int model_z2fk(model* m, int vid, double fi, double fj, double z, double* fk) { void* grid = m->grids[m->vars[vid].gridid]; int isperiodic_x = grid_isperiodic_x(grid); int** numlevels = grid_getnumlevels(grid); int ni, nj; int i1, i2, j1, j2, k2; if (isnan(fi + fj)) { *fk = NaN; return STATUS_OUTSIDEGRID; } grid_z2fk(grid, fi, fj, z, fk); if (isnan(*fk)) return STATUS_OUTSIDEGRID; if (grid_getvtype(grid) == GRIDVTYPE_SIGMA) return STATUS_OK; /* * a depth check for z-grid: */ model_getvardims(m, vid, &ni, &nj, NULL); i1 = floor(fi); i2 = ceil(fi); if (i1 == -1) i1 = (isperiodic_x) ? ni - 1 : i2; if (i2 == ni) i2 = (isperiodic_x) ? 0 : i1; j1 = floor(fj); j2 = ceil(fj); if (j1 == -1) j1 = j2; if (j2 == nj) j2 = j1; k2 = floor(*fk); if (numlevels[j1][i1] <= k2 && numlevels[j1][i2] <= k2 && numlevels[j2][i1] <= k2 && numlevels[j2][i2] <= k2) { *fk = NaN; return STATUS_LAND; } else if (numlevels[j1][i1] <= k2 || numlevels[j1][i2] <= k2 || numlevels[j2][i1] <= k2 || numlevels[j2][i2] <= k2) { float** depth = grid_getdepth(grid); int ni, nj; double v; grid_getdims(grid, &ni, &nj, NULL); v = interpolate2d(fi, fj, ni, nj, depth, numlevels, grid_isperiodic_x(grid)); if (z > v) return STATUS_LAND; } return STATUS_OK; }
void grid_print(grid* g, char offset[]) { int nx, ny, nz; enkf_printf("%sgrid info:\n", offset); switch (g->htype) { case GRIDHTYPE_LATLON: enkf_printf("%s hor type = LATLON\n", offset); enkf_printf("%s periodic by X = %s\n", offset, grid_isperiodic_x(g) ? "yes" : "no"); break; #if !defined(NO_GRIDUTILS) case GRIDHTYPE_CURVILINEAR: enkf_printf("%s hor type = CURVILINEAR\n", offset); if (g->maptype == GRIDMAP_TYPE_BINARY) enkf_printf("%s map type = BINARY TREE\n", offset); else if (g->maptype == GRIDMAP_TYPE_KDTREE) enkf_printf("%s map type = KD-TREE\n", offset); else enkf_quit("unknown grid map type"); break; #endif default: enkf_printf("%s h type = NONE\n", offset); } grid_getdims(g, &nx, &ny, &nz); enkf_printf("%s dims = %d x %d x %d\n", offset, nx, ny, nz); if (!isnan(g->lonbase)) enkf_printf("%s longitude range = [%.3f, %.3f]\n", offset, g->lonbase, g->lonbase + 360.0); else enkf_printf("%s longitude range = any\n", offset); switch (g->vtype) { case GRIDVTYPE_Z: enkf_printf("%s vert type = Z\n", offset); break; case GRIDVTYPE_SIGMA: enkf_printf("%s vert type = SIGMA\n", offset); break; default: enkf_printf("%s vert type = NONE\n", offset); } if (g->sfactor != 1.0) enkf_printf("%s SFACTOR = \"%.f\"\n", offset, g->sfactor); }
int model_fk2z(model* m, int vid, int i, int j, double fk, double* z) { grid* g = m->grids[m->vars[vid].gridid]; float** depth; int ni, nj; grid_getdims(g, &ni, &nj, NULL); if (i < 0 || j < 0 || i >= ni || j >= nj) { *z = NaN; return STATUS_OUTSIDEGRID; } grid_fk2z(g, i, j, fk, z); depth = grid_getdepth(g); if (*z > depth[j][i]) { *z = NaN; return STATUS_OUTSIDEGRID; } return STATUS_OK; }
void grid_print(grid* g, char offset[]) { int nx, ny, nz; enkf_printf("%sgrid info:\n", offset); switch (g->htype) { case GRIDHTYPE_LATLON_REGULAR: enkf_printf("%s hor type = LATLON_REGULAR\n", offset); break; case GRIDHTYPE_LATLON_IRREGULAR: enkf_printf("%s hor type = LATLON_IRREGULAR\n", offset); break; #if !defined(NO_GRIDUTILS) case GRIDHTYPE_CURVILINEAR: enkf_printf("%s hor type = CURVILINEAR\n", offset); break; #endif default: enkf_printf("%s h type = NONE\n", offset); } enkf_printf("%s periodic by X = %s\n", offset, grid_isperiodic_x(g) ? "yes" : "no"); enkf_printf("%s periodic by Y = %s\n", offset, grid_isperiodic_y(g) ? "yes" : "no"); grid_getdims(g, &nx, &ny, &nz); enkf_printf("%s dims = %d x %d x %d\n", offset, nx, ny, nz); if (!isnan(g->lonbase)) enkf_printf("%s longitude range = [%.3f, %.3f]\n", offset, g->lonbase, g->lonbase + 360.0); else enkf_printf("%s longitude range = any\n", offset); switch (g->vtype) { case GRIDVTYPE_Z: enkf_printf("%s vert type = Z\n", offset); break; case GRIDVTYPE_SIGMA: enkf_printf("%s vert type = SIGMA\n", offset); break; default: enkf_printf("%s vert type = NONE\n", offset); } }
void model_getvardims(model* m, int vid, int* ni, int* nj, int* nk) { grid_getdims(m->grids[m->vars[vid].gridid], ni, nj, nk); }
/** Updates ensemble observations by applying X5 */ static void update_HE(dasystem* das) { model* m = das->m; int ngrid = model_getngrid(m); int gid; observations* obs = das->obs; int e, o; float* HEi_f; float* HEi_a; char do_T = 'T'; float alpha = 1.0f; float beta = 0.0f; int inc = 1; enkf_printf(" updating HE:\n"); assert(das->s_mode == S_MODE_HE_f); HEi_f = malloc(das->nmem * sizeof(ENSOBSTYPE)); HEi_a = malloc(das->nmem * sizeof(ENSOBSTYPE)); /* * the following code for interpolation of X5 essentially coincides with * that in das_updatefields() */ for (gid = 0, o = 0; gid < ngrid && o < obs->nobs; ++gid) { void* grid = model_getgridbyid(m, gid); int periodic_i = grid_isperiodic_x(grid); int periodic_j = grid_isperiodic_y(grid); char fname_X5[MAXSTRLEN]; int ncid; int varid; int dimids[3]; size_t dimlens[3]; size_t start[3], count[3]; float** X5j = NULL; float** X5jj = NULL; float** X5jj1 = NULL; float** X5jj2 = NULL; int mni, mnj; int* iiter; int* jiter; int i, j, ni, nj; int jj, stepj, ii, stepi; assert(obs->obstypes[obs->data[o].type].gridid == gid); das_getfname_X5(das, grid, fname_X5); ncw_open(fname_X5, NC_NOWRITE, &ncid); ncw_inq_varid(fname_X5, ncid, "X5", &varid); ncw_inq_vardimid(fname_X5, ncid, varid, dimids); for (i = 0; i < 3; ++i) ncw_inq_dimlen(fname_X5, ncid, dimids[i], &dimlens[i]); ni = dimlens[1]; nj = dimlens[0]; assert((int) dimlens[2] == das->nmem * das->nmem); jiter = malloc((nj + 1) * sizeof(int)); /* "+ 1" to handle periodic * grids */ iiter = malloc((ni + 1) * sizeof(int)); for (j = 0, i = 0; j < nj; ++j, i += das->stride) jiter[j] = i; if (periodic_j) jiter[nj] = jiter[nj - 1] + das->stride; for (i = 0, j = 0; i < ni; ++i, j += das->stride) iiter[i] = j; if (periodic_i) iiter[ni] = iiter[ni - 1] + das->stride; grid_getdims(grid, &mni, &mnj, NULL); start[0] = 0; start[1] = 0; start[2] = 0; count[0] = 1; count[1] = ni; count[2] = das->nmem * das->nmem; X5j = alloc2d(mni, das->nmem * das->nmem, sizeof(float)); if (das->stride > 1) { X5jj = alloc2d(ni, das->nmem * das->nmem, sizeof(float)); X5jj1 = alloc2d(ni, das->nmem * das->nmem, sizeof(float)); X5jj2 = alloc2d(ni, das->nmem * das->nmem, sizeof(float)); ncw_get_vara_float(fname_X5, ncid, varid, start, count, X5jj2[0]); } /* * jj, ii are the indices of the subsampled grid; i, j are the indices * of the model grid */ for (jj = 0, j = 0; jj < nj; ++jj) { for (stepj = 0; stepj < das->stride && j < mnj; ++stepj, ++j) { if (das->stride == 1) { /* * no interpolation necessary; simply read the ETMs for the * j-th row from disk */ start[0] = j; ncw_get_vara_float(fname_X5, ncid, varid, start, count, X5j[0]); } else { /* * the following code interpolates the ETM back to the * original grid, first by j, and then by i */ if (stepj == 0) { memcpy(X5jj[0], X5jj2[0], ni * das->nmem * das->nmem * sizeof(float)); memcpy(X5jj1[0], X5jj2[0], ni * das->nmem * das->nmem * sizeof(float)); if (jj < nj - 1 || periodic_j) { start[0] = (jj + 1) % nj; ncw_get_vara_float(fname_X5, ncid, varid, start, count, X5jj2[0]); } } else { float weight2 = (float) stepj / das->stride; float weight1 = (float) 1.0 - weight2; for (ii = 0; ii < ni; ++ii) { float* X5jjii = X5jj[ii]; float* X5jj1ii = X5jj1[ii]; float* X5jj2ii = X5jj2[ii]; for (e = 0; e < das->nmem * das->nmem; ++e) X5jjii[e] = X5jj1ii[e] * weight1 + X5jj2ii[e] * weight2; } } for (ii = 0, i = 0; ii < ni; ++ii) { for (stepi = 0; stepi < das->stride && i < mni; ++stepi, ++i) { if (stepi == 0) memcpy(X5j[i], X5jj[ii], das->nmem * das->nmem * sizeof(float)); else { float weight2 = (float) stepi / das->stride; float weight1 = (float) 1.0 - weight2; float* X5jjii1 = X5jj[ii]; float* X5ji = X5j[i]; float* X5jjii2; if (ii < ni - 1) X5jjii2 = X5jj[ii + 1]; else X5jjii2 = X5jj[(periodic_i) ? (ii + 1) % ni : ii]; for (e = 0; e < das->nmem * das->nmem; ++e) X5ji[e] = X5jjii1[e] * weight1 + X5jjii2[e] * weight2; } } } } /* stride != 1 */ /* * (at this stage X5j should contain the array of X5 matrices * for the j-th row of the grid) */ if (o >= obs->nobs) break; if ((int) (obs->data[o].fj) > j) continue; for (; o < obs->nobs && (int) (obs->data[o].fj) == j; ++o) { float inflation = model_getvarinflation(m, obs->obstypes[obs->data[o].type].vid); /* * HE(i, :) = HE(i, :) * X5 */ i = (int) (obs->data[o].fi); for (e = 0; e < das->nmem; ++e) HEi_f[e] = das->S[e][o]; sgemv_(&do_T, &das->nmem, &das->nmem, &alpha, X5j[i], &das->nmem, HEi_f, &inc, &beta, HEi_a, &inc); /* * applying inflation: */ if (fabsf(inflation - 1.0f) > EPSF) { float v_av = 0.0f; for (e = 0; e < das->nmem; ++e) v_av += HEi_a[e]; v_av /= (float) das->nmem; for (e = 0; e < das->nmem; ++e) HEi_a[e] = (HEi_a[e] - v_av) * inflation + v_av; } for (e = 0; e < das->nmem; ++e) das->S[e][o] = HEi_a[e]; } } /* for stepj */ } /* for jj */ ncw_close(fname_X5, ncid); free(iiter); free(jiter); free2d(X5j); if (das->stride > 1) { free2d(X5jj); free2d(X5jj1); free2d(X5jj2); } } /* for gid */ free(HEi_a); free(HEi_f); das->s_mode = S_MODE_HE_a; } /* update_HE() */
static void update_Hx(dasystem* das) { model* m = das->m; int ngrid = model_getngrid(m); int gid; observations* obs = das->obs; int e, o; enkf_printf(" updating Hx:\n"); assert(das->s_mode == S_MODE_HE_f); /* * the following code for interpolation of X5 essentially coincides with * that in das_updatefields() */ for (gid = 0, o = 0; gid < ngrid && o < obs->nobs; ++gid) { void* grid = model_getgridbyid(m, gid); int periodic_i = grid_isperiodic_x(grid); int periodic_j = grid_isperiodic_y(grid); char fname_w[MAXSTRLEN]; int ncid; int varid; int dimids[3]; size_t dimlens[3]; size_t start[3], count[3]; float** wj = NULL; float** wjj = NULL; float** wjj1 = NULL; float** wjj2 = NULL; int mni, mnj; int* iiter; int* jiter; int i, j, ni, nj; int jj, stepj, ii, stepi; assert(obs->obstypes[obs->data[o].type].gridid == gid); das_getfname_w(das, grid, fname_w); ncw_open(fname_w, NC_NOWRITE, &ncid); ncw_inq_varid(fname_w, ncid, "w", &varid); ncw_inq_vardimid(fname_w, ncid, varid, dimids); for (i = 0; i < 3; ++i) ncw_inq_dimlen(fname_w, ncid, dimids[i], &dimlens[i]); ni = dimlens[1]; nj = dimlens[0]; assert((int) dimlens[2] == das->nmem); jiter = malloc((nj + 1) * sizeof(int)); /* "+ 1" to handle periodic * grids */ iiter = malloc((ni + 1) * sizeof(int)); for (j = 0, i = 0; j < nj; ++j, i += das->stride) jiter[j] = i; if (periodic_j) jiter[nj] = jiter[nj - 1] + das->stride; for (i = 0, j = 0; i < ni; ++i, j += das->stride) iiter[i] = j; if (periodic_i) iiter[ni] = iiter[ni - 1] + das->stride; grid_getdims(grid, &mni, &mnj, NULL); start[0] = 0; start[1] = 0; start[2] = 0; count[0] = 1; count[1] = ni; count[2] = das->nmem; wj = alloc2d(mni, das->nmem, sizeof(float)); if (das->stride > 1) { wjj = alloc2d(ni, das->nmem, sizeof(float)); wjj1 = alloc2d(ni, das->nmem, sizeof(float)); wjj2 = alloc2d(ni, das->nmem, sizeof(float)); ncw_get_vara_float(fname_w, ncid, varid, start, count, wjj2[0]); } /* * jj, ii are the indices of the subsampled grid; i, j are the indices * of the model grid */ for (jj = 0, j = 0; jj < nj; ++jj) { for (stepj = 0; stepj < das->stride && j < mnj; ++stepj, ++j) { if (das->stride == 1) { /* * no interpolation necessary; simply read the ETMs for the * j-th row from disk */ start[0] = j; ncw_get_vara_float(fname_w, ncid, varid, start, count, wj[0]); } else { /* * the following code interpolates the ETM back to the * original grid, first by j, and then by i */ if (stepj == 0) { memcpy(wjj[0], wjj2[0], ni * das->nmem * sizeof(float)); memcpy(wjj1[0], wjj2[0], ni * das->nmem * sizeof(float)); if (jj < nj - 1 || periodic_j) { start[0] = (jj + 1) % nj; ncw_get_vara_float(fname_w, ncid, varid, start, count, wjj2[0]); } } else { float weight2 = (float) stepj / das->stride; float weight1 = (float) 1.0 - weight2; for (ii = 0; ii < ni; ++ii) { float* wjjii = wjj[ii]; float* wjj1ii = wjj1[ii]; float* wjj2ii = wjj2[ii]; for (e = 0; e < das->nmem; ++e) wjjii[e] = wjj1ii[e] * weight1 + wjj2ii[e] * weight2; } } for (ii = 0, i = 0; ii < ni; ++ii) { for (stepi = 0; stepi < das->stride && i < mni; ++stepi, ++i) { if (stepi == 0) memcpy(wj[i], wjj[ii], das->nmem * sizeof(float)); else { float weight2 = (float) stepi / das->stride; float weight1 = (float) 1.0 - weight2; float* wjjii1 = wjj[ii]; float* wji = wj[i]; float* wjjii2; if (ii < ni - 1) wjjii2 = wjj[ii + 1]; else wjjii2 = wjj[(periodic_i) ? (ii + 1) % ni : ii]; for (e = 0; e < das->nmem; ++e) wji[e] = wjjii1[e] * weight1 + wjjii2[e] * weight2; } } } } /* stride != 1 */ /* * (at this stage wj should contain the array of b vectors for * the j-th row of the grid) */ if (o >= obs->nobs) break; if ((int) (obs->data[o].fj) > j) continue; for (; o < obs->nobs && (int) (obs->data[o].fj) == j; ++o) { double dHx = 0.0; double Hx = 0.0; for (e = 0; e < das->nmem; ++e) Hx += das->S[e][o]; Hx /= (double) das->nmem; i = (int) (obs->data[o].fi); /* * HE(i, :) += HA(i, :) * b * 1' */ for (e = 0; e < das->nmem; ++e) dHx += (das->S[e][o] - Hx) * wj[i][e]; for (e = 0; e < das->nmem; ++e) das->S[e][o] += dHx; } } /* for stepj */ } /* for jj */ ncw_close(fname_w, ncid); free(iiter); free(jiter); free2d(wj); if (das->stride > 1) { free2d(wjj); free2d(wjj1); free2d(wjj2); } } /* for gid */ das->s_mode = S_MODE_HE_a; } /* update_Hx() */
void reader_xy_gridded_hfradar(char* fname, int fid, obsmeta* meta, grid* g, observations* obs) { int ksurf = grid_getsurflayerid(g); int isperiodic_i = grid_isperiodic_i(g); int** numlevels = grid_getnumlevels(g); float** grid_angle = grid_getangle(g); int grid_ni = 0, grid_nj = 0; char* varname = NULL; char* u_varname = NULL; char* v_varname = NULL; char* u_stdvarname = NULL; char* v_stdvarname = NULL; char* lonname = NULL; char* latname = NULL; char* gdopname = NULL; char* npointsname_1 = NULL; char* npointsname_2 = NULL; char* stdname = NULL; char* estdname = NULL; char* timename = NULL; char* qcflagname = NULL; char* u_qcflagname = NULL; char* v_qcflagname = NULL; char* rotation_flag = NULL; int ncid; int ndim_var, ndim_xy; size_t dimlen_var[3], dimlen_xy[2]; uint32_t qcflagvals = 0; float varshift = 0.0; float u_varshift = 0.0; float v_varshift = 0.0; double mindepth = 0.0; char instrument[MAXSTRLEN]; int iscurv = -1; int need_rotation = -1; size_t ni = 0, nj = 0, n = 0, n_var = 0; int varid_lon = -1, varid_lat = -1; double* lon = NULL; double* lat = NULL; int varid_gdop = -1, varid_npoints_1 = -1, varid_npoints_2 = -1; int varid_var = -1, varid_std = -1, varid_estd = -1, varid_qcflag = -1, varid_time = -1; int varid_u = -1, varid_v =-1, varid_u_std = -1, varid_v_std = -1, varid_u_qcflag = -1, varid_v_qcflag = -1; float* var = NULL; float* u_var = NULL; float* v_var = NULL; float* u_std = NULL; float* v_std = NULL; float var_fill_value = NAN; float var_add_offset = NAN, var_scale_factor = NAN; float u_var_fill_value = NAN; float u_var_add_offset = NAN, u_var_scale_factor = NAN; float v_var_fill_value = NAN; float v_var_add_offset = NAN, v_var_scale_factor = NAN; float u_std_fill_value = NAN; float u_std_add_offset = NAN, u_std_scale_factor = NAN; float v_std_fill_value = NAN; float v_std_add_offset = NAN, v_std_scale_factor = NAN; double var_estd = NAN; float* gdop = NULL; short* npoints_1 = NULL; short* npoints_2 = NULL; float* std = NULL; float std_add_offset = NAN, std_scale_factor = NAN; float std_fill_value = NAN; float* estd = NULL; float estd_add_offset = NAN, estd_scale_factor = NAN; float estd_fill_value = NAN; int32_t* qcflag = NULL; int32_t* u_qcflag = NULL; int32_t* v_qcflag = NULL; int have_time = 1; int singletime = -1; float* time = NULL; float time_add_offset = NAN, time_scale_factor = NAN; float time_fill_value = NAN; char tunits[MAXSTRLEN]; double tunits_multiple = NAN, tunits_offset = NAN; int i, nobs_read; strcpy(instrument, meta->product); for (i = 0; i < meta->npars; ++i) { if (strcasecmp(meta->pars[i].name, "VARNAME") == 0) varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "ROTATION") == 0) rotation_flag = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "U_VARNAME") == 0) u_varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "V_VARNAME") == 0) v_varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "U_STD") == 0) u_stdvarname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "V_STD") == 0) v_stdvarname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "TIMENAME") == 0) timename = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "GDOPNAME") == 0) gdopname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "NPOINTSNAME_1") == 0) npointsname_1 = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "NPOINTSNAME_2") == 0) npointsname_2 = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "LONNAME") == 0) lonname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "LATNAME") == 0) latname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "STDNAME") == 0) stdname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "ESTDNAME") == 0) estdname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "QCFLAGNAME") == 0) qcflagname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "U_QCFLAGNAME") == 0) u_qcflagname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "V_QCFLAGNAME") == 0) v_qcflagname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "QCFLAGVALS") == 0) { char* pline = meta->pars[i].value; int linelen = sizeof(pline); char lineval[linelen]; char* line = strcpy(lineval,pline); char seps[] = " ,"; char* token; int val; qcflagvals = 0; while ((token = strtok(line, seps)) != NULL) { if (!str2int(token, &val)) enkf_quit("%s: could not convert QCFLAGVALS entry \"%s\" to integer", meta->prmfname, token); if (val < 0 || val > 31) enkf_quit("%s: QCFLAGVALS entry = %d (supposed to be in [0,31] interval", meta->prmfname, val); qcflagvals |= 1 << val; line = NULL; } if (qcflagvals == 0) enkf_quit("%s: no valid flag entries found after QCFLAGVALS\n", meta->prmfname); } else if (strcasecmp(meta->pars[i].name, "VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &varshift)) enkf_quit("%s: can not convert VARSHIFT = \"%s\" to float\n", meta->prmfname, meta->pars[i].value); enkf_printf(" VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "U_VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &u_varshift)) enkf_quit("%s: can not convert U_VARSHIFT = \"%s\" to float\n", meta->prmfname, meta->pars[i].value); enkf_printf(" U_VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "V_VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &v_varshift)) enkf_quit("%s: can not convert V_VARSHIFT = \"%s\" to float\n", meta->prmfname, meta->pars[i].value); enkf_printf(" V_VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "MINDEPTH") == 0) { if (!str2double(meta->pars[i].value, &mindepth)) enkf_quit("%s: can not convert MINDEPTH = \"%s\" to double\n", meta->prmfname, meta->pars[i].value); enkf_printf(" MINDEPTH = %f\n", mindepth); } else if (strcasecmp(meta->pars[i].name, "INSTRUMENT") == 0) { strncpy(instrument, meta->pars[i].value, MAXSTRLEN); } else enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); } if (varname == NULL) enkf_quit("reader_xy_gridded(): %s variable name not specified", fname); if (rotation_flag != NULL) { int bool_rotation_flag, valid_rotation_flag; bool_rotation_flag = atoi(rotation_flag); valid_rotation_flag = (bool_rotation_flag == 0 || bool_rotation_flag == 1); if (valid_rotation_flag) { need_rotation = bool_rotation_flag == 1; grid_getdims(g, &grid_ni, &grid_nj, NULL); if (need_rotation == 1 && grid_angle == NULL) enkf_quit("reader_xy_gridded_hfradar(): %s cannot rotate vectors without ANGLE parameter defined within grid prm file",fname); enkf_printf("\t#Rotation of vectors enabled\n"); } else enkf_quit("reader_xy_gridded_hfradar(): %s invalid ROTATION parameter. Need to be a boolean digit"); } ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_varid(ncid, varname, &varid_var); ncw_inq_vardims(ncid, varid_var, 3, &ndim_var, dimlen_var); if (ndim_var == 3) { int dimid[3]; size_t nr; ncw_inq_vardimid(ncid, varid_var, dimid); ncw_inq_dimlen(ncid, dimid[0], &nr); if (nr != 1) enkf_quit("reader_xy_gridded(): %d records (currently only one is allowed)", nr); n_var = dimlen_var[1] * dimlen_var[2]; } else if (ndim_var == 2) { if (nc_hasunlimdim(ncid)) enkf_quit("reader_xy_gridded(): %s: %s: not enough spatial dimensions (must be 2)", fname, varname); n_var = dimlen_var[0] * dimlen_var[1]; } else if (ndim_var != 2) enkf_quit("reader_xy_gridded(): %s: # dimensions = %d (must be 2 or 3 with only one record)", fname, ndim_var); if (lonname != NULL) ncw_inq_varid(ncid, lonname, &varid_lon); else if (ncw_var_exists(ncid, "lon")) ncw_inq_varid(ncid, "lon", &varid_lon); else if (ncw_var_exists(ncid, "longitude")) ncw_inq_varid(ncid, "longitude", &varid_lon); else if (ncw_var_exists(ncid, "LONGITUDE")) ncw_inq_varid(ncid, "LONGITUDE", &varid_lon); else enkf_quit("reader_xy_gridded(): %s: could not find longitude variable", fname); ncw_inq_vardims(ncid, varid_lon, 2, &ndim_xy, dimlen_xy); if (ndim_xy == 1) { iscurv = 0; ni = dimlen_xy[0]; } else if (ndim_xy == 2) { iscurv = 1; ni = dimlen_xy[1]; nj = dimlen_xy[0]; } else enkf_quit("reader_xy_gridded(): %s: coordinate variable \"%s\" has neither 1 or 2 dimensions", fname, lonname); if (latname != NULL) ncw_inq_varid(ncid, latname, &varid_lat); else if (ncw_var_exists(ncid, "lat")) ncw_inq_varid(ncid, "lat", &varid_lat); else if (ncw_var_exists(ncid, "latitude")) ncw_inq_varid(ncid, "latitude", &varid_lat); else if (ncw_var_exists(ncid, "LATITUDE")) ncw_inq_varid(ncid, "LATITUDE", &varid_lat); else enkf_quit("reader_xy_gridded(): %s: could not find latitude variable", fname); if (iscurv == 0) { ncw_check_varndims(ncid, varid_lat, 1); ncw_inq_vardims(ncid, varid_lat, 1, NULL, &nj); } else ncw_check_vardims(ncid, varid_lat, 2, dimlen_xy); enkf_printf(" (ni, nj) = (%u, %u)\n", ni, nj); n = ni * nj; if (n != n_var) enkf_quit("reader_xy_gridded(): %s: dimensions of variable \"%s\" do not match coordinate dimensions", fname, varname); if (dimlen_var[ndim_var - 1] != ni) enkf_quit("reader_xy_gridded(): %s: %s: longitude must be the inner coordinate", fname, varname); if (iscurv == 0) { lon = malloc(ni * sizeof(double)); lat = malloc(nj * sizeof(double)); } else { lon = malloc(n * sizeof(double)); lat = malloc(n * sizeof(double)); } ncw_get_var_double(ncid, varid_lon, lon); ncw_get_var_double(ncid, varid_lat, lat); var = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_var, var); if (ncw_att_exists(ncid, varid_var, "add_offset")) { ncw_get_att_float(ncid, varid_var, "add_offset", &var_add_offset); ncw_get_att_float(ncid, varid_var, "scale_factor", &var_scale_factor); } if (ncw_att_exists(ncid, varid_var, "_FillValue")) ncw_get_att_float(ncid, varid_var, "_FillValue", &var_fill_value); if (gdopname != NULL) ncw_inq_varid(ncid, gdopname, &varid_gdop); else if (ncw_var_exists(ncid, "GDOP")) ncw_inq_varid(ncid, "GDOP", &varid_gdop); if (varid_gdop >= 0) { gdop = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_gdop, gdop); float gdop_fill_value, gdop_add_offset, gdop_scale_factor; if (ncw_att_exists(ncid, varid_gdop, "_FillValue")) ncw_get_att_float(ncid, varid_gdop, "_FillValue", &gdop_fill_value); if (ncw_att_exists(ncid, varid_gdop, "add_offset")) { ncw_get_att_float(ncid, varid_gdop, "add_offset", &gdop_add_offset); ncw_get_att_float(ncid, varid_gdop, "scale_factor", &gdop_scale_factor); } } if (npointsname_1 != NULL) ncw_inq_varid(ncid, npointsname_1, &varid_npoints_1); else if (ncw_var_exists(ncid, "NOBS1")) ncw_inq_varid(ncid, "NOBS1", &varid_npoints_1); if (varid_npoints_1 >= 0) { npoints_1 = malloc(n * sizeof(short)); ncw_get_var_short(ncid, varid_npoints_1, npoints_1); } if (npointsname_2 != NULL) ncw_inq_varid(ncid, npointsname_2, &varid_npoints_2); else if (ncw_var_exists(ncid, "NOBS2")) ncw_inq_varid(ncid, "NOBS2", &varid_npoints_2); if (varid_npoints_2 >= 0) { npoints_2 = malloc(n * sizeof(short)); ncw_get_var_short(ncid, varid_npoints_2, npoints_2); } if (need_rotation == 1) { if (u_varname != NULL ) ncw_inq_varid(ncid, u_varname, &varid_u); else if (ncw_var_exists(ncid, "UCUR")) { ncw_inq_varid(ncid, "UCUR", &varid_u); u_varname = "UCUR"; } if (varid_u >= 0) { u_var = malloc(n * sizeof(float)); ncw_get_var_float(ncid,varid_u,u_var); if (ncw_att_exists(ncid,varid_u, "_FillValue")) ncw_get_att_float(ncid, varid_u, "_FillValue", &u_var_fill_value); if (ncw_att_exists(ncid,varid_u,"add_offset")) { ncw_get_att_float(ncid, varid_u, "add_offset", &u_var_add_offset); ncw_get_att_float(ncid, varid_u, "scale_factor", &u_var_scale_factor); } } else enkf_quit("reader_xy_gridded(): %s: Variable %s not found.",fname, u_varname); if (v_varname != NULL) ncw_inq_varid(ncid, v_varname, &varid_v); else if (ncw_var_exists(ncid, "VCUR")) { ncw_inq_varid(ncid, "VCUR", &varid_v); v_varname = "VCUR"; } if (varid_v >= 0) { v_var = malloc(n * sizeof(float)); ncw_get_var_float(ncid,varid_v,v_var); if (ncw_att_exists(ncid,varid_v, "_FillValue")) ncw_get_att_float(ncid,varid_v, "_FillValue", &v_var_fill_value); if (ncw_att_exists(ncid,varid_v,"add_offset")) { ncw_get_att_float(ncid, varid_v, "add_offset", &v_var_add_offset); ncw_get_att_float(ncid, varid_v, "scale_factor", &v_var_scale_factor); } } else enkf_quit("reader_xy_gridded(): %s: Variable %s not found.",fname, v_varname); } if (stdname != NULL) ncw_inq_varid(ncid, stdname, &varid_std); else if (ncw_var_exists(ncid, "std")) ncw_inq_varid(ncid, "std", &varid_std); if (varid_std >= 0) { std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_std, std); if (ncw_att_exists(ncid, varid_std, "_FillValue")) ncw_get_att_float(ncid, varid_std, "_FillValue", &std_fill_value); if (ncw_att_exists(ncid, varid_std, "add_offset")) { ncw_get_att_float(ncid, varid_std, "add_offset", &std_add_offset); ncw_get_att_float(ncid, varid_std, "scale_factor", &std_scale_factor); } } if (estdname != NULL) ncw_inq_varid(ncid, estdname, &varid_estd); else if (ncw_var_exists(ncid, "error_std")) ncw_inq_varid(ncid, "error_std", &varid_estd); if (varid_estd >= 0) { estd = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_estd, estd); if (ncw_att_exists(ncid, varid_estd, "_FillValue")) ncw_get_att_float(ncid, varid_estd, "_FillValue", &estd_fill_value); if (ncw_att_exists(ncid, varid_estd, "add_offset")) { ncw_get_att_float(ncid, varid_estd, "add_offset", &estd_add_offset); ncw_get_att_float(ncid, varid_estd, "scale_factor", &estd_scale_factor); } } if (std == NULL && estd == NULL) if (ncw_att_exists(ncid, varid_var, "error_std")) { ncw_check_attlen(ncid, varid_var, "error_std", 1); ncw_get_att_double(ncid, varid_var, "error_std", &var_estd); } if (u_stdvarname != NULL) ncw_inq_varid(ncid, u_stdvarname, &varid_u_std); else if (ncw_var_exists(ncid, "UCUR_sd")) ncw_inq_varid(ncid, "UCUR_sd", &varid_u_std); if (varid_u_std >= 0) { u_std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_u_std, u_std); if (ncw_att_exists(ncid, varid_u_std, "_FillValue")) ncw_get_att_float(ncid, varid_u_std, "_FillValue", &u_std_fill_value); if (ncw_att_exists(ncid, varid_u_std, "add_offset")) { ncw_get_att_float(ncid, varid_u_std, "add_offset", &u_std_add_offset); ncw_get_att_float(ncid, varid_u_std, "scale_factor", &u_std_scale_factor); } } if (v_stdvarname != NULL) ncw_inq_varid(ncid, v_stdvarname, &varid_v_std); else if (ncw_var_exists(ncid, "vcur_sd")) ncw_inq_varid(ncid, "vcur_sd", &varid_v_std); if (varid_v_std >= 0) { v_std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_v_std, v_std); if (ncw_att_exists(ncid, varid_v_std, "_FillValue")) ncw_get_att_float(ncid, varid_v_std, "_FillValue", &v_std_fill_value); if (ncw_att_exists(ncid, varid_v_std, "add_offset")) { ncw_get_att_float(ncid, varid_v_std, "add_offset", &v_std_add_offset); ncw_get_att_float(ncid, varid_v_std, "scale_factor", &v_std_scale_factor); } } if (qcflagname != NULL) { ncw_inq_varid(ncid, qcflagname, &varid_qcflag); qcflag = malloc(n * sizeof(int32_t)); ncw_get_var_int(ncid, varid_qcflag, qcflag); } if (u_qcflagname != NULL) ncw_inq_varid(ncid, u_qcflagname, &varid_u_qcflag); else if (ncw_var_exists(ncid, "UCUR_quality_control")) ncw_inq_varid(ncid, "UCUR_quality_control", &varid_u_qcflag); if (varid_u_qcflag >= 0) { u_qcflag = malloc(n * sizeof(int32_t)); ncw_get_var_int(ncid, varid_u_qcflag, u_qcflag); } if (v_qcflagname != NULL) ncw_inq_varid(ncid, v_qcflagname, &varid_v_qcflag); else if (ncw_var_exists(ncid, "VCUR_quality_control")) ncw_inq_varid(ncid, "VCUR_quality_control", &varid_v_qcflag); if (varid_v_qcflag >= 0) { v_qcflag = malloc(n * sizeof(int32_t)); ncw_get_var_int(ncid, varid_v_qcflag, v_qcflag); } if (timename != NULL) ncw_inq_varid(ncid, timename, &varid_time); else if (ncw_var_exists(ncid, "time")) ncw_inq_varid(ncid, "time", &varid_time); else if (ncw_var_exists(ncid, "TIME")) ncw_inq_varid(ncid, "TIME", &varid_time); else { enkf_printf(" reader_xy_gridded(): %s: no TIME variable\n", fname); have_time = 0; } if (have_time) { int timendims; int timedimids[NC_MAX_DIMS]; size_t timelen = 1; ncw_inq_varndims(ncid, varid_time, &timendims); ncw_inq_vardimid(ncid, varid_time, timedimids); for (i = 0; i < timendims; ++i) { size_t dimlen; ncw_inq_dimlen(ncid, timedimids[i], &dimlen); timelen *= dimlen; } if (timelen == 1) { singletime = 1; time = malloc(sizeof(float)); } else { singletime = 0; assert(timelen == n); time = malloc(n * sizeof(float)); } ncw_get_var_float(ncid, varid_time, time); if (ncw_att_exists(ncid, varid_time, "_FillValue")) ncw_get_att_float(ncid, varid_time, "_FillValue", &time_fill_value); if (ncw_att_exists(ncid, varid_time, "add_offset")) { ncw_get_att_float(ncid, varid_time, "add_offset", &time_add_offset); ncw_get_att_float(ncid, varid_time, "scale_factor", &time_scale_factor); } ncw_get_att_text(ncid, varid_time, "units", tunits); tunits_convert(tunits, &tunits_multiple, &tunits_offset); } ncw_close(ncid); nobs_read = 0; for (i = 0; i < (int) n; ++i) { observation* o; obstype* ot; int invalid_gdop, invalid_npoints1, invalid_npoints2, invalid_var, invalid_std, invalid_estd, invalid_u_var, invalid_v_var, invalid_time; invalid_gdop = (gdop != NULL && (gdop[i] > 180.0 || gdop[i] < 0.0)); invalid_npoints1 = (npoints_1 != NULL && (npoints_1[i] == 0 || npoints_1[i]< 0)); invalid_npoints2 = (npoints_2 != NULL && (npoints_2[i] == 0 || npoints_2[i] < 0)); invalid_var = var[i] == var_fill_value || isnan(var[i]); invalid_std = (std != NULL && (std[i] == std_fill_value || isnan(std[i]))); invalid_estd = (estd != NULL && (estd[i] == estd_fill_value || isnan(estd[i]))); invalid_u_var = (u_var != NULL && (u_var[i] == u_var_fill_value || isnan(u_var[i]))); invalid_v_var = (v_var != NULL && (v_var[i] == v_var_fill_value || isnan(v_var[i]))); invalid_time = (have_time && !singletime && (time[i] == time_fill_value || isnan(time[i]))); if (invalid_gdop || invalid_npoints1 || invalid_npoints2 || invalid_var || invalid_std || invalid_estd || invalid_u_var || invalid_v_var || invalid_time) continue; if (qcflag != NULL) { /* general qcflags has precedence in discarding obs*/ if ( (qcflagvals != (qcflagvals | 1<<qcflag[i])) || (u_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<u_qcflag[i]))) || (v_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<v_qcflag[i]))) ) continue; } /* [u,v]_qcflags has precedence in values. */ if (u_qcflagname != NULL && v_qcflagname != NULL) { if ( (u_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<u_qcflag[i]))) || (v_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<v_qcflag[i]))) ) continue; } else if (u_qcflagname != NULL) { if (u_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<u_qcflag[i]))) continue; } else if (v_qcflagname != NULL) { if (v_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<v_qcflag[i]))) continue; } nobs_read++; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabsent(obs->instruments, instrument, -1); o->id = obs->nobs; o->fid = fid; o->batch = 0; /* Shifted the reading order for HF-Radar to obtain indexes */ if (iscurv == 0) { o->lon = lon[i % ni]; o->lat = lat[i / ni]; } else { o->lon = lon[i]; o->lat = lat[i]; } o->depth = 0.0; o->fk = (double) ksurf; o->model_depth = NAN; /* set in obs_add() */ o->status = grid_xy2fij(g, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax)) o->status = STATUS_OUTSIDEOBSDOMAIN; if (need_rotation == 1) { double zonal, meridional, oangle; if (!isnan(u_var_add_offset)) zonal = u_var[i] * u_var_scale_factor + u_var_add_offset + varshift + u_varshift; else zonal = u_var[i]; if (!isnan(v_var_add_offset)) meridional = v_var[i] * v_var_scale_factor + v_var_add_offset + varshift + u_varshift; else meridional = v_var[i]; oangle = interpolate2d(o->fi, o-> fj, grid_ni, grid_nj, grid_angle, numlevels, isperiodic_i); if (strcmp(varname,u_varname) == 0) o->value = zonal*cos(oangle) - meridional*sin(oangle); if (strcmp(varname,v_varname) == 0) o->value = zonal*sin(oangle) + meridional*cos(oangle); } else { if (!isnan(var_add_offset)) o->value = (double) (var[i] * var_scale_factor + var_add_offset + varshift); else o->value = (double) (var[i] + varshift); } if (estd == NULL && std == NULL){ if (!isnan(var_estd)) o->std = var_estd; } else { if (std == NULL) o->std = 0.0; else { if (!isnan(std_add_offset)) o->std = (double) (std[i] * std_scale_factor + std_add_offset); else o->std = (double) std[i]; } if (estd != NULL) { if (!isnan(estd_add_offset)) { double std2 = (double) (estd[i] * estd_scale_factor + estd_add_offset); o->std = (o->std > std2) ? o->std : std2; } else o->std = (o->std > estd[i]) ? o->std : estd[i]; } } if (have_time) { float t = (singletime) ? time[0] : time[i]; if (!isnan(time_add_offset)) o->date = (double) (t * time_scale_factor + time_add_offset) * tunits_multiple + tunits_offset; else o->date = (double) t* tunits_multiple + tunits_offset; } else o->date = NAN; o->aux = -1; obs->nobs++; } enkf_printf(" nobs = %d\n", nobs_read); free(lon); free(lat); free(var); if (gdop != NULL) free(gdop); if (npoints_1 != NULL) free(npoints_1); if (npoints_2 != NULL) free(npoints_2); if (u_var != NULL) free(u_var); if (v_var != NULL) free(v_var); if (std != NULL) free(std); if (estd != NULL) free(estd); if (u_std != NULL) free(u_std); if (v_std != NULL) free(v_std); if (qcflag != NULL) free(qcflag); if (u_qcflag != NULL) free(u_qcflag); if (v_qcflag != NULL) free(v_qcflag); if (time != NULL) free(time); }