gradphi(0)*A_2(0));

                    Kuv(i,j) -= dt0_dv*phi_times_jac;
                    Kuw(i,j) -= dt0_dw*phi_times_jac;

                    Kvu(i,j) -= dt1_du*phi_times_jac;
                    Kvw(i,j) -= dt1_dw*phi_times_jac;

                    Kwu(i,j) -= dt2_du*phi_times_jac;
                    Kwv(i,j) -= dt2_dv*phi_times_jac;
                  }
              }
          }
      }
  }
  void ReactingLowMachNavierStokesStabilizationBase<Mixture,Evaluator>::compute_res_steady( AssemblyContext& context,
                                                                                            unsigned int qp,
                                                                                            libMesh::Real& RP_s,
                                                                                            libMesh::RealGradient& RM_s,
                                                                                            libMesh::Real& RE_s,
                                                                                            std::vector<libMesh::Real>& Rs_s )
  {
    Rs_s.resize(this->n_species(),0.0);

    // Grab r-coordinate for axisymmetric terms
    // We're assuming all variables are using the same quadrature rule
    libMesh::Real r = (context.get_element_fe(this->_flow_vars.u())->get_xyz())[qp](0);

    libMesh::RealGradient grad_p = context.interior_gradient(this->_press_var.p(), qp);

    libMesh::RealGradient grad_u = context.interior_gradient(this->_flow_vars.u(), qp);
    libMesh::RealGradient grad_v = context.interior_gradient(this->_flow_vars.v(), qp);

    libMesh::RealGradient U( context.interior_value(this->_flow_vars.u(), qp),
                             context.interior_value(this->_flow_vars.v(), qp) );
    libMesh::Real divU = grad_u(0) + grad_v(1);

    if( this->_is_axisymmetric )
      divU += U(0)/r;

    if(this->mesh_dim(context) == 3)
      {
        U(2) = context.interior_value(this->_flow_vars.w(), qp);
        divU += (context.interior_gradient(this->_flow_vars.w(), qp))(2);
      }

    // We don't add axisymmetric terms here since we don't directly use hess_{u,v}
    // axisymmetric terms are built into divGradU, etc. functions below
    libMesh::RealTensor hess_u = context.interior_hessian(this->_flow_vars.u(), qp);
    libMesh::RealTensor hess_v = context.interior_hessian(this->_flow_vars.v(), qp);

    libMesh::Real T = context.interior_value(this->_temp_vars.T(), qp);

    libMesh::Gradient grad_T = context.interior_gradient(this->_temp_vars.T(), qp);
    libMesh::Tensor hess_T = context.interior_hessian(this->_temp_vars.T(), qp);

    libMesh::Real hess_T_term = hess_T(0,0) + hess_T(1,1);
#if LIBMESH_DIM > 2
    hess_T_term += hess_T(2,2);
#endif
    // Add axisymmetric terms, if needed
    if( this->_is_axisymmetric )
      hess_T_term += grad_T(0)/r;

    std::vector<libMesh::Real> ws(this->n_species());
    std::vector<libMesh::RealGradient> grad_ws(this->n_species());
    std::vector<libMesh::RealTensor> hess_ws(this->n_species());
    for(unsigned int s=0; s < this->_n_species; s++ )
      {
        ws[s] = context.interior_value(this->_species_vars.species(s), qp);
        grad_ws[s] = context.interior_gradient(this->_species_vars.species(s), qp);
        hess_ws[s] = context.interior_hessian(this->_species_vars.species(s), qp);
      }

    Evaluator gas_evaluator( this->_gas_mixture );
    const libMesh::Real R_mix = gas_evaluator.R_mix(ws);
    const libMesh::Real p0 = this->get_p0_steady(context,qp);
    libMesh::Real rho = this->rho(T, p0, R_mix );
    libMesh::Real cp = gas_evaluator.cp(T,p0,ws);
    libMesh::Real M = gas_evaluator.M_mix( ws );

    std::vector<libMesh::Real> D( this->n_species() );
    libMesh::Real mu, k;

    gas_evaluator.mu_and_k_and_D( T, rho, cp, ws, mu, k, D );


    // grad_rho = drho_dT*gradT + \sum_s drho_dws*grad_ws
    const libMesh::Real drho_dT = -p0/(R_mix*T*T);
    libMesh::RealGradient grad_rho = drho_dT*grad_T;
    for(unsigned int s=0; s < this->_n_species; s++ )
      {
        libMesh::Real Ms = gas_evaluator.M(s);
        libMesh::Real R_uni = Constants::R_universal/1000.0; /* J/kmol-K --> J/mol-K */

        // drho_dws = -p0/(T*R_mix*R_mix)*dR_dws
        // dR_dws = R_uni*d_dws(1/M)
        // d_dws(1/M) = d_dws(\sum_s w_s/Ms) =  1/Ms
        const libMesh::Real drho_dws = -p0/(R_mix*R_mix*T)*R_uni/Ms;
        grad_rho += drho_dws*grad_ws[s];
      }

    libMesh::RealGradient rhoUdotGradU;
    libMesh::RealGradient divGradU;
    libMesh::RealGradient divGradUT;
    libMesh::RealGradient divdivU;

    if( this->mesh_dim(context) < 3 )
      {
        rhoUdotGradU = rho*_stab_helper.UdotGradU( U, grad_u, grad_v );

        // Call axisymmetric versions if we are doing an axisymmetric run
        if( this->_is_axisymmetric )
          {
            divGradU  = _stab_helper.div_GradU_axi( r, U, grad_u, grad_v, hess_u, hess_v );
            divGradUT = _stab_helper.div_GradU_T_axi( r, U, grad_u, hess_u, hess_v );
            divdivU   = _stab_helper.div_divU_I_axi( r, U, grad_u, hess_u, hess_v );
          }
        else
          {
            divGradU  = _stab_helper.div_GradU( hess_u, hess_v );
            divGradUT = _stab_helper.div_GradU_T( hess_u, hess_v );
            divdivU   = _stab_helper.div_divU_I( hess_u, hess_v );
          }
      }
    else
      {
        libMesh::RealGradient grad_w = context.interior_gradient(this->_flow_vars.w(), qp);
        libMesh::RealTensor hess_w = context.interior_hessian(this->_flow_vars.w(), qp);

        rhoUdotGradU = rho*_stab_helper.UdotGradU( U, grad_u, grad_v, grad_w );

        divGradU  = _stab_helper.div_GradU( hess_u, hess_v, hess_w );
        divGradUT = _stab_helper.div_GradU_T( hess_u, hess_v, hess_w );
        divdivU   = _stab_helper.div_divU_I( hess_u, hess_v, hess_w );
      }



    // Terms if we have vicosity derivatives w.r.t. temp.
    /*
    if( this->_mu.deriv(T) != 0.0 )
      {
        libMesh::Gradient gradTgradu( grad_T*grad_u, grad_T*grad_v );

        libMesh::Gradient gradTgraduT( grad_T(0)*grad_u(0) + grad_T(1)*grad_u(1),
                                       grad_T(0)*grad_v(0) + grad_T(1)*grad_v(1) );

        libMesh::Real divU = grad_u(0) + grad_v(1);

        libMesh::Gradient gradTdivU( grad_T(0)*divU, grad_T(1)*divU );

        if(this->mesh_dim(context) == 3)
          {
            libMesh::Gradient grad_w = context.interior_gradient(this->_flow_vars.w(), qp);

            gradTgradu(2) = grad_T*grad_w;

            gradTgraduT(0) += grad_T(2)*grad_u(2);
            gradTgraduT(1) += grad_T(2)*grad_v(2);
            gradTgraduT(2) = grad_T(0)*grad_w(0) + grad_T(1)*grad_w(1) + grad_T(2)*grad_w(2);

            divU += grad_w(2);
            gradTdivU(0) += grad_T(0)*grad_w(2);
            gradTdivU(1) += grad_T(1)*grad_w(2);
            gradTdivU(2) += grad_T(2)*divU;
          }

        divT += this->_mu.deriv(T)*( gradTgradu + gradTgraduT - 2.0/3.0*gradTdivU );
      }
    */

    // Axisymmetric terms already built in
    libMesh::RealGradient div_stress = mu*(divGradU + divGradUT - 2.0/3.0*divdivU);

    std::vector<libMesh::Real> omega_dot(this->n_species());
    gas_evaluator.omega_dot(T,rho,ws,omega_dot);

    libMesh::Real chem_term = 0.0;
    libMesh::Gradient mass_term(0.0,0.0,0.0);
    for(unsigned int s=0; s < this->_n_species; s++ )
      {
        // Start accumulating chemistry term for energy residual
        libMesh::Real h_s=gas_evaluator.h_s(T,s);
        chem_term += h_s*omega_dot[s];

        /* Accumulate mass term for continuity residual
           mass_term = grad_M/M */
        mass_term += grad_ws[s]/this->_gas_mixture.M(s);

        libMesh::Real hess_s_term = hess_ws[s](0,0) + hess_ws[s](1,1);
#if LIBMESH_DIM > 2
        hess_s_term += hess_ws[s](2,2);
#endif
        // Add axisymmetric terms, if needed
        if( this->_is_axisymmetric )
          hess_s_term += grad_ws[s](0)/r;

        // Species residual
        /*! \todo Still missing derivative of species diffusion coefficient.
                  rho*grad_D[s]*grad_ws[s] */
        Rs_s[s] = rho*U*grad_ws[s] - rho*D[s]*hess_s_term - grad_rho*D[s]*grad_ws[s]
                  - omega_dot[s];
      }
    mass_term *= M;

    // Continuity residual
    RP_s = divU - (U*grad_T)/T - U*mass_term;

    // Momentum residual
    RM_s = rhoUdotGradU + grad_p - div_stress - rho*(this->_g);

    // Energy residual
    // - this->_k.deriv(T)*(grad_T*grad_T)
    RE_s = rho*U*cp*grad_T  - k*(hess_T_term) + chem_term;

    return;
  }
double AbstractFunctionalCalculator<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM>::CalculateOnElement(Element<ELEMENT_DIM, SPACE_DIM>& rElement)
{
    double result_on_element = 0;

    // Third order quadrature.  Note that the functional may be non-polynomial (see documentation of class).
    GaussianQuadratureRule<ELEMENT_DIM> quad_rule(3);

    /// NOTE: This assumes that the Jacobian is constant on an element, ie
    /// no curvilinear bases were used for position
    double jacobian_determinant;
    c_matrix<double, SPACE_DIM, ELEMENT_DIM> jacobian;
    c_matrix<double, ELEMENT_DIM, SPACE_DIM> inverse_jacobian;
    rElement.CalculateInverseJacobian(jacobian, jacobian_determinant, inverse_jacobian);

    const unsigned num_nodes = rElement.GetNumNodes();

    // Loop over Gauss points
    for (unsigned quad_index=0; quad_index < quad_rule.GetNumQuadPoints(); quad_index++)
    {
        const ChastePoint<ELEMENT_DIM>& quad_point = quad_rule.rGetQuadPoint(quad_index);

        c_vector<double, ELEMENT_DIM+1> phi;
        LinearBasisFunction<ELEMENT_DIM>::ComputeBasisFunctions(quad_point, phi);
        c_matrix<double, ELEMENT_DIM, ELEMENT_DIM+1> grad_phi;
        LinearBasisFunction<ELEMENT_DIM>::ComputeTransformedBasisFunctionDerivatives(quad_point, inverse_jacobian, grad_phi);

        // Location of the Gauss point in the original element will be stored in x
        ChastePoint<SPACE_DIM> x(0,0,0);
        c_vector<double,PROBLEM_DIM> u = zero_vector<double>(PROBLEM_DIM);
        c_matrix<double,PROBLEM_DIM,SPACE_DIM> grad_u = zero_matrix<double>(PROBLEM_DIM,SPACE_DIM);

        for (unsigned i=0; i<num_nodes; i++)
        {
            const c_vector<double, SPACE_DIM>& r_node_loc = rElement.GetNode(i)->rGetLocation();

            // Interpolate x
            x.rGetLocation() += phi(i)*r_node_loc;

            // Interpolate u and grad u
            unsigned node_global_index = rElement.GetNodeGlobalIndex(i);
            for (unsigned index_of_unknown=0; index_of_unknown<PROBLEM_DIM; index_of_unknown++)
            {
                // NOTE - following assumes that, if say there are two unknowns u and v, they
                // are stored in the current solution vector as
                // [U1 V1 U2 V2 ... U_n V_n]
                unsigned index_into_vec = PROBLEM_DIM*node_global_index + index_of_unknown;

                double u_at_node = mSolutionReplicated[index_into_vec];
                u(index_of_unknown) += phi(i)*u_at_node;
                for (unsigned j=0; j<SPACE_DIM; j++)
                {
                    grad_u(index_of_unknown,j) += grad_phi(j,i)*u_at_node;
                }
            }
        }

        double wJ = jacobian_determinant * quad_rule.GetWeight(quad_index);
        result_on_element += GetIntegrand(x, u, grad_u) * wJ;
    }

    return result_on_element;
}
Beispiel #11
0
  void ElasticMembraneConstantPressure::element_time_derivative( bool compute_jacobian,
                                                                 AssemblyContext& context,
                                                                 CachedValues& /*cache*/ )
  {
    const unsigned int n_u_dofs = context.get_dof_indices(_disp_vars.u()).size();

    const std::vector<libMesh::Real> &JxW =
      this->get_fe(context)->get_JxW();

    const std::vector<std::vector<libMesh::Real> >& u_phi =
      this->get_fe(context)->get_phi();

    libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(_disp_vars.u());
    libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(_disp_vars.v());
    libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(_disp_vars.w());

    libMesh::DenseSubMatrix<libMesh::Number>& Kuv = context.get_elem_jacobian(_disp_vars.u(),_disp_vars.v());
    libMesh::DenseSubMatrix<libMesh::Number>& Kuw = context.get_elem_jacobian(_disp_vars.u(),_disp_vars.w());

    libMesh::DenseSubMatrix<libMesh::Number>& Kvu = context.get_elem_jacobian(_disp_vars.v(),_disp_vars.u());
    libMesh::DenseSubMatrix<libMesh::Number>& Kvw = context.get_elem_jacobian(_disp_vars.v(),_disp_vars.w());

    libMesh::DenseSubMatrix<libMesh::Number>& Kwu = context.get_elem_jacobian(_disp_vars.w(),_disp_vars.u());
    libMesh::DenseSubMatrix<libMesh::Number>& Kwv = context.get_elem_jacobian(_disp_vars.w(),_disp_vars.v());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    // All shape function gradients are w.r.t. master element coordinates
    const std::vector<std::vector<libMesh::Real> >& dphi_dxi =
      this->get_fe(context)->get_dphidxi();

    const std::vector<std::vector<libMesh::Real> >& dphi_deta =
      this->get_fe(context)->get_dphideta();

    const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( _disp_vars.u() );
    const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( _disp_vars.v() );
    const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( _disp_vars.w() );

    const std::vector<libMesh::RealGradient>& dxdxi  = this->get_fe(context)->get_dxyzdxi();
    const std::vector<libMesh::RealGradient>& dxdeta = this->get_fe(context)->get_dxyzdeta();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        // sqrt(det(a_cov)), a_cov being the covariant metric tensor of undeformed body
        libMesh::Real sqrt_a = sqrt( dxdxi[qp]*dxdxi[qp]*dxdeta[qp]*dxdeta[qp]
                                     - dxdxi[qp]*dxdeta[qp]*dxdeta[qp]*dxdxi[qp] );

        // Gradients are w.r.t. master element coordinates
        libMesh::Gradient grad_u, grad_v, grad_w;
        for( unsigned int d = 0; d < n_u_dofs; d++ )
          {
            libMesh::RealGradient u_gradphi( dphi_dxi[d][qp], dphi_deta[d][qp] );
            grad_u += u_coeffs(d)*u_gradphi;
            grad_v += v_coeffs(d)*u_gradphi;
            grad_w += w_coeffs(d)*u_gradphi;
          }

        libMesh::RealGradient dudxi( grad_u(0), grad_v(0), grad_w(0) );
        libMesh::RealGradient dudeta( grad_u(1), grad_v(1), grad_w(1) );

        libMesh::RealGradient A_1 = dxdxi[qp] + dudxi;
        libMesh::RealGradient A_2 = dxdeta[qp] + dudeta;

        libMesh::RealGradient A_3 = A_1.cross(A_2);

        /* The formula here is actually
           P*\sqrt{\frac{A}{a}}*A_3, where A_3 is a unit vector
           But, |A_3| = \sqrt{A} so the normalizing part kills
           the \sqrt{A} in the numerator, so we can leave it out
           and *not* normalize A_3.
         */
        libMesh::RealGradient traction = _pressure/sqrt_a*A_3;

        libMesh::Real jac = JxW[qp];

        for (unsigned int i=0; i != n_u_dofs; i++)
	  {
            Fu(i) -= traction(0)*u_phi[i][qp]*jac;

            Fv(i) -= traction(1)*u_phi[i][qp]*jac;

            Fw(i) -= traction(2)*u_phi[i][qp]*jac;

            if( compute_jacobian )
              {
                for (unsigned int j=0; j != n_u_dofs; j++)
                  {
                    libMesh::RealGradient u_gradphi( dphi_dxi[j][qp], dphi_deta[j][qp] );

                    const libMesh::Real dt0_dv = _pressure/sqrt_a*(u_gradphi(0)*A_2(2) - A_1(2)*u_gradphi(1));
                    const libMesh::Real dt0_dw = _pressure/sqrt_a*(A_1(1)*u_gradphi(1) - u_gradphi(0)*A_2(1));

                    const libMesh::Real dt1_du = _pressure/sqrt_a*(A_1(2)*u_gradphi(1) - u_gradphi(0)*A_2(2));
                    const libMesh::Real dt1_dw = _pressure/sqrt_a*(u_gradphi(0)*A_2(0) - A_1(0)*u_gradphi(1));

                    const libMesh::Real dt2_du = _pressure/sqrt_a*(u_gradphi(0)*A_2(1) - A_1(1)*u_gradphi(1));
                    const libMesh::Real dt2_dv = _pressure/sqrt_a*(A_1(0)*u_gradphi(1) - u_gradphi(0)*A_2(0));

                    Kuv(i,j) -= dt0_dv*u_phi[i][qp]*jac;
                    Kuw(i,j) -= dt0_dw*u_phi[i][qp]*jac;

                    Kvu(i,j) -= dt1_du*u_phi[i][qp]*jac;
                    Kvw(i,j) -= dt1_dw*u_phi[i][qp]*jac;

                    Kwu(i,j) -= dt2_du*u_phi[i][qp]*jac;
                    Kwv(i,j) -= dt2_dv*u_phi[i][qp]*jac;
                  }
              }
          }
      }

    return;
  }