Beispiel #1
0
void smurf_sc2fft( int *status ) {

  int avpspec=0;            /* Flag for doing average power spectrum */
  double avpspecthresh=0;   /* Threshold noise for detectors in avpspec */
  Grp * basegrp = NULL;     /* Basis group for output filenames */
  smfArray *bbms = NULL;    /* Bad bolometer masks */
  smfArray *concat=NULL;    /* Pointer to a smfArray */
  size_t contchunk;         /* Continuous chunk counter */
  smfArray *darks = NULL;   /* dark frames */
  int ensureflat;           /* Flag for flatfielding data */
  Grp *fgrp = NULL;         /* Filtered group, no darks */
  smfArray *flatramps = NULL;/* Flatfield ramps */
  AstKeyMap *heateffmap = NULL;    /* Heater efficiency data */
  size_t gcount=0;          /* Grp index counter */
  size_t i;                 /* Loop counter */
  smfGroup *igroup=NULL;    /* smfGroup corresponding to igrp */
  Grp *igrp = NULL;         /* Input group of files */
  int inverse=0;            /* If set perform inverse transform */
  int isfft=0;              /* Are data fft or real space? */
  dim_t maxconcat=0;        /* Longest continuous chunk length in samples */
  size_t ncontchunks=0;     /* Number continuous chunks outside iter loop */
  smfData *odata=NULL;      /* Pointer to output smfData to be exported */
  Grp *ogrp = NULL;         /* Output group of files */
  size_t outsize;           /* Total number of NDF names in the output group */
  int polar=0;              /* Flag for FFT in polar coordinates */
  int power=0;              /* Flag for squaring amplitude coeffs */
  size_t size;              /* Number of files in input group */
  smfData *tempdata=NULL;   /* Temporary smfData pointer */
  int weightavpspec=0;      /* Flag for 1/noise^2 weighting */
  ThrWorkForce *wf = NULL;  /* Pointer to a pool of worker threads */
  int zerobad;              /* Zero VAL__BADD before taking FFT? */

  /* Main routine */
  ndfBegin();

  /* Find the number of cores/processors available and create a pool of
     threads of the same size. */
  wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

  /* Get input file(s) */
  kpg1Rgndf( "IN", 0, 1, "", &igrp, &size, status );

  /* Filter out darks */
  smf_find_science( igrp, &fgrp, 1, NULL, NULL, 1, 1, SMF__NULL, &darks,
                    &flatramps, &heateffmap, NULL, status );

  /* input group is now the filtered group so we can use that and
     free the old input group */
  size = grpGrpsz( fgrp, status );
  grpDelet( &igrp, status);
  igrp = fgrp;
  fgrp = NULL;

  /* We now need to combine files from the same subarray and same sequence
     to form a continuous time series */
  smf_grp_related( igrp, size, 1, 0, 0, NULL, NULL, &maxconcat, NULL, &igroup,
                   &basegrp, NULL, status );

  /* Get output file(s) */
  size = grpGrpsz( basegrp, status );
  if( size > 0 ) {
    kpg1Wgndf( "OUT", basegrp, size, size, "More output files required...",
               &ogrp, &outsize, status );
  } else {
    msgOutif(MSG__NORM, " ", TASK_NAME ": All supplied input frames were DARK,"
             " nothing to do", status );
  }

  /* Get group of bolometer masks and read them into a smfArray */
  smf_request_mask( "BBM", &bbms, status );

  /* Obtain the number of continuous chunks and subarrays */
  if( *status == SAI__OK ) {
    ncontchunks = igroup->chunk[igroup->ngroups-1]+1;
  }
  msgOutiff( MSG__NORM, "", "Found %zu continuous chunk%s", status, ncontchunks,
             (ncontchunks > 1 ? "s" : "") );

  /* Are we flatfielding? */
  parGet0l( "FLAT", &ensureflat, status );

  /* Are we doing an inverse transform? */
  parGet0l( "INVERSE", &inverse, status );

  /* Are we using polar coordinates instead of cartesian for the FFT? */
  parGet0l( "POLAR", &polar, status );

  /* Are we going to assume amplitudes are squared? */
  parGet0l( "POWER", &power, status );

  /* Are we going to zero bad values first? */
  parGet0l( "ZEROBAD", &zerobad, status );

  /* Are we calculating the average power spectrum? */
  parGet0l( "AVPSPEC", &avpspec, status );

  if( avpspec ) {
    power = 1;
    parGet0d( "AVPSPECTHRESH", &avpspecthresh, status );

    parGet0l( "WEIGHTAVPSPEC", &weightavpspec, status );
  }

  /* If power is true, we must be in polar form */
  if( power && !polar) {
    msgOutif( MSG__NORM, " ", TASK_NAME
              ": power spectrum requested so setting POLAR=TRUE", status );
    polar = 1;
  }

  gcount = 1;
  for( contchunk=0;(*status==SAI__OK)&&contchunk<ncontchunks; contchunk++ ) {
    size_t idx;

    /* Concatenate this continuous chunk but forcing a raw data read.
       We will need quality. */
    smf_concat_smfGroup( wf, NULL, igroup, darks, NULL, flatramps, heateffmap,
                         contchunk, ensureflat, 1, NULL, 0, NULL, NULL, 0, 0, 0,
                         &concat, NULL, status );

    /* Now loop over each subarray */
    /* Export concatenated data for each subarray to NDF file */
    for( idx=0; (*status==SAI__OK)&&idx<concat->ndat; idx++ ) {
      if( concat->sdata[idx] ) {
        smfData * idata = concat->sdata[idx];
        int provid = NDF__NOID;
        dim_t nbolo;                /* Number of detectors  */
        dim_t ndata;                /* Number of data points */

        /* Apply a mask to the quality array and data array */
        smf_apply_mask( idata, bbms, SMF__BBM_QUAL|SMF__BBM_DATA, 0, status );

        smf_get_dims( idata,  NULL, NULL, &nbolo, NULL, &ndata, NULL, NULL,
                      status );


        /* Check for double precision data */
        if( idata->dtype != SMF__DOUBLE ) {
          *status = SAI__ERROR;
          errRep( "", FUNC_NAME ": data are not double precision.", status );
        }

        /* Are we zeroing VAL__BADD? */
        if( (*status==SAI__OK) && zerobad ) {
          double *data= (double *) idata->pntr[0];

          for( i=0; i<ndata; i++ ) {
            if( data[i] == VAL__BADD ) {
              data[i] = 0;
            }
          }
        }

        /* Check whether we need to transform the data at all */
        isfft = smf_isfft(idata,NULL,NULL,NULL,NULL,NULL,status);

        if( isfft && avpspec && (*status == SAI__OK) ) {
          *status = SAI__ERROR;
          errRep( "", FUNC_NAME
                  ": to calculate average power spectrum input data cannot "
                  "be FFT", status );
        }

        if( (*status == SAI__OK) && (isfft == inverse) ) {

          if( avpspec ) {
            /* If calculating average power spectrum do the transforms with
               smf_bolonoise so that we can also measure the noise of
               each detector */

            double *whitenoise=NULL;
            smf_qual_t *bolomask=NULL;
            double mean, sig, freqlo;
            size_t ngood, newgood;

            whitenoise = astCalloc( nbolo, sizeof(*whitenoise) );
            bolomask = astCalloc( nbolo, sizeof(*bolomask) );

	    freqlo = 1. / (idata->hdr->steptime * idata->hdr->nframes);

            smf_bolonoise( wf, idata, 1, freqlo, SMF__F_WHITELO,
                           SMF__F_WHITEHI, 1, 0, whitenoise, NULL, &odata,
                           status );

            /* Initialize quality */
            for( i=0; i<nbolo; i++ ) {
              if( whitenoise[i] == VAL__BADD ) {
                bolomask[i] = SMF__Q_BADB;
              } else {
                /* smf_bolonoise returns a variance, so take sqrt */
                whitenoise[i] = sqrt(whitenoise[i]);
              }
            }

            ngood=-1;
            newgood=0;

            /* Iteratively cut n-sigma noisy outlier detectors */
            while( ngood != newgood ) {
              ngood = newgood;
              smf_stats1D( whitenoise, 1, nbolo, bolomask, 1, SMF__Q_BADB,
                           &mean, &sig, NULL, NULL, status );
              msgOutiff( MSG__DEBUG, "", TASK_NAME
                         ": mean=%lf sig=%lf ngood=%li\n", status,
                         mean, sig, ngood);

              newgood=0;
              for( i=0; i<nbolo; i++ ) {
                if( whitenoise[i] != VAL__BADD ){
                  if( (whitenoise[i] - mean) > avpspecthresh *sig ) {
                    whitenoise[i] = VAL__BADD;
                    bolomask[i] = SMF__Q_BADB;
                  } else {
                    newgood++;
                  }
                }
              }
            }

            msgOutf( "", TASK_NAME
                     ": Calculating average power spectrum of best %li "
                     " bolometers.", status, newgood);

            /* If using 1/noise^2 weights, calculate 1/whitenoise^2 in-place
               to avoid allocating another array */
            if( weightavpspec ) {
              msgOutif( MSG__VERB, "", TASK_NAME ": using 1/noise^2 weights",
                        status );

              for( i=0; i<nbolo; i++ ) {
                if( whitenoise[i] && (whitenoise[i] != VAL__BADD) ) {
                  whitenoise[i] = 1/(whitenoise[i]*whitenoise[i]);
                }
              }
            }

            /* Calculate the average power spectrum of good detectors */
            tempdata = smf_fft_avpspec( odata, bolomask, 1, SMF__Q_BADB,
                                        weightavpspec ? whitenoise : NULL,
                                        status );
            smf_close_file( &odata, status );
            whitenoise = astFree( whitenoise );
            bolomask = astFree( bolomask );
            odata = tempdata;
            tempdata = NULL;
	    /* Store the number of good bolometers */
	    parPut0i( "NGOOD", newgood, status );
          } else {
            /* Otherwise do forward/inverse transforms here as needed */

            /* If inverse transform convert to cartesian representation first */
            if( inverse && polar ) {
              smf_fft_cart2pol( wf, idata, 1, power, status );
            }

            /* Tranform the data */
            odata = smf_fft_data( wf, idata, NULL, inverse, 0, status );
            smf_convert_bad( wf, odata, status );

            if( inverse ) {
              /* If output is time-domain, ensure that it is ICD bolo-ordered */
              smf_dataOrder( odata, 1, status );
            } else if( polar ) {
              /* Store FFT of data in polar form */
              smf_fft_cart2pol( wf, odata, 0, power, status );
            }
          }

          /* open a reference input file for provenance propagation */
          ndgNdfas( basegrp, gcount, "READ", &provid, status );

          /* Export the data to a new file */
          smf_write_smfData( odata, NULL, NULL, ogrp, gcount, provid,
                             MSG__VERB, 0, status );

          /* Free resources */
          ndfAnnul( &provid, status );
          smf_close_file( &odata, status );
        } else {
          msgOutif( MSG__NORM, " ",
                    "Data are already transformed. No output will be produced",
                    status );
        }
      }

      /* Update index into group */
      gcount++;
    }

    /* Close the smfArray */
    smf_close_related( &concat, status );
  }

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK ) {
    grpList( "OUTFILES", 0, 0, NULL, ogrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }

  /* Tidy up after ourselves: release the resources used by the grp routines */
  grpDelet( &igrp, status);
  grpDelet( &ogrp, status);
  if (basegrp) grpDelet( &basegrp, status );
  if( igroup ) smf_close_smfGroup( &igroup, status );
  if( flatramps ) smf_close_related( &flatramps, status );
  if (heateffmap) heateffmap = smf_free_effmap( heateffmap, status );
  if (bbms) smf_close_related( &bbms, status );

  ndfEnd( status );

  /* Ensure that FFTW doesn't have any used memory kicking around */
  fftw_cleanup();
}
Beispiel #2
0
void smurf_sc2clean( int *status ) {
  smfArray *array = NULL;    /* Data to be cleaned */
  Grp *basegrp=NULL;         /* Grp containing first file each chunk */
  size_t basesize;           /* Number of files in base group */
  smfArray *bbms = NULL;     /* Bad bolometer masks */
  smfArray *concat=NULL;     /* Pointer to a smfArray */
  size_t contchunk;          /* Continuous chunk counter */
  smfArray *darks = NULL;    /* Dark data */
  int ensureflat;            /* Flag for flatfielding data */
  smfArray *flatramps = NULL;/* Flatfield ramps */
  AstKeyMap *heateffmap = NULL;    /* Heater efficiency data */
  smfData *odata = NULL;     /* Pointer to output data struct */
  Grp *fgrp = NULL;          /* Filtered group, no darks */
  size_t gcount=0;           /* Grp index counter */
  size_t idx;                /* Subarray counter */
  Grp *igrp = NULL;          /* Input group of files */
  smfGroup *igroup=NULL;     /* smfGroup corresponding to igrp */
  dim_t maxconcat=0;         /* Longest continuous chunk length in samples */
  double maxlen=0;           /* Constrain maxconcat to this many seconds */
  size_t ncontchunks=0;      /* Number continuous chunks outside iter loop */
  Grp *ogrp = NULL;          /* Output group of files */
  size_t osize;              /* Total number of NDF names in the output group */
  dim_t padStart=0;          /* How many samples padding at start */
  dim_t padEnd=0;            /* How many samples padding at end */
  size_t size;               /* Number of files in input group */
  int temp;                  /* Temporary signed integer */
  int usedarks;              /* flag for using darks */
  ThrWorkForce *wf = NULL;   /* Pointer to a pool of worker threads */
  int writecom;              /* Write COMmon mode to NDF if calculated? */
  int writegai;              /* Write GAIns to NDF if calculated? */

  /* Main routine */
  ndfBegin();

  /* Find the number of cores/processors available and create a pool of
     threads of the same size. */
  wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

  /* Read the input file */
  kpg1Rgndf( "IN", 0, 1, "", &igrp, &size, status );

  /* Filter out darks */
  smf_find_science( wf, igrp, &fgrp, 1, NULL, NULL, 1, 1, SMF__NULL, &darks,
                    &flatramps, &heateffmap, NULL, status );

  /* input group is now the filtered group so we can use that and
     free the old input group */
  size = grpGrpsz( fgrp, status );
  grpDelet( &igrp, status);
  igrp = fgrp;
  fgrp = NULL;

  if (size == 0) {
    msgOutif(MSG__NORM, " ","All supplied input frames were filtered,"
       " nothing to do", status );
    goto CLEANUP;
  }

  /* --- Parse ADAM parameters ---------------------------------------------- */

  /* Maximum length of a continuous chunk */
  parGdr0d( "MAXLEN", 0, 0, VAL__MAXD, 1, &maxlen, status );

  /* Padding */
  parGdr0i( "PADSTART", 0, 0, VAL__MAXI, 1, &temp, status );
  padStart = (dim_t) temp;

  parGdr0i( "PADEND", 0, 0, VAL__MAXI, 1, &temp, status );
  padEnd = (dim_t) temp;

  /* Are we using darks? */
  parGet0l( "USEDARKS", &usedarks, status );

  /* Are we flatfielding? */
  parGet0l( "FLAT", &ensureflat, status );

  /* Write COM/GAI to NDFs if calculated? */
  parGet0l( "COM", &writecom, status );
  parGet0l( "GAI", &writegai, status );

  /* Get group of bolometer masks and read them into a smfArray */
  smf_request_mask( wf, "BBM", &bbms, status );

  /* Group the input files by subarray and continuity ----------------------- */
  smf_grp_related( igrp, size, 1, 0, maxlen-padStart-padEnd, NULL, NULL,
                   &maxconcat, NULL, &igroup, &basegrp, NULL, status );

  /* Obtain the number of continuous chunks and subarrays */
  if( *status == SAI__OK ) {
    ncontchunks = igroup->chunk[igroup->ngroups-1]+1;
  }

  basesize = grpGrpsz( basegrp, status );

  /* Get output file(s) */
  kpg1Wgndf( "OUT", basegrp, basesize, basesize,
             "More output files required...",
             &ogrp, &osize, status );

  /* Loop over continuous chunks and clean -----------------------------------*/
  gcount = 1;
  for( contchunk=0;(*status==SAI__OK)&&contchunk<ncontchunks; contchunk++ ) {
    AstKeyMap *keymap=NULL;
    int dkclean;
    AstKeyMap *sub_instruments=NULL;

    /* Place cleaning parameters into a keymap and set defaults. Do
       this inside the loop in case we are cleaning files with
       differing sub-instruments.  Note that we use the map-maker
       defaults file here (which loads the sc2clean defaults) so that
       we populate the locked keymap with all the parameters that
       people may come across to allow them to load their map-maker
       config directly into sc2clean.
    */

    sub_instruments = smf_subinst_keymap( SMF__SUBINST_NONE,
                                          NULL, igrp,
                                          igroup->subgroups[contchunk][0],
                                          status );

    keymap = kpg1Config( "CONFIG", "$SMURF_DIR/smurf_makemap.def",
                         sub_instruments, 1, status );
    if( sub_instruments ) sub_instruments = astAnnul( sub_instruments );

    /* Now rerun smf_grp_related to figure out how long each downsampled
       chunk of data will be. */

    if( basegrp ) grpDelet( &basegrp, status );
    if( igroup ) smf_close_smfGroup( &igroup, status );

    smf_grp_related( igrp, size, 1, 0, maxlen-padStart-padEnd, NULL, keymap,
                     &maxconcat, NULL, &igroup, &basegrp, NULL, status );

    /* Concatenate this continuous chunk */
    smf_concat_smfGroup( wf, NULL, igroup, usedarks ? darks:NULL, bbms, flatramps,
                         heateffmap, contchunk, ensureflat, 1, NULL, 0, NULL,
                         NULL, NO_FTS, padStart, padEnd, 0, &concat, NULL, status );

    if( *status == SAI__OK) {
      /* clean the dark squids now since we might need to use them
         to clean the bolometer data */

      smf_get_cleanpar( keymap, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        &dkclean, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
                        NULL, NULL, NULL, status );

      for( idx=0; dkclean&&(*status==SAI__OK)&&idx<concat->ndat; idx++ ) {
        odata = concat->sdata[idx];

        if( odata && odata->da && odata->da->dksquid ) {
          smfData *dksquid = odata->da->dksquid;
          AstKeyMap *kmap=NULL;

          msgOut("", TASK_NAME ": cleaning dark squids", status);

          /* fudge the header so that we can get at JCMTState */
          dksquid->hdr = odata->hdr;

          /* clean darks using cleandk.* parameters */
          astMapGet0A( keymap, "CLEANDK", &kmap );
          array = smf_create_smfArray( status );
          smf_addto_smfArray( array, dksquid, status );
          smf_clean_smfArray( wf, array, NULL, NULL, NULL, kmap, status );
          if( array ) {
            array->owndata = 0;
            smf_close_related( wf, &array, status );
          }
          if( kmap ) kmap = astAnnul( kmap );

          /* Unset hdr pointer so that we don't accidentally close it */
          dksquid->hdr = NULL;
        }
      }

      /* Then the main data arrays */
      if( *status == SAI__OK ) {
        smfArray *com = NULL;
        smfArray *gai = NULL;
        char filename[GRP__SZNAM+1];

        msgOut("", TASK_NAME ": cleaning bolometer data", status );
        smf_clean_smfArray( wf, concat, NULL, &com, &gai, keymap, status );

        /* If ADAM parameters for COM or GAI were specified, and the
           common-mode was calculated, export to files here */

        if( writecom && com ) {
          for( idx=0; (*status==SAI__OK)&&(idx<com->ndat); idx++ ) {
            smf_model_createHdr( com->sdata[idx], SMF__COM, concat->sdata[idx],
                                 status );
            smf_stripsuffix( com->sdata[idx]->file->name,
                             SMF__DIMM_SUFFIX, filename, status );

            smf_dataOrder( wf, com->sdata[idx], 1, status );

            smf_write_smfData( wf, com->sdata[idx], NULL, filename, NULL, 0,
                               NDF__NOID, MSG__NORM, 0, NULL, NULL, status );
          }
        }

        if( writegai && gai ) {
          for( idx=0; (*status==SAI__OK)&&(idx<gai->ndat); idx++ ) {
            smf_model_createHdr( gai->sdata[idx], SMF__GAI, concat->sdata[idx],
                                 status );
            smf_stripsuffix( gai->sdata[idx]->file->name,
                             SMF__DIMM_SUFFIX, filename, status );

            smf_dataOrder( wf, gai->sdata[idx], 1, status );
            smf_write_smfData( wf, gai->sdata[idx], NULL, filename, NULL, 0,
                               NDF__NOID, MSG__NORM, 0, NULL, NULL, status );
          }
        }

        /* Close com and gai */
        if( com ) smf_close_related( wf, &com, status );
        if( gai ) smf_close_related( wf, &gai, status );

      }

      /* Report statistics (currently need a smfArray for that) */
      if (*status == SAI__OK) {
        size_t last_qcount[SMF__NQBITS];
        size_t last_nmap = 0;
        smf_qualstats_report( wf, MSG__VERB, SMF__QFAM_TSERIES, 1, concat,
                              last_qcount, &last_nmap, 1, NULL, NULL, status );
      }

      /* Clean up for contchunk loop */
      if( keymap ) keymap = astAnnul( keymap );
    }

    /* Export concatenated/cleaned data for each subarray to NDF file */
    for( idx=0; (*status==SAI__OK)&&idx<concat->ndat; idx++ ) {
      odata = concat->sdata[idx];

      /* Complete the history information in the output NDF so that it
         includes group parameters accessed since the default history
         information was written to the NDF (in smf_open_and_flatfield). */
      smf_puthistory( odata, "SMURF:SC2CLEAN", status );

      /* Ensure ICD data order */
      smf_dataOrder( wf, odata, 1, status );

      if( odata->file && odata->file->name ) {
        smf_write_smfData( wf, odata, NULL, NULL, ogrp, gcount, NDF__NOID,
                           MSG__VERB, 0, NULL, NULL, status );
      } else {
        *status = SAI__ERROR;
        errRep( FUNC_NAME,
                "Unable to determine file name for concatenated data.",
                status );
      }

      /* Increment the group index counter */
      gcount++;
    }

    /* Close the smfArray */
    smf_close_related( wf, &concat, status );
  }

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && ogrp ) {
    grpList( "OUTFILES", 0, 0, NULL, ogrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }

 CLEANUP:

  /* Tidy up after ourselves: release the resources used by the grp routines */
  if( darks ) smf_close_related( wf, &darks, status );
  if( flatramps ) smf_close_related( wf, &flatramps, status );
  if (heateffmap) heateffmap = smf_free_effmap( heateffmap, status );
  if( bbms ) smf_close_related( wf, &bbms, status );
  if( igrp ) grpDelet( &igrp, status);
  if( ogrp ) grpDelet( &ogrp, status);
  if( basegrp ) grpDelet( &basegrp, status );
  if( igroup ) smf_close_smfGroup( &igroup, status );
  fftw_cleanup();
  ndfEnd( status );
}
Beispiel #3
0
void smurf_sc2pca( int *status ) {

  smfData *amplitudes=NULL;  /* Amplitudes of each component */
  smfArray *bbms=NULL;       /* Bad bolometer masks */
  smfData *components=NULL;  /* Components */
  smfArray *darks=NULL ;     /* Dark data */
  int ensureflat;            /* Flag for flatfielding data */
  smfData *data=NULL;        /* Pointer to input smfData */
  Grp *fgrp=NULL;            /* Filtered group, no darks */
  smfArray *flatramps=NULL;  /* Flatfield ramps */
  AstKeyMap *heateffmap = NULL;    /* Heater efficiency data */
  size_t i=0;                /* Counter, index */
  Grp *igrp=NULL;            /* Input group of files */
  Grp *outampgrp=NULL;       /* Output amplitude group of files */
  Grp *outcompgrp=NULL;      /* Output component group of files */
  size_t outampsize;         /* Total number of NDF names in ocompgrp */
  size_t outcompsize;        /* Total number of NDF names in ocompgrp */
  size_t size;               /* Number of files in input group */
  ThrWorkForce *wf=NULL;     /* Pointer to a pool of worker threads */

  /* Main routine */
  ndfBegin();

  /* Find the number of cores/processors available and create a pool of
     threads of the same size. */
  wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

  /* Get input file(s) */
  kpg1Rgndf( "IN", 0, 1, "", &igrp, &size, status );

  /* Are we flatfielding? */
  parGet0l( "FLAT", &ensureflat, status );

  /* Filter out useful data (revert to darks if no science data) */
  smf_find_science( wf, igrp, &fgrp, 1, NULL, NULL, 1, 1, SMF__NULL, &darks,
                    &flatramps, &heateffmap, NULL, status );

  /* input group is now the filtered group so we can use that and
     free the old input group */
  size = grpGrpsz( fgrp, status );
  grpDelet( &igrp, status);
  igrp = fgrp;
  fgrp = NULL;

  if( size > 0 ) {
    /* Get output file(s) */
    kpg1Wgndf( "OUTAMP", igrp, size, size, "More output files required...",
               &outampgrp, &outampsize, status );

    kpg1Wgndf( "OUTCOMP", igrp, size, size, "More output files required...",
               &outcompgrp, &outcompsize, status );
  } else {
    msgOutif(MSG__NORM, " ","All supplied input frames were DARK,"
       " nothing to flatfield", status );
  }

  /* Get group of bolometer masks and read them into a smfArray */
  smf_request_mask( wf, "BBM", &bbms, status );

  for( i=1; i<=size; i++ ) {

    if( *status != SAI__OK ) break;

    /* Load data, flatfielding and/or opening raw as double as necessary */
    smf_open_asdouble( wf, igrp, i, darks, flatramps, heateffmap, ensureflat, &data, status );

    /* Mask out bad bolometers */
    smf_apply_mask( wf, data, bbms, SMF__BBM_DATA|SMF__BBM_QUAL, 0, status );

    /* Sync quality with bad values */
    smf_update_quality( wf, data, 1, NULL, 0, 0.05, status );

    /* Calculate the PCA */
    smf_clean_pca( wf, data, 0, 0, 0, &components, &amplitudes, 0, 1, NULL,
                   status );

    /* Write out to the new files */
    smf_write_smfData( wf, amplitudes, NULL, NULL, outampgrp, i, 0, MSG__VERB,
                       0, status );
    smf_write_smfData( wf, components, NULL, NULL, outcompgrp, i, 0, MSG__VERB,
                       0, status );

    /* Free resources for output data */
    smf_close_file( wf, &data, status );
    smf_close_file( wf, &amplitudes, status );
    smf_close_file( wf, &components, status );
  }

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && outampgrp ) {
    grpList( "OUTAMPFILES", 0, 0, NULL, outampgrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }
  if( *status == SAI__OK && outcompgrp ) {
    grpList( "OUTCOMPFILES", 0, 0, NULL, outcompgrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }

  /* Tidy up after ourselves: release the resources used by the grp routines  */
  if( igrp ) grpDelet( &igrp, status);
  if( outampgrp ) grpDelet( &outampgrp, status);
  if( outcompgrp ) grpDelet( &outcompgrp, status);
  if( darks ) smf_close_related( wf, &darks, status );
  if( bbms ) smf_close_related( wf, &bbms, status );
  if( flatramps ) smf_close_related( wf, &flatramps, status );
  if (heateffmap) heateffmap = smf_free_effmap( heateffmap, status );
  ndfEnd( status );
}
Beispiel #4
0
void smurf_sc2concat( int *status ) {

  /* Local Variables */
  Grp *basegrp=NULL;         /* Grp containing first file each chunk */
  size_t basesize;           /* Number of files in base group */
  smfArray *concat=NULL;     /* Pointer to a smfArray */
  size_t contchunk;          /* Continuous chunk counter */
  smfArray *darks = NULL;    /* dark frames */
  int ensureflat;            /* Flag for flatfielding data */
  Grp *fgrp = NULL;          /* Filtered group, no darks */
  smfArray * flatramps = NULL; /* Flatfield ramps */
  AstKeyMap *heateffmap = NULL;    /* Heater efficiency data */
  size_t gcount=0;           /* Grp index counter */
  size_t idx;                /* Subarray counter */
  int usedarks;              /* flag for using darks */
  Grp *igrp = NULL;          /* Group of input files */
  smfGroup *igroup=NULL;     /* smfGroup corresponding to igrp */
  size_t isize;              /* Number of files in input group */
  dim_t maxconcat=0;         /* Longest continuous chunk length in samples */
  double maxlen;             /* Constrain maxconcat to this many seconds */
  size_t ncontchunks=0;      /* Number continuous chunks outside iter loop */
  Grp *ogrp = NULL;          /* Output files  */
  size_t osize;              /* Number of files in input group */
  dim_t padStart=0;          /* How many samples padding at start */
  dim_t padEnd=0;            /* How many samples padding at end */
  int temp;                  /* Temporary signed integer */
  ThrWorkForce *wf = NULL;   /* Pointer to a pool of worker threads */

  if (*status != SAI__OK) return;

  /* Main routine */
  ndfBegin();

  /* Find the number of cores/processors available and create a pool of
     threads of the same size. */
  wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

  /* Read the input file */
  kpg1Rgndf( "IN", 0, 1, "", &igrp, &isize, status );

  /* Filter out darks */
  smf_find_science( igrp, &fgrp, 1, NULL, NULL, 1, 1, SMF__NULL, &darks,
                    &flatramps, &heateffmap, NULL, status );

  /* input group is now the filtered group so we can use that and
     free the old input group */
  isize = grpGrpsz( fgrp, status );
  grpDelet( &igrp, status);
  igrp = fgrp;
  fgrp = NULL;

  if (isize == 0) {
    msgOutif(MSG__NORM, " ","All supplied input frames were filtered,"
       " nothing to do", status );
    goto CLEANUP;
  }

  /* --- Parse ADAM parameters ------------------------ */

  /* Maximum length of a continuous chunk */
  parGdr0d( "MAXLEN", 0, 0, VAL__MAXD, 1, &maxlen, status );

  /* Padding */
  parGdr0i( "PADSTART", 0, 0, VAL__MAXI, 1, &temp, status );
  padStart = (dim_t) temp;

  parGdr0i( "PADEND", 0, 0, VAL__MAXI, 1, &temp, status );
  padEnd = (dim_t) temp;

  /* Are we using darks? */
  parGet0l( "USEDARKS", &usedarks, status );

  /* Are we flatfielding? */
  parGet0l( "FLAT", &ensureflat, status );

  /* Group the input files by subarray and continuity */
  smf_grp_related( igrp, isize, 1, 0, maxlen-padStart-padEnd, NULL, NULL,
                   &maxconcat, NULL, &igroup, &basegrp, NULL, status );

  /* Obtain the number of continuous chunks and subarrays */
  if( *status == SAI__OK ) {
    ncontchunks = igroup->chunk[igroup->ngroups-1]+1;
  }

  basesize = grpGrpsz( basegrp, status );

  /* Get output file(s) */
  kpg1Wgndf( "OUT", basegrp, basesize, basesize,
             "More output files required...",
             &ogrp, &osize, status );

  /* Loop over continuous chunks */
  gcount = 1;
  for( contchunk=0;(*status==SAI__OK)&&contchunk<ncontchunks; contchunk++ ) {

    /* Concatenate this continuous chunk */
    smf_concat_smfGroup( wf, NULL, igroup, usedarks ? darks:NULL, NULL, flatramps,
                         heateffmap, contchunk, ensureflat, 1, NULL, 0, NULL, NULL,
                         NO_FTS, padStart, padEnd, 0, &concat, NULL, status );

    /* Export concatenated data for each subarray to NDF file */
    for( idx=0; (*status==SAI__OK)&&idx<concat->ndat; idx++ ) {
      if( concat->sdata[idx]->file && concat->sdata[idx]->file->name ) {
        smf_write_smfData( concat->sdata[idx], NULL, NULL, ogrp, gcount,
                           NDF__NOID, MSG__VERB, 0, status );
      } else {
        *status = SAI__ERROR;
        errRep( FUNC_NAME,
                "Unable to determine file name for concatenated data.",
                status );
      }

      /* Increment the group index counter */
      gcount++;
    }

    /* Close the smfArray */
    smf_close_related( &concat, status );

  }

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && ogrp ) {
    grpList( "OUTFILES", 0, 0, NULL, ogrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }

 CLEANUP:
  if( darks ) smf_close_related( &darks, status );
  if( flatramps ) smf_close_related( &flatramps, status );
  if (heateffmap) heateffmap = smf_free_effmap( heateffmap, status );
  if( igrp ) grpDelet( &igrp, status);
  if( basegrp ) grpDelet( &basegrp, status );
  if( ogrp ) grpDelet( &ogrp, status );
  if( igroup ) smf_close_smfGroup( &igroup, status );

  ndfEnd( status );

  if( *status == SAI__OK ) {
    msgOutif(MSG__VERB," ","SC2CONCAT succeeded.", status);
  } else {
    msgOutif(MSG__VERB," ","SC2CONCAT failed.", status);
  }

}
Beispiel #5
0
void smurf_extinction( int * status ) {

  /* Local Variables */
  smfArray *bbms = NULL;     /* Bad bolometer masks */
  smfArray *darks = NULL;    /* Dark data */
  AstKeyMap *extpars = NULL; /* Tau relation keymap */
  Grp *fgrp = NULL;          /* Filtered group, no darks */
  smfArray *flatramps = NULL;/* Flatfield ramps */
  int has_been_sky_removed = 0;/* Data are sky-removed */
  AstKeyMap *heateffmap = NULL;    /* Heater efficiency data */
  size_t i;                  /* Loop counter */
  Grp *igrp = NULL;          /* Input group */
  AstKeyMap *keymap=NULL;    /* Keymap for storing parameters */
  smf_tausrc tausrc;         /* enum value of optical depth source */
  smf_extmeth extmeth;       /* Extinction correction method */
  char tausource[LEN__METHOD];  /* String for optical depth source */
  char method[LEN__METHOD];  /* String for extinction airmass method */
  smfData *odata = NULL;     /* Output data struct */
  Grp *ogrp = NULL;          /* Output group */
  size_t outsize;            /* Total number of NDF names in the output group */
  size_t size;               /* Number of files in input group */
  double tau = 0.0;          /* Zenith tau at this wavelength */
  ThrWorkForce *wf = NULL;   /* Pointer to a pool of worker threads */

  if (*status != SAI__OK) return;

  /* Main routine */
  ndfBegin();

  /* Find the number of cores/processors available and create a pool of
     threads of the same size. */
  wf = thrGetWorkforce( thrGetNThread( SMF__THREADS, status ), status );

  /* Read the input file */
  kpg1Rgndf( "IN", 0, 1, "", &igrp, &size, status );

  /* Filter out darks */
  smf_find_science( igrp, &fgrp, 0, NULL, NULL, 1, 1, SMF__NULL, &darks,
                    &flatramps, &heateffmap, NULL, status );

  /* input group is now the filtered group so we can use that and
     free the old input group */
  size = grpGrpsz( fgrp, status );
  grpDelet( &igrp, status);
  igrp = fgrp;
  fgrp = NULL;

  if (size > 0) {
    /* Get output file(s) */
    kpg1Wgndf( "OUT", igrp, size, size, "More output files required...",
               &ogrp, &outsize, status );
  } else {
    msgOutif(MSG__NORM, " ","All supplied input frames were DARK,"
             " nothing to extinction correct", status );
  }

  /* Get group of pixel masks and read them into a smfArray */
  smf_request_mask( "BBM", &bbms, status );

  /* Read the tau relations from config file or group. We do not
     allow sub instrument overloading because these are all values
     based on filter name. */
  keymap = kpg1Config( "TAUREL", "$SMURF_DIR/smurf_extinction.def", NULL,
                       1, status );

  /* and we need to use the EXT entry */
  astMapGet0A( keymap, "EXT", &extpars );
  keymap = astAnnul( keymap );

  /* Get tau source */
  parChoic( "TAUSRC", "Auto",
            "Auto,CSOtau,CSOFit, Filtertau, WVMraw", 1,
            tausource, sizeof(tausource), status);

  /* Decide how the correction is to be applied - convert to flag */
  parChoic( "METHOD", "ADAPTIVE",
            "Adaptive,Quick,Full,", 1, method, sizeof(method), status);

  /* Place parameters into a keymap and extract values */
  if( *status == SAI__OK ) {
    keymap = astKeyMap( " " );
    if( astOK ) {
      astMapPut0C( keymap, "TAUSRC", tausource, NULL );
      astMapPut0C( keymap, "TAUMETHOD", method, NULL );
      smf_get_extpar( keymap, &tausrc, &extmeth, NULL, status );
    }
  }

  for (i=1; i<=size && ( *status == SAI__OK ); i++) {

    /* Flatfield - if necessary */
    smf_open_and_flatfield( igrp, ogrp, i, darks, flatramps, heateffmap,
                            &odata, status );

    if (*status != SAI__OK) {
      /* Error flatfielding: tell the user which file it was */
      msgSeti("I",i);
      errRep(TASK_NAME, "Unable to open the ^I th file", status);
    }

    /* Mask out bad pixels - mask data array not quality array */
    smf_apply_mask( odata, bbms, SMF__BBM_DATA, 0, status );

    /* Now check that the data are sky-subtracted */
    if ( !smf_history_check( odata, "smf_subtract_plane", status ) ) {

      /* Should we override remsky check? */
      parGet0l("HASSKYREM", &has_been_sky_removed, status);

      if ( !has_been_sky_removed && *status == SAI__OK ) {
        *status = SAI__ERROR;
        msgSeti("I",i);
        errRep("", "Input data from file ^I are not sky-subtracted", status);
      }
    }

    /* If status is OK, make decisions on source keywords the first
       time through. */
    if ( *status == SAI__OK && i == 1 ) {
      if (tausrc == SMF__TAUSRC_CSOTAU ||
          tausrc == SMF__TAUSRC_AUTO ||
          tausrc == SMF__TAUSRC_TAU) {
        double deftau;
        const char * param = NULL;
        smfHead *ohdr = odata->hdr;

        /* get default CSO tau -- this could be calculated from CSO fits */
        deftau = smf_calc_meantau( ohdr, status );

        /* Now ask for desired CSO tau */
        if ( tausrc == SMF__TAUSRC_CSOTAU || tausrc == SMF__TAUSRC_AUTO) {
          param = "CSOTAU";
        } else if (tausrc == SMF__TAUSRC_TAU) {
          param = "FILTERTAU";
          deftau = smf_cso2filt_tau( ohdr, deftau, extpars, status );
        }
        parGdr0d( param, deftau, 0.0,1.0, 1, &tau, status );
      } else if ( tausrc == SMF__TAUSRC_CSOFIT || tausrc == SMF__TAUSRC_WVMRAW ) {
        /* Defer a message until after extinction correction */
      } else {
        *status = SAI__ERROR;
        errRep("", "Unsupported opacity source. Possible programming error.",
               status);
      }
    }

    /* Apply extinction correction - note that a check is made to
       determine whether the data have already been extinction
       corrected */
    smf_correct_extinction( wf, odata, &tausrc, extmeth, extpars, tau, NULL, NULL, status );

    if ( tausrc == SMF__TAUSRC_WVMRAW ) {
      msgOutif(MSG__VERB," ", "Used Raw WVM data for extinction correction", status);
    } else if ( tausrc == SMF__TAUSRC_CSOFIT ) {
      msgOutif(MSG__VERB," ", "Used fit to CSO data for extinction correction", status);
    } else if ( tausrc == SMF__TAUSRC_CSOTAU ) {
      msgOutif(MSG__VERB," ", "Used an explicit CSO tau value for extinction correction", status);
    } else if ( tausrc == SMF__TAUSRC_TAU ) {
      msgOutif(MSG__VERB," ", "Used an explicit filter tau value for extinction correction", status);
    } else {
      if (*status == SAI__OK) {
        const char * taustr = smf_tausrc_str( tausrc, status );
        *status = SAI__ERROR;
        errRepf( "", "Unexpected opacity source used for extinction correction of %s."
                 " Possible programming error.", status, taustr );
      }
    }

    /* Set character labels */
    smf_set_clabels( "Extinction corrected",NULL, NULL, odata->hdr, status);
    smf_write_clabels( odata, status );

    /* Free resources for output data */
    smf_close_file( &odata, status );
  }

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && ogrp ) {
    grpList( "OUTFILES", 0, 0, NULL, ogrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }

  /* Tidy up after ourselves: release the resources used by the grp routines  */
  if (darks) smf_close_related( &darks, status );
  if (bbms) smf_close_related( &bbms, status );
  if( flatramps ) smf_close_related( &flatramps, status );
  if (heateffmap) heateffmap = smf_free_effmap( heateffmap, status );
  grpDelet( &igrp, status);
  grpDelet( &ogrp, status);
  if( keymap ) keymap = astAnnul( keymap );
  if (extpars) extpars = astAnnul( extpars );
  ndfEnd( status );
}
Beispiel #6
0
void smurf_fts2_split(int* status)
{
  if( *status != SAI__OK ) { return; }

  const double STAGE_LENGTH = 450.0;    /* mm */
  int LR                    = 0;        /* Treat as Low Resolution scan */
  Grp* gIn                  = NULL;     /* Input group */
  Grp* gOut                 = NULL;     /* Output group */
  Grp* gTmp                 = NULL;     /* Temporary group */
  smfData* inData           = NULL;     /* Pointer to input data */
  smfData* outData          = NULL;     /* Pointer to output data */
  double* outData_pntr      = NULL;     /* Pointer to output data values array */
  int nMirPos               = 0;        /* Number of frames where the mirror actually moves */
  int nStart                = 0;        /* Frame index where the mirror starts moving */
  int nStartNext            = 0;        /* Frame index where the mirror starts moving in the next scan */
  int nStop                 = 0;        /* Frame index where the mirror stops */
  int lrStart               = 0;        /* Frame index where low resolution mirror limit starts */
  int hrStop                = 0;        /* Frame index where high resolution mirror limit stops */
  int hrStart               = 0;        /* Frame index where high resolution mirror limit starts */
  int lrStop                = 0;        /* Frame index where low resolution mirror limit stops */
  int lrCentre              = 0;        /* Frame index at centre of low resolution mirror positions */
  int i                     = 0;        /* Counter */
  int j                     = 0;        /* Counter */
  int k                     = 0;        /* Counter */
  int n                     = 0;        /* Counter */
  double fNyquist           = 0.0;      /* Nyquist frequency */
  double dz                 = 0.0;      /* Step size in evenly spaced OPD grid */
  double* MIRPOS            = NULL;     /* Mirror positions */

  size_t nFiles             = 0;        /* Size of the input group */
  size_t nOutFiles          = 0;        /* Size of the output group */
  size_t fIndex             = 0;        /* File index */
  size_t nWidth             = 0;        /* Data cube width */
  size_t nHeight            = 0;        /* Data cube height */
  size_t nFrames            = 0;        /* Data cube depth in input file */
  size_t nFramesOut         = 0;        /* Data cube depth in output file */
  size_t nFramesOutPrev     = 0;        /* Data cube depth in previous output file */
  size_t hrFramesOut        = 0;        /* Data cube depth in high res output file */
  size_t hrFramesOutPrev    = 0;        /* Data cube depth in previous high res output file */
  size_t lrFramesOut        = 0;        /* Data cube depth in low res output file */
  size_t lrFramesOutPrev    = 0;        /* Data cube depth in previous low res output file */
  size_t nPixels            = 0;        /* Number of bolometers in the subarray */

  char object[SZFITSTR];
  char subarray[SZFITSTR];
  char obsID[SZFITSTR];
  char scanMode[SZFITSTR];

  double scanVel            = 0.0;      /* Mirror speed in mm/sec */
  double stepTime           = 0.0;      /* RTS step time, average sample rate */
  double minOPD             = 0;        /* OPD minimum */
  double maxOPD             = 0;        /* OPD maximum */
  double ZPD                = 0;
  double lrmmBandPass       = 0.0;      /* low res mm +/- offset from centre */
  int lrBandPassFrames      = 0;        /* Number of low res band pass frames from centre +/- length of lrmmBandPass */
  int nTmp                  = 0;
  int nMax                  = 0;
  int nOPD                  = 0;
  int bolIndex              = 0;
  int index                 = 0;
  int indexIn               = 0;
  int indexOut              = 0;
  int badPixel              = 0;
  int k0                    = 0;
  int indexZPD              = 0;
  int done                  = 0;        /* Track completion of extracting multiple scans */
  int outDataCount          = 0;        /* The number of output data files being written */

  double lenLeft,
         lenRight,
         minLenLeft,
         minLenRight,
         minLen,
         minZPD,
         maxZPD,
         midZPD             = 0.0;      /* Mirror position half side measures */
  int midZPDPos             = 0;        /* Middle ZPD position in mirror position array */

  double EPSILON            = 0.0;
  char fileName[SMF_PATH_MAX+1];
  char scanNumStr[5+1];                 /* String form of scan number of the input file */
  int scanNum               = 0;        /* Scan number of the input file */
  int conNum                = 0;        /* Concatenation number of the input file (left shifted scanNum) */
  int scanDir               = 0;        /* Scan direction: 1 -> back to front (positive), -1 -> front to back (negative) */
  JCMTState *allState       = NULL;     /* Temporary buffer for reduced header allState array data */


  /* Get Input, Output groups */
  kpg1Rgndf("IN", 0, 1, "", &gIn, &nFiles, status);
  kpg1Wgndf("OUT", gOut, nFiles, nFiles, "More output files expected!", &gOut, &nOutFiles, status);

  /* Read in ADAM parameters */
  parGet0d("BANDPASS", &lrmmBandPass, status);          /* Low res mm band +/- offset from centre */

  /* Treat as Low Resolution scan? */
  if(lrmmBandPass > 0) {
      LR = 1;
  }

  /* Eliminate the first record in the output group, since it will be replaced later */
  gTmp = grpCopy(gOut, 1, 1, 1, status);
  grpDelet(&gOut, status);
  gOut = gTmp;

  /* BEGIN NDF */
  ndfBegin();

  /* Loop through each input file */
  for(fIndex = 1; fIndex <= nFiles; fIndex++) {
    /* Open Observation file */
    smf_open_file(gIn, fIndex, "READ", 0, &inData, status);
    if(*status != SAI__OK) {
      *status = SAI__ERROR;
      errRep(FUNC_NAME, "Unable to open the source file!", status);
      goto CLEANUP;
    }

    smf_fits_getS(inData->hdr, "OBJECT", object, sizeof(object), status);
    smf_fits_getS(inData->hdr, "SUBARRAY", subarray, sizeof(subarray), status);
    smf_fits_getS(inData->hdr, "OBSID", obsID, sizeof(obsID), status);
    smf_fits_getS(inData->hdr, "FTS_MODE", scanMode, sizeof(scanMode), status);
    smf_fits_getD(inData->hdr, "SCANVEL", &scanVel, status);
    smf_fits_getD(inData->hdr, "STEPTIME", &stepTime, status);

    /* Nyquist frequency */
    fNyquist = 10.0 / (8.0 * scanVel * stepTime);
    dz = 1.0 / (2.0 * fNyquist);
    EPSILON = scanVel * stepTime / 2;

    /* Extract the scan number from the input file to be incremented in the output files */
    one_strlcpy(scanNumStr, &(inData->file->name[strlen(inData->file->name) - 8]),
               astMIN(SMF_PATH_MAX + 1, 5), status);
    if (*status == ONE__TRUNC) {
        errRep(FUNC_NAME, "Error extracting scanNumStr!", status);
        errAnnul(status);
    }

    /* Create a temporary base file name from input file name */
    one_strlcpy(fileName, inData->file->name,
                astMIN(SMF_PATH_MAX + 1, strlen(inData->file->name) - 7), status);
    if (*status == ONE__TRUNC) {
        errRep(FUNC_NAME, "Error extracting base fileName!", status);
        errAnnul(status);
    }
    scanNum = (int) one_strtod(scanNumStr, status);
    if (*status != SAI__OK) {
        errRep(FUNC_NAME, "Error extracting scanNum!", status);
        errAnnul(status);
    }

    /* Left shift scanNum to conNum as a prefix to make output scan number unique */
    if(scanNum < 100) {
      conNum = scanNum * 100;
    } else if(scanNum < 1000) {
      conNum = scanNum * 10;
    }

    /*printf("%s: Processing file: %s, having basename: %s and scanNumStr: %s, scanNum: %04d\n",
           TASK_NAME, inData->file->name, fileName, scanNumStr, scanNum);*/

    /* Data cube dimensions */
    nWidth  = inData->dims[0];
    nHeight = inData->dims[1];
    nFrames = inData->dims[2];
    nPixels = nWidth * nHeight;

    /* Mirror positions in mm */
    nTmp = nFrames;
    MIRPOS = astCalloc(nFrames, sizeof(*MIRPOS));
    fts2_getmirrorpositions(inData, MIRPOS, &nTmp, status); // (mm)
    if(*status != SAI__OK) {
      *status = SAI__ERROR;
      errRep( FUNC_NAME, "Unable to get the mirror positions!", status);
      goto CLEANUP;
    }

    nStart = -1;
    nStop = -1;
    nStartNext = 0;
    hrStart = -1;
    hrStop = -1;
    lrStart = -1;
    lrStop = -1;
    outDataCount = 0;
    done = 0;
    do {
        /* Find the next range of single scan mirror positions for which to extract corresponding NDF data */
        for(n=nStartNext; n<nFrames-1; n++){
            if(hrStart < 0 && fabs(MIRPOS[n+1] - MIRPOS[n]) >= EPSILON) {
                nStart = n;
                hrStart = n;
                /*printf("%s: Split nStart=%d\n", TASK_NAME, nStart);*/
            }
            if(hrStart >= 0 && hrStop < 0 && (fabs(MIRPOS[n+1] - MIRPOS[n]) < EPSILON || n+1 == nFrames-1)) {
                hrStop = n+1;
                hrFramesOutPrev = hrFramesOut;
                hrFramesOut = abs(hrStop - hrStart) + 1;
                outDataCount++;

                nStop = hrStop;
                nFramesOutPrev = hrFramesOutPrev;
                nFramesOut = hrFramesOut;

                /*printf("%s: Split: %d of %d frames found at hrStart=%d, hrStop=%d\n",
                       TASK_NAME, outDataCount, hrFramesOut, hrStart, hrStop);*/
                break;
            }
        }

        /* Determine scan direction */
        if(MIRPOS[hrStart] < MIRPOS[hrStop]) {
            scanDir = 1;    /* Positive */
        } else {
            scanDir = -1;   /* Negative */
        }

        /* Limit to specified mirror position range */
        if(LR) {
            /* Calculate how many frames correspond to the given +/- mm of LR bandpass */
            lrBandPassFrames = lrmmBandPass / dz;

            /* Find the centre of the current scan */
            lrCentre = floor((abs(hrStop-hrStart)+1)/2);

            /* Set low res start and stop values at corresponding frame offsets from centre */
            lrStart = lrCentre - lrBandPassFrames;
            lrStop = lrCentre + lrBandPassFrames;
            lrFramesOutPrev = lrFramesOut;
            lrFramesOut = abs(lrStop - lrStart) + 1;

            nStart = lrStart;
            nStop = lrStop;
            nFramesOutPrev = lrFramesOutPrev;
            nFramesOut = lrFramesOut;

            /*printf("%s: LR Split: %d of %d frames found at lrStart=%d, lrStop=%d\n",
                   TASK_NAME, outDataCount, lrFramesOut, lrStart, lrStop);*/
        }

        /* Check for end of data condition */
        if(hrStop < hrStart  || hrStop >= nFrames-1) {
            hrStop = nFrames-1;
            done = 1;
        }

        /* Output scan if there is a start and stop position found,
           and for the last scan if it's the only one
           and if it's not too short (compared to the previous one) */
        /*printf("%s: nStart=%d, nStop=%d, nFramesOutPrev=%d, nFramesOut=%d\n", TASK_NAME, nStart, nStop, nFramesOutPrev, nFramesOut);*/
        if(nStart >=0 && nStop > 0 &&
            (nFramesOutPrev == 0 ||
              (nFramesOutPrev > 0 && nFramesOut > 0 && (double)hrFramesOut/(double)hrFramesOutPrev >= 0.5))) {
            /* Copy single scan NDF data from input to output */
            outData = smf_deepcopy_smfData(inData, 0, SMF__NOCREATE_DATA | SMF__NOCREATE_FTS, 0, 0, status);
            outData->dtype   = SMF__DOUBLE;
            outData->ndims   = 3;
            outData->dims[0] = nWidth;
            outData->dims[1] = nHeight;
            outData->dims[2] = nFramesOut;
            outData_pntr = (double*) astMalloc((nPixels * nFramesOut) * sizeof(*outData_pntr));
            outData->pntr[0] = outData_pntr;
            outData->hdr->nframes = nFramesOut;

            for(i=0; i<nWidth; i++) {
                for(j=0; j<nHeight; j++) {
                    bolIndex = i + j * nWidth;
                    for(k=nStart; k<=nStop; k++) {
                        indexIn = bolIndex + k * nPixels;
                        indexOut = bolIndex + (k-nStart) * nPixels;
                        *((double*)(outData->pntr[0]) + indexOut) = *((double*)(inData->pntr[0]) + indexIn);
                    }
                }
            }

            /* Update the FITS headers */
            outData->fts = smf_create_smfFts(status);
            /* Update FITS component */
            smf_fits_updateD(outData->hdr, "FNYQUIST", fNyquist, "Nyquist frequency (cm^-1)", status);
            smf_fits_updateI(outData->hdr, "MIRSTART", 1, "Frame index in which the mirror starts moving", status);
            smf_fits_updateI(outData->hdr, "MIRSTOP", nFramesOut, "Frame index in which the mirror stops moving", status);
            smf_fits_updateI(outData->hdr, "SCANDIR", scanDir, "Scan direction", status);
            smf_fits_updateD(outData->hdr, "OPDMIN", 0.0, "Minimum OPD", status);
            smf_fits_updateD(outData->hdr, "OPDSTEP", 0.0, "OPD step size", status);

            /* Update the JCMTSTATE header */
            /* Reallocate outData header array memory to reduced size */
            allState = (JCMTState*) astRealloc(outData->hdr->allState, nFramesOut * sizeof(*(outData->hdr->allState)));
            if(*status == SAI__OK && allState) {
                outData->hdr->allState = allState;
            } else {
                errRepf(TASK_NAME, "Error reallocating allState JCMTState header", status);
                goto CLEANUP;
            }
            for(k=nStart; k<=nStop; k++) {
                /* Copy over JCMTstate */
                /*printf("%s: memcpy allState: %d to: %p from: %p size: %d\n",TASK_NAME, k,
                       (void *) &(outData->hdr->allState[k-nStart]), (void *) &(inData->hdr->allState[k]), sizeof(*(outData->hdr->allState)) );*/
                memcpy( (void *) &(outData->hdr->allState[k-nStart]), (void *) &(inData->hdr->allState[k]), sizeof(*(outData->hdr->allState)) );

                /*printf("%s: Scan: %d index: %d rts_num: %d\n", TASK_NAME, outDataCount, k-nStart, outData->hdr->allState[k-nStart].rts_num);*/
                /*printf("%s: Scan: %d index: %d fts_pos: %f\n", TASK_NAME, outDataCount, k-nStart, outData->hdr->allState[k-nStart].fts_pos);*/
            }

            /* Write output */
            /* Append unique suffix to fileName */
            /* This must be modified by the concatenation file scan number to improve uniqueness */
            n = one_snprintf(outData->file->name, SMF_PATH_MAX, "%s%04d_scn.sdf", status, fileName, conNum+outDataCount);
            /*printf("%s: Writing outData->file->name: %s\n", TASK_NAME, outData->file->name);*/
            if(n < 0 || n >= SMF_PATH_MAX) {
                errRepf(TASK_NAME, "Error creating outData->file->name", status);
                goto CLEANUP;
            }
            /* Update the list of output _scn file names */
            grpPut1(gOut, outData->file->name, 0, status);
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error saving outData file name", status);
                goto CLEANUP;
            }
            smf_write_smfData(outData, NULL, outData->file->name, gOut, fIndex, 0, MSG__VERB, 0, status);
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error writing outData file", status);
                goto CLEANUP;
            }
            smf_close_file(&outData, status);
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error closing outData file", status);
                goto CLEANUP;
            }
            if(*status != SAI__OK) {
                errRepf(TASK_NAME, "Error closing outData file", status);
                goto CLEANUP;
            }
        }/* else {
            if(!(nStart >=0 && nStop)) printf("%s: Output scan condition failed: nStart(%d) >= nStop(%d) is FALSE\n",TASK_NAME, nStart, nStop);
            if(!(nFramesOutPrev == 0 ||
              (nFramesOutPrev > 0 && nFramesOut > 0 && (double)nFramesOut/(double)nFramesOutPrev >= 0.5))) printf("%s: Output scan condition failed: nFramesOutPrev(%d) == 0 || (nFramesOutPrev(%d) > 0 && nFramesOut(%d) > 0 && nFramesOut/nFramesOutPrev (%f) >= 0.5) is FALSE\n", TASK_NAME, nFramesOutPrev, nFramesOutPrev, nFramesOut, (double)nFramesOut/(double)nFramesOutPrev);
        }*/

        /* Prepare for next iteration */
        nStartNext = hrStop + 1;
        hrStart = -1;
        hrStop = -1;

    } while (!done);


    /* Deallocate memory used by arrays */
    if(MIRPOS)  { MIRPOS    = astFree(MIRPOS); }

    /* Close the file */
    smf_close_file(&inData, status);

  }
  CLEANUP:
  /* Deallocate memory used by arrays */
  if(inData)  { smf_close_file(&inData, status); }
  if(outData) { smf_close_file(&outData, status); }

  /* END NDF */
  ndfEnd(status);

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && gOut ) {
      grpList( "OUTFILES", 0, 0, NULL, gOut, status );
          if( *status == PAR__NULL ) {
              errRep(FUNC_NAME, "Error writing OUTFILES!", status);
              errAnnul( status );
          }
  }

  /* Delete groups */
  if(gIn)     { grpDelet(&gIn, status);  }
  if(gOut)    { grpDelet(&gOut, status); }
}
Beispiel #7
0
void smurf_flatfield( int *status ) {

  smfArray *bbms = NULL;     /* Bad bolometer masks */
  smfData *ffdata = NULL;   /* Pointer to output data struct */
  Grp *fgrp = NULL;         /* Filtered group, no darks */
  smfArray *flatramps = NULL;/* Flatfield ramps */
  AstKeyMap *heateffmap = NULL;    /* Heater efficiency data */
  size_t i = 0;             /* Counter, index */
  Grp *igrp = NULL;         /* Input group of files */
  Grp *ogrp = NULL;         /* Output group of files */
  size_t outsize;           /* Total number of NDF names in the output group */
  size_t size;              /* Number of files in input group */

  /* Main routine */
  ndfBegin();

  /* Get input file(s) */
  kpg1Rgndf( "IN", 0, 1, "", &igrp, &size, status );

  /* Filter out darks */
  smf_find_science( NULL, igrp, &fgrp, 0, NULL, NULL, 1, 1, SMF__NULL, NULL,
                    &flatramps, &heateffmap, NULL, status );

  /* input group is now the filtered group so we can use that and
     free the old input group */
  size = grpGrpsz( fgrp, status );
  grpDelet( &igrp, status);
  igrp = fgrp;
  fgrp = NULL;

  if (size > 0) {
    /* Get output file(s) */
    kpg1Wgndf( "OUT", igrp, size, size, "More output files required...",
               &ogrp, &outsize, status );
  } else {
    msgOutif(MSG__NORM, " ","All supplied input frames were DARK,"
       " nothing to flatfield", status );
  }

  /* Get group of bolometer masks and read them into a smfArray */
  smf_request_mask( NULL, "BBM", &bbms, status );

  for (i=1; i<=size; i++ ) {
    int didflat;

    if (*status != SAI__OK) break;

    /* Call flatfield routine */
    didflat = smf_open_and_flatfield( NULL, igrp, ogrp, i, NULL, flatramps,
                                      heateffmap, &ffdata, status);

    /* Report failure by adding a message indicating which file failed */
    msgSeti("I",i);
    if (*status != SAI__OK) {
      msgSeti("N",size);
      errRep(FUNC_NAME,	"Unable to flatfield data from file ^I of ^N", status);
      break;
    }

    /* in verbose mode report whether flatfielding occurred or not */
    if (!didflat) {
      msgOutif(MSG__VERB," ",
	     "Data from file ^I are already flatfielded", status);
    } else {
      msgOutif(MSG__VERB," ", "Flat field applied to file ^I", status);
    }

    /* Mask out bad bolometers - mask data array not quality array */
    smf_apply_mask( NULL, ffdata, bbms, SMF__BBM_DATA, 0, status );

    /* Free resources for output data */
    smf_close_file( NULL, &ffdata, status );
  }

  /* Write out the list of output NDF names, annulling the error if a null
     parameter value is supplied. */
  if( *status == SAI__OK && ogrp ) {
    grpList( "OUTFILES", 0, 0, NULL, ogrp, status );
    if( *status == PAR__NULL ) errAnnul( status );
  }

  /* Tidy up after ourselves: release the resources used by the grp routines  */
  if (igrp) grpDelet( &igrp, status);
  if (ogrp) grpDelet( &ogrp, status);
  if (bbms) smf_close_related( NULL, &bbms, status );
  if( flatramps ) smf_close_related( NULL, &flatramps, status );
  if (heateffmap) heateffmap = smf_free_effmap( heateffmap, status );
  ndfEnd( status );
}
Beispiel #8
0
/* Main entry */
void smurf_jsadicer( int *status ) {

/* Local Variables */
   AstFitsChan *fc;
   Grp *igrp = NULL;
   Grp *ogrp = NULL;
   char *pname;
   char basename[ 255 ];
   int indf;
   int trim;
   size_t ntile;
   size_t size;
   smfJSATiling tiling;

/* Check inherited status */
   if (*status != SAI__OK) return;

/* Begin AST and NDF contexts. */
   astBegin;
   ndfBegin();

/* Get the name of the input NDF. */
   kpg1Rgndf( "IN", 1, 1, "", &igrp, &size, status );
   ndgNdfas( igrp, 1, "READ", &indf, status );

/* Get the base name for the output NDFs. */
   if( *status == SAI__OK ) {
      parGet0c( "OUT", basename, sizeof(basename), status );
      if( *status == PAR__NULL ) {
         errAnnul( status );
         pname = basename;
         grpGet( igrp, 1, 1, &pname, sizeof(basename), status );
      }
   }

/* See how the output NDFs are to be trimmed. */
   parGet0i( "TRIM", &trim, status );

/* Get a FitsChan holding the contents of the FITS extension from the
   input NDF. Annul the error if the NDF has no FITS extension. */
   if( *status == SAI__OK ) {
      kpgGtfts( indf, &fc, status );
      if( *status == KPG__NOFTS ) {
         errAnnul( status );
         fc = NULL;
      }
   }

/* Select a JSA instrument and get the parameters defining the layout of
   tiles for the selected instrument. */
   smf_jsainstrument( "INSTRUMENT", fc, SMF__INST_NONE, &tiling,
                      status );

/* Create a new group to hold the names of the output NDFs that have been
   created. This group does not include any NDFs that correspond to tiles
   that contain no input data. */
   ogrp = grpNew( "", status );

/* Dice the map into output NDFs. */
   smf_jsadicer( indf, basename, trim, tiling.instrument, &ntile,
                 ogrp, status );

/* Write out the list of output NDF names, annulling the error if a null
   parameter value is supplied. */
   if( *status == SAI__OK && ogrp ) {
      grpList( "OUTFILES", 0, 0, NULL, ogrp, status );
      if( *status == PAR__NULL ) errAnnul( status );
   }

/* Write the number of tiles being created to an output parameter. */
   parPut0i( "NTILE", ntile, status );

/* Free resources. */
   grpDelet( &igrp, status );
   grpDelet( &ogrp, status );

/* End the NDF and AST context. */
   ndfEnd( status );
   astEnd;

/* If anything went wrong issue a context message. */
   if( *status != SAI__OK ) msgOutif( MSG__VERB, " ", "JSADICER failed.",
                                      status );
}