Beispiel #1
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
int which_curve(giant x, curveParams *par)
 /* Returns (+-1) depending on whether x is on curve
   (+-)y^2 = x^3 + c x^2 + a x + b.
 */
{
    giant t1;
    giant t2;
    giant t3;
    int result;
    PROF_START;

    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);

   /* First, set t2:= x^3 + c x^2 + a x + b. */
    gtog(x, t2); addg(par->c, t2);
    mulg(x, t2); addg(par->a, t2);  /* t2 := x^2 + c x + a. */
    feemod(par, t2);
    mulg(x, t2); addg(par->b, t2);
    feemod(par, t2);
    /* Next, test whether t2 is a square. */
    gtog(t2, t1);
    make_base(par, t3); iaddg(1, t3); gshiftright(1, t3); /* t3 = (p+1)/2. */
    feepowermodg(par, t1, t3); 		      /* t1 := t2^((p+1)/2) (mod p). */
    if(gcompg(t1, t2) == 0)
            result = CURVE_PLUS;
    else
            result = CURVE_MINUS;
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    PROF_END(whichCurveTime);
    return result;
}
void
gmersennemod(
	int 	n,
	giant 	g
)
/* g := g (mod 2^n - 1) */
{
    int the_sign;
    giant scratch3 = borrowGiant(g->capacity);
    giant scratch4 = borrowGiant(1);

    if ((the_sign = gsign(g)) < 0) absg(g);
    while (bitlen(g) > n) {
	gtog(g,scratch3);
	gshiftright(n,scratch3);
	addg(scratch3,g);
	gshiftleft(n,scratch3);
	subg(scratch3,g);
    }
    if(isZero(g)) goto out;
    int_to_giant(1,scratch3);
    gshiftleft(n,scratch3);
    int_to_giant(1,scratch4);
    subg(scratch4,scratch3);
    if(gcompg(g,scratch3) >= 0) subg(scratch3,g);
    if (the_sign < 0) {
	g->sign = -g->sign;
	addg(scratch3,g);
    }
out:
    returnGiant(scratch3);
    returnGiant(scratch4);
}
Beispiel #3
0
main(int argc, char **argv) {
    giant p = newgiant(CM_SHORTS);
	giant u = newgiant(CM_SHORTS);
	giant v = newgiant(CM_SHORTS);
	giant g[6];
    giant plus_order = newgiant(CM_SHORTS);
    giant minus_order = newgiant(CM_SHORTS);
	giant a = newgiant(CM_SHORTS);
    giant b = newgiant(CM_SHORTS);
    int d, dc, olen, k;

    init_tools(CM_SHORTS);    /* Basic algorithms. */
    printf("Give base prime p:\n"); fflush(stdout);
    gin(p);
    for(dc=0; dc < 6; dc++) g[dc] = newgiant(CM_SHORTS);
    for(dc = 0; dc < DCOUNT; dc++) {
			d = disc12[dc];
			/* Next, seek representation 4N = u^2 + |d| v^2. */
			if(cornacchia4(p, d, u, v) == 0) continue;
/* Here, (u,v) give the quadratic representation of 4p. */
			printf("D: %d\n", d); fflush(stdout);
			gtog(u, g[0]);
			switch(d) {
				case -3: olen = 3;  /* Six orders: p + 1 +- g[0,1,2]. */
						gtog(u, g[1]); gtog(v, g[2]);
						addg(g[2], g[2]); addg(v, g[2]); /* g[2] := 3v. */
						addg(g[2], g[1]); gshiftright(1, g[1]);  /* g[1] = (u + 3v)/2. */
						subg(u, g[2]); gshiftright(1, g[2]); absg(g[2]); /* g[2] = |u-3v|/2. */
						break;
				case -4: olen = 2;  /* Four orders: p + 1 +- g[0,1]. */
						gtog(v, g[1]); addg(g[1], g[1]); /* g[1] = 2v. */
						break;
				default: olen = 1;  /* Two orders: p + 1 +- g[0]. */
			}
			for(k=0; k < olen; k++) {
				 gtog(p, plus_order); iaddg(1, plus_order);
				 gtog(p, minus_order); iaddg(1, minus_order);
				 addg(g[k], plus_order);
				 subg(g[k], minus_order);
				 printf("curve orders: \n");
				 printf("(%d) ", prime_probable(plus_order));
                 gout(plus_order);
				 printf("(%d) ", prime_probable(minus_order));
				 gout(minus_order);
			}
   }
}
Beispiel #4
0
void make_recip(giant d, giant r)
/* r becomes the steady-state reciprocal
* 2^(2b)/d, where b = bit-length of d-1. */
{
	int		b;
	giant 	tmp, tmp2;

	if (isZero(d) || (d->sign < 0))
	{
		exit(SIGN);
	}
	tmp = popg();
	tmp2 = popg();
	itog(1, r);
	subg(r, d);
	b = bitlen(d);
	addg(r, d);
	gshiftleft(b, r);
	gtog(r, tmp2);
	while (1)
	{
		gtog(r, tmp);
		squareg(tmp);
		gshiftright(b, tmp);
		mulg(d, tmp);
		gshiftright(b, tmp);
		addg(r, r);
		subg(tmp, r);
		if (gcompg(r, tmp2) <= 0)
			break;
		gtog(r, tmp2);
	}
	itog(1, tmp);
	gshiftleft(2 * b, tmp);
	gtog(r, tmp2);
	mulg(d, tmp2);
	subg(tmp2, tmp);
	itog(1, tmp2);
	while (tmp->sign < 0)
	{
		subg(tmp2, r);
		addg(d, tmp);
	}
	pushg(2);
}
Beispiel #5
0
void modg_via_recip(giant d, giant r, giant n)
/* This is the fastest mod of the present collection.
* n := n % d, where r is the precalculated
* steady-state reciprocal of d. */
{
	int		s = (bitlen(r) - 1), sign = n->sign;
	giant 	tmp, tmp2;

	if (isZero(d) || (d->sign < 0))
	{
		exit(SIGN);
	}

	tmp = popg();
	tmp2 = popg();

	n->sign = abs(n->sign);
	while (1)
	{
		gtog(n, tmp); gshiftright(s - 1, tmp);
		mulg(r, tmp);
		gshiftright(s + 1, tmp);
		mulg(d, tmp);
		subg(tmp, n);
		if (gcompg(n, d) >= 0)
			subg(d, n);
		if (gcompg(n, d) < 0)
			break;
	}
	if (sign >= 0)
		goto done;
	if (isZero(n))
		goto done;
	negg(n);
	addg(d, n);
done:
	pushg(2);
	return;
}
Beispiel #6
0
void gshiftleft(int	bits, giant g)
/* shift g left bits bits. Equivalent to g = g*2^bits. */
{
	int 			rem = bits & 15, crem = 16 - rem, words = bits >> 4;
	int 			size = abs(g->sign), j, k, sign = gsign(g);
	unsigned short 	carry, dat;

	if (!bits)
		return;
	if (!size)
		return;
	if (bits < 0) {
		gshiftright(-bits, g);
		return;
	}
	if (size + words + 1 > current_max_size) {
		error = OVFLOW;
		exit(error);
	}
	if (rem == 0) {
		memmove(g->n + words, g->n, size * sizeof(short));
		for (j = 0; j < words; j++) g->n[j] = 0;
		g->sign += (g->sign < 0) ? (-words) : (words);
	}
	else {
		k = size + words;
		carry = 0;
		for (j = size - 1; j >= 0; j--) {
			dat = g->n[j];
			g->n[k--] = (unsigned short)((dat >> crem) | carry);
			carry = (unsigned short)(dat << rem);
		}
		do {
			g->n[k--] = carry;
			carry = 0;
		} while (k >= 0);

		k = size + words;
		if (g->n[k] == 0)
			--k;
		g->sign = sign * (k + 1);
	}
}
static int
jacobi_symbol(giant a, curveParams *cp)
/* Standard Jacobi symbol (a/cp->basePrime).
  basePrime must be odd, positive. */
{
	int t = 1, u;
	giant t5 = borrowGiant(cp->maxDigits);
	giant t6 = borrowGiant(cp->maxDigits);
	giant t7 = borrowGiant(cp->maxDigits);
	int rtn;

	gtog(a, t5); feemod(cp, t5);
	gtog(cp->basePrime, t6);
	while(!isZero(t5)) {
	    u = (t6->n[0]) & 7;
		while((t5->n[0] & 1) == 0) {
			gshiftright(1, t5);
			if((u==3) || (u==5)) t = -t;
		}
		gtog(t5, t7); gtog(t6, t5); gtog(t7, t6);
		u = (t6->n[0]) & 3;
		if(((t5->n[0] & 3) == 3) && ((u & 3) == 3)) t = -t;
		modg(t6, t5);
	}
	if(isone(t6)) {
		rtn = t;
	}
	else {
		rtn = 0;
	}
	returnGiant(t5);
	returnGiant(t6);
	returnGiant(t7);

	return rtn;
}
static int sqrtmod(giant x, curveParams *cp)
/* If Sqrt[x] (mod p) exists, function returns 1, else 0.
   In either case x is modified, but if 1 is returned,
   x:= Sqrt[x] (mod p).
 */
{
	int rtn;
	giant t0 = borrowGiant(cp->maxDigits);
	giant t1 = borrowGiant(cp->maxDigits);
	giant t2 = borrowGiant(cp->maxDigits);
	giant t3 = borrowGiant(cp->maxDigits);
	giant t4 = borrowGiant(cp->maxDigits);

	giant p = cp->basePrime;

    	feemod(cp, x);			/* Justify the argument. */
    	gtog(x, t0);  /* Store x for eventual validity check on square root. */
    	if((p->n[0] & 3) == 3) {  /* The case p = 3 (mod 4). */
		gtog(p, t1);
		iaddg(1, t1); gshiftright(2, t1);
		powermodg(x, t1, cp);
		goto resolve;
    	}
	/* Next, handle case p = 5 (mod 8). */
    	if((p->n[0] & 7) == 5) {
		gtog(p, t1); int_to_giant(1, t2);
		subg(t2, t1); gshiftright(2, t1);
		gtog(x, t2);
		powermodg(t2, t1, cp);  /* t2 := x^((p-1)/4) % p. */
		iaddg(1, t1);
		gshiftright(1, t1); /* t1 := (p+3)/8. */
		if(isone(t2)) {
			powermodg(x, t1, cp);  /* x^((p+3)/8) is root. */
			goto resolve;
		} else {
			int_to_giant(1, t2); subg(t2, t1);
				/* t1 := (p-5)/8. */
			gshiftleft(2,x);
			powermodg(x, t1, cp);
			mulg(t0, x); addg(x, x); feemod(cp, x);
				/* 2x (4x)^((p-5)/8. */
			goto resolve;
		}
	}

	/* Next, handle tougher case: p = 1 (mod 8). */
	int_to_giant(2, t1);
	while(1) {  /* Find appropriate nonresidue. */
		gtog(t1, t2);
		gsquare(t2); subg(x, t2); feemod(cp, t2);
		if(jacobi_symbol(t2, cp) == -1) break;
		iaddg(1, t1);
	}  /* t2 is now w^2 in F_p^2. */
   	int_to_giant(1, t3);
   	gtog(p, t4); iaddg(1, t4); gshiftright(1, t4);
	powFp2(t1, t3, t2, t4, cp);
	gtog(t1, x);

resolve:
   	gtog(x,t1); gsquare(t1); feemod(cp, t1);
    	if(gcompg(t0, t1) == 0) {
		rtn = 1; 	/* Success. */
	}
	else {
		rtn = 0;	/* no square root */
	}
	returnGiant(t0);
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	return rtn;
}
void ellAddProj(pointProj pt0, pointProj pt1, curveParams *cp)
/* pt0 := pt0 + pt1 on the curve. */
{
	giant x0 = pt0->x, y0 = pt0->y, z0 = pt0->z,
		  x1 = pt1->x, y1 = pt1->y, z1 = pt1->z;
	giant t1;
	giant t2;
	giant t3;
	giant t4;
	giant t5;
	giant t6;
	giant t7;

	if(isZero(z0)) {
		gtog(x1,x0); gtog(y1,y0); gtog(z1,z0);
		return;
	}
	if(isZero(z1)) return;

	t1 = borrowGiant(cp->maxDigits);
	t2 = borrowGiant(cp->maxDigits);
	t3 = borrowGiant(cp->maxDigits);
	t4 = borrowGiant(cp->maxDigits);
	t5 = borrowGiant(cp->maxDigits);
	t6 = borrowGiant(cp->maxDigits);
	t7 = borrowGiant(cp->maxDigits);

	gtog(x0, t1); gtog(y0,t2); gtog(z0, t3);
	gtog(x1, t4); gtog(y1, t5);
	if(!isone(z1)) {
		gtog(z1, t6);
		gtog(t6, t7); gsquare(t7); feemod(cp, t7);
		mulg(t7, t1); feemod(cp, t1);
		mulg(t6, t7); feemod(cp, t7);
		mulg(t7, t2); feemod(cp, t2);
	}
	gtog(t3, t7); gsquare(t7); feemod(cp, t7);
	mulg(t7, t4); feemod(cp, t4);
	mulg(t3, t7); feemod(cp, t7);
	mulg(t7, t5); feemod(cp, t5);
	negg(t4); addg(t1, t4); feemod(cp, t4);
	negg(t5); addg(t2, t5); feemod(cp, t5);
	if(isZero(t4)) {
		if(isZero(t5)) {
			ellDoubleProj(pt0, cp);
	    	} else {
			int_to_giant(1, x0); int_to_giant(1, y0);
			int_to_giant(0, z0);
		}
		goto out;
	}
	addg(t1, t1); subg(t4, t1); feemod(cp, t1);
	addg(t2, t2); subg(t5, t2); feemod(cp, t2);
	if(!isone(z1)) {
		mulg(t6, t3); feemod(cp, t3);
	}
	mulg(t4, t3); feemod(cp, t3);
	gtog(t4, t7); gsquare(t7); feemod(cp, t7);
	mulg(t7, t4); feemod(cp, t4);
	mulg(t1, t7); feemod(cp, t7);
	gtog(t5, t1); gsquare(t1); feemod(cp, t1);
	subg(t7, t1); feemod(cp, t1);
	subg(t1, t7); subg(t1, t7); feemod(cp, t7);
	mulg(t7, t5); feemod(cp, t5);
	mulg(t2, t4); feemod(cp, t4);
	gtog(t5, t2); subg(t4,t2); feemod(cp, t2);
	if(t2->n[0] & 1) { /* Test if t2 is odd. */
		addg(cp->basePrime, t2);
	}
	gshiftright(1, t2);
	gtog(t1, x0); gtog(t2, y0); gtog(t3, z0);
out:
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	returnGiant(t5);
	returnGiant(t6);
	returnGiant(t7);
}
Beispiel #10
0
feeReturn feeECDSAVerify(const unsigned char *sigData,
	size_t sigDataLen,
	const unsigned char *data,
	unsigned dataLen,
	feePubKey pubKey,
    feeSigFormat  format)
{
	/* giant integers per IEEE P1363 notation */
	giant 		h;			// s^(-1)
	giant		h1;			// f h
	giant		h2;			// c times h
	giant		littleC;		// newGiant from ECDSA_decode
	giant 		littleD;		// ditto
	giant		c;			// borrowed, full size
	giant		d;			// ditto
	giant		cPrime = NULL;		// i mod r
	pointProj	h1G = NULL;		// h1 'o' G
	pointProj	h2W = NULL;		// h2 'o' W
	key		W;			// i.e., their public key

	unsigned	version;
	feeReturn	frtn;
	curveParams	*cp = feePubKeyCurveParams(pubKey);
    unsigned    groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8);
    int		result;

	if(cp == NULL) {
		return FR_BadPubKey;
	}

	/*
	 * First decode the byteRep string.
	 */
	frtn = ECDSA_decode(
        format,
        groupBytesLen,
        sigData,
		sigDataLen,
		&littleC,
		&littleD,
		&version);
	if(frtn) {
		return frtn;
	}

	/*
	 * littleC and littleD have capacity = abs(sign), probably
	 * not big enough....
	 */
	c = borrowGiant(cp->maxDigits);
	d = borrowGiant(cp->maxDigits);
	gtog(littleC, c);
	gtog(littleD, d);
	freeGiant(littleC);
	freeGiant(littleD);

	sigDbg(("ECDSA verify:\n"));

    /*
     * Verify that c and d are within [1,group_order-1]
     */
    if((gcompg(cp->cOrderPlus, c) != 1) || (gcompg(cp->cOrderPlus, d) != 1) ||
       isZero(c) || isZero(d))
    {
        returnGiant(c);
        returnGiant(d);
        return FR_InvalidSignature;
    }

	/*
	 * W = signer's public key
	 */
	W = feePubKeyPlusCurve(pubKey);

	/*
	 * 1) Compute h = d^(-1) (mod x1OrderPlus);
	 */
	SIGPROF_START;
	h = borrowGiant(cp->maxDigits);
	gtog(d, h);
	binvg_x1OrderPlus(cp, h);
	SIGPROF_END(vfyStep1);

	/*
	 * 2) h1 = digest as giant (skips assigning to 'f' in P1363)
	 */
	if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) {
	    h1 = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen));
	}
	else {
	    h1 = borrowGiant(cp->maxDigits);
	}
	deserializeGiant(data, h1, dataLen);

	/* 
	 * Certicom SEC1 states that if the digest is larger than the modulus, 
	 * use the left q bits of the digest. 
	 */
	unsigned hashBits = dataLen * 8;
	if(hashBits > cp->q) {
		gshiftright(hashBits - cp->q, h1);
	}
	
	sigLogGiant("  Wx       : ", W->x);
	sigLogGiant("  f        : ", h1);
	sigLogGiant("  c        : ", c);
	sigLogGiant("  d        : ", d);
	sigLogGiant("  s^(-1)   : ", h);

	/*
	 * 3) Compute h1 = f * h mod x1OrderPlus;
	 */
	SIGPROF_START;
	mulg(h, h1);					// h1 := f * h
	x1OrderPlusMod(h1, cp);
	SIGPROF_END(vfyStep3);

	/*
	 * 4) Compute h2 = c * h (mod x1OrderPlus);
	 */
	SIGPROF_START;
	h2 = borrowGiant(cp->maxDigits);
	gtog(c, h2);
	mulg(h, h2);					// h2 := c * h
	x1OrderPlusMod(h2, cp);
	SIGPROF_END(vfyStep4);

     	/*
	 * 5) Compute h2W = h2 'o' W  (W = theirPub)
	 */
	CKASSERT((W->y != NULL) && !isZero(W->y));
	h2W = newPointProj(cp->maxDigits);
	gtog(W->x, h2W->x);
	gtog(W->y, h2W->y);
	int_to_giant(1, h2W->z);
	ellMulProjSimple(h2W, h2, cp);

	/*
	 * 6) Compute h1G = h1 'o' G   (G = {x1Plus, y1Plus, 1} )
	 */
	CKASSERT((cp->y1Plus != NULL) && !isZero(cp->y1Plus));
	h1G = newPointProj(cp->maxDigits);
	gtog(cp->x1Plus, h1G->x);
	gtog(cp->y1Plus, h1G->y);
	int_to_giant(1,  h1G->z);
	ellMulProjSimple(h1G, h1, cp);

	/*
	 * 7) h1G := (h1 'o' G) + (h2  'o' W)
	 */
	ellAddProj(h1G, h2W, cp);

	/*
	 * 8) If elliptic sum is point at infinity, signature is bad; stop.
	 */
	if(isZero(h1G->z)) {
		dbgLog(("feeECDSAVerify: h1 * G = point at infinity\n"));
		result = 1;
		goto vfyDone;
	}
	normalizeProj(h1G, cp);

	/*
	 * 9) cPrime = x coordinate of elliptic sum, mod x1OrderPlus
	 */
	cPrime = borrowGiant(cp->maxDigits);
	gtog(h1G->x, cPrime);
	x1OrderPlusMod(cPrime, cp);

	/*
	 * 10) Good sig iff cPrime == c
	 */
	result = gcompg(c, cPrime);

vfyDone:
	if(result) {
		frtn = FR_InvalidSignature;
		#if	LOG_BAD_SIG
		printf("***yup, bad sig***\n");
		#endif	// LOG_BAD_SIG
	}
	else {
		frtn = FR_Success;
	}

	returnGiant(c);
	returnGiant(d);
	returnGiant(h);
	returnGiant(h1);
	returnGiant(h2);
	if(h1G != NULL) {
		freePointProj(h1G);
	}
	if(h2W != NULL) {
		freePointProj(h2W);
	}
	if(cPrime != NULL) {
		returnGiant(cPrime);
	}
	return frtn;
}
Beispiel #11
0
feeReturn feeECDSASign(
    feePubKey pubKey,
    feeSigFormat  format,             // Signature format DER 9.62 / RAW
	const unsigned char *data,   		// data to be signed
	unsigned dataLen,					// in bytes
	feeRandFcn randFcn,					// optional
	void *randRef,						// optional 
	unsigned char **sigData,			// malloc'd and RETURNED
	unsigned *sigDataLen)				// RETURNED
{
	curveParams 		*cp;

	/* giant integers per IEEE P1363 notation */

	giant 			c;		// both 1363 'c' and 'i'
						// i.e., x-coord of u's pub key
	giant 			d;
	giant 			u;		// random private key
	giant			s;		// private key as giant
	giant			f;		// data (message) as giant

	feeReturn 		frtn = FR_Success;
	feeRand 		frand;
	unsigned char 	*randBytes;
	unsigned		randBytesLen;
    unsigned        groupBytesLen;
	giant			privGiant;
	#if	ECDSA_SIGN_USE_PROJ
	pointProjStruct	pt;		// pt->x = c
	giant			pty;		// pt->y
	giant			ptz;		// pt->z
	#endif	// ECDSA_SIGN_USE_PROJ

	if(pubKey == NULL) {
		return FR_BadPubKey;
	}
	cp = feePubKeyCurveParams(pubKey);
	if(cp == NULL) {
		return FR_BadPubKey;
	}
	if(cp->curveType != FCT_Weierstrass) {
		return FR_IllegalCurve;
	}

	CKASSERT(!isZero(cp->x1OrderPlus));

	/*
	 * Private key and message to be signed as giants
	 */
	privGiant = feePubKeyPrivData(pubKey);
	if(privGiant == NULL) {
		dbgLog(("Attempt to Sign without private data\n"));
		return FR_IllegalArg;
	}
	s = borrowGiant(cp->maxDigits);
	gtog(privGiant, s);
	if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) {
	    f = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen));
	}
	else {
	    f = borrowGiant(cp->maxDigits);
	}
	deserializeGiant(data, f, dataLen);

	/* 
	 * Certicom SEC1 states that if the digest is larger than the modulus, 
	 * use the left q bits of the digest. 
	 */
	unsigned hashBits = dataLen * 8;
	if(hashBits > cp->q) {
		gshiftright(hashBits - cp->q, f);
	}

	sigDbg(("ECDSA sign:\n"));
	sigLogGiant("  s        : ", s);
	sigLogGiant("  f        : ", f);

	c = borrowGiant(cp->maxDigits);
	d = borrowGiant(cp->maxDigits);
	u = borrowGiant(cp->maxDigits);
	if(randFcn == NULL) {
		frand = feeRandAlloc();
	}
	else {
		frand = NULL;
	}
	
	/*
	 * Random size is just larger than base prime
	 */
	groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8);
    randBytesLen = groupBytesLen+8;  // +8bytes (64bits)  to reduce the biais when with reduction mod prime. Per FIPS186-4 - "Using Extra Random Bits"
	randBytes = (unsigned char*) fmalloc(randBytesLen);

	#if	ECDSA_SIGN_USE_PROJ
	/* quick temp pointProj */
	pty = borrowGiant(cp->maxDigits);
	ptz = borrowGiant(cp->maxDigits);
	pt.x = c;
	pt.y = pty;
	pt.z = ptz;
	#endif	// ECDSA_SIGN_USE_PROJ

	while(1) {
		/* Repeat this loop until we have a non-zero c and d */

		/*
		 * 1) Obtain random u in [2, x1OrderPlus-2]
		 */
		SIGPROF_START;
		if(randFcn) {
			randFcn(randRef, randBytes, randBytesLen);
		}
		else {
			feeRandBytes(frand, randBytes, randBytesLen);
		}
		deserializeGiant(randBytes, u, randBytesLen);
        sigLogGiant("  raw u        : ", u);
        sigLogGiant("  order        : ", cp->x1OrderPlus);
        x1OrderPlusJustify(u, cp);
		SIGPROF_END(signStep1);
		sigLogGiant("  in range u        : ", u);

    		/*
		 * note 'o' indicates elliptic multiply, * is integer mult.
		 *
    		 * 2) Compute x coordinate, call it c, of u 'o' G
		 * 3) Reduce: c := c mod x1OrderPlus;
   		 * 4) If c == 0, goto (1);
		 */
		SIGPROF_START;
		gtog(cp->x1Plus, c);

		#if	ECDSA_SIGN_USE_PROJ

		/* projective coordinates */
		gtog(cp->y1Plus, pty);
		int_to_giant(1, ptz);
		ellMulProjSimple(&pt, u, cp);

		#else	/* ECDSA_SIGN_USE_PROJ */

		/* the FEE way */
		elliptic_simple(c, u, cp);

		#endif	/* ECDSA_SIGN_USE_PROJ */

		SIGPROF_END(signStep2);
		SIGPROF_START;
		x1OrderPlusMod(c, cp);
		SIGPROF_END(signStep34);
		if(isZero(c)) {
			dbgLog(("feeECDSASign: zero modulo (1)\n"));
			continue;
		}

		/*
		 * 5) Compute u^(-1) mod x1OrderPlus;
		 */
		SIGPROF_START;
		gtog(u, d);
		binvg_x1OrderPlus(cp, d);
		SIGPROF_END(signStep5);
		sigLogGiant("  u^(-1)   : ", d);

		/*
		 * 6) Compute signature d as:
	 	 *    d = [u^(-1) (f + s*c)] (mod x1OrderPlus)
		 */
		SIGPROF_START;
		mulg(c, s);	     	// s *= c
		x1OrderPlusMod(s, cp);
		addg(f, s);   		// s := f + (s * c)
		x1OrderPlusMod(s, cp);
		mulg(s, d);	     	// d := u^(-1) (f + (s * c))
		x1OrderPlusMod(d, cp);
		SIGPROF_END(signStep67);

		/*
		 * 7) If d = 0, goto (1);
		 */
		if(isZero(d)) {
			dbgLog(("feeECDSASign: zero modulo (2)\n"));
			continue;
		}
		sigLogGiant("  c        : ", c);
		sigLogGiant("  d        : ", d);
		break;			// normal successful exit
	}

	/*
	 * 8) signature is now the integer pair (c, d).
	 */

	/*
	 * Cook up raw data representing the signature.
	 */
	SIGPROF_START;
	ECDSA_encode(format,groupBytesLen, c, d, sigData, sigDataLen);
	SIGPROF_END(signStep8);

	if(frand != NULL) {
		feeRandFree(frand);
	}
	ffree(randBytes);
	returnGiant(u);
	returnGiant(d);
	returnGiant(c);
	returnGiant(f);
	returnGiant(s);
	#if	ECDSA_SIGN_USE_PROJ
	returnGiant(pty);
	returnGiant(ptz);
	#endif	/* ECDSA_SIGN_USE_PROJ */
	return frtn;
}
Beispiel #12
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
void elliptic_add(giant x1, giant x2, giant x3, curveParams *par, int s) {

 /* Addition algorithm for x3 = x1 + x2 on the curve, with sign ambiguity s.
    From theory, we know that if {x1,1} and {x2,1} are on a curve, then
    their elliptic sum (x1,1} + {x2,1} = {x3,1} must have x3 as one of two
    values:

       x3 = U/2 + s*Sqrt[U^2/4 - V]

    where sign s = +-1, and U,V are functions of x1,x2.  Tho present function
    is called a maximum of twice, to settle which of +- is s.  When a call
    is made, it is guaranteed already that x1, x2 both lie on the same curve
    (+- curve); i.e., which curve (+-) is not connected at all with sign s of
    the x3 relation.
  */

    giant cur_n;
    giant t1;
    giant t2;
    giant t3;
    giant t4;
    giant t5;

    PROF_START;
    cur_n = borrowGiant(par->maxDigits);
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);
    t4 = borrowGiant(par->maxDigits);
    t5 = borrowGiant(par->maxDigits);

    if(gcompg(x1, x2)==0) {
	int_to_giant(1, t1);
	numer_double(x1, t1, x3, par);
	denom_double(x1, t1, t2, par);
	binvg_cp(par, t2);
	mulg(t2, x3); feemod(par, x3);
	goto out;
    }
    numer_plus(x1, x2, t1, par);
    int_to_giant(1, t3);
    numer_times(x1, t3, x2, t3, t2, par);
    int_to_giant(1, t4); int_to_giant(1, t5);
    denom_times(x1, t4, x2, t5, t3, par);
    binvg_cp(par, t3);
    mulg(t3, t1); feemod(par, t1); /* t1 := U/2. */
    mulg(t3, t2); feemod(par, t2); /* t2 := V. */
    /* Now x3 will be t1 +- Sqrt[t1^2 - t2]. */
    gtog(t1, t4); gsquare(t4); feemod(par, t4);
    subg(t2, t4);
    make_base(par, cur_n); iaddg(1, cur_n); gshiftright(2, cur_n);
    	/* cur_n := (p+1)/4. */
    feepowermodg(par, t4, cur_n);      /* t4 := t2^((p+1)/4) (mod p). */
    gtog(t1, x3);
    if(s != SIGN_PLUS) negg(t4);
    addg(t4, x3);
    feemod(par, x3);

out:
    returnGiant(cur_n);
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    returnGiant(t4);
    returnGiant(t5);

    PROF_END(ellAddTime);
}