double
gsl_cdf_lognormal_Qinv (const double Q, const double zeta, const double sigma)
{
    double x, u;

    if (Q == 0.0)
    {
        return GSL_POSINF;
    }
    else if (Q == 1.0)
    {
        return 0.0;
    }

    u = gsl_cdf_ugaussian_Qinv (Q);

    x = exp (zeta + sigma * u);

    return x;
}
void test_sparse_als_zero_order_only(TestFixture_T *pFix, gconstpointer pg) {
  int n_features = pFix->X->n;
  int k = 0;
  ffm_param param = {.n_iter = 1,
                     .warm_start = true,
                     .ignore_w = true,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_ALS,
                     .TASK = TASK_REGRESSION};

  ffm_coef *coef = alloc_fm_coef(n_features, k, true);
  param.init_lambda_w = 0;

  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  // g_assert_cmpfloat(4466.666666, ==, coef->w_0);
  g_assert_cmpfloat(fabs(4466.666666 - coef->w_0), <, 1e-6);

  free_ffm_coef(coef);
}

void test_sparse_als_first_order_only(TestFixture_T *pFix, gconstpointer pg) {
  int n_features = pFix->X->n;
  int k = 0;
  ffm_param param = {.n_iter = 1,
                     .warm_start = true,
                     .ignore_w_0 = true,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_ALS,
                     .TASK = TASK_REGRESSION};

  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  coef->w_0 = 0;
  param.init_lambda_w = 0;

  ffm_vector_set(coef->w, 0, 10);
  ffm_vector_set(coef->w, 1, 20);

  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  // hand calculated results 1660.57142857   -11.87755102
  g_assert_cmpfloat(fabs(1660.57142857 - ffm_vector_get(coef->w, 0)), <, 1e-8);
  g_assert_cmpfloat(fabs(-11.87755102 - ffm_vector_get(coef->w, 1)), <, 1e-8);

  free_ffm_coef(coef);
}

void test_sparse_als_second_order_only(TestFixture_T *pFix, gconstpointer pg) {
  int n_features = pFix->X->n;
  int k = 1;
  ffm_param param = {.n_iter = 1,
                     .warm_start = true,
                     .ignore_w_0 = true,
                     .ignore_w = true,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_ALS,
                     .TASK = TASK_REGRESSION};

  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  coef->w_0 = 0;

  param.init_lambda_w = 0;
  param.init_lambda_V = 0;

  ffm_matrix_set(coef->V, 0, 0, 300);
  ffm_matrix_set(coef->V, 0, 1, 400);

  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  // hand calculated results  0.79866412  400.
  g_assert_cmpfloat(fabs(0.79866412 - ffm_matrix_get(coef->V, 0, 0)), <, 1e-8);
  g_assert_cmpfloat(fabs(400 - ffm_matrix_get(coef->V, 0, 1)), <, 1e-8);

  free_ffm_coef(coef);
}

void test_sparse_als_all_interactions(TestFixture_T *pFix, gconstpointer pg) {
  int n_features = pFix->X->n;
  int k = 1;
  ffm_param param = {.n_iter = 1,
                     .warm_start = true,
                     .ignore_w_0 = false,
                     .ignore_w = false,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_ALS,
                     .TASK = TASK_REGRESSION};

  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  coef->w_0 = 0;

  ffm_vector_set(coef->w, 0, 10);
  ffm_vector_set(coef->w, 1, 20);

  ffm_matrix_set(coef->V, 0, 0, 300);
  ffm_matrix_set(coef->V, 0, 1, 400);

  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  // hand calculated results checked with libfm
  g_assert_cmpfloat(fabs(-1755643.33333 - coef->w_0), <, 1e-5);
  g_assert_cmpfloat(fabs(-191459.71428571 - ffm_vector_get(coef->w, 0)), <,
                    1e-6);
  g_assert_cmpfloat(fabs(30791.91836735 - ffm_vector_get(coef->w, 1)), <, 1e-6);
  g_assert_cmpfloat(fabs(253.89744249 - ffm_matrix_get(coef->V, 0, 0)), <,
                    1e-6);
  g_assert_cmpfloat(fabs(400 - ffm_matrix_get(coef->V, 0, 1)), <, 1e-6);

  param.n_iter = 99;
  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);

  g_assert_cmpfloat(fabs(210911.940403 - coef->w_0), <, 1e-7);
  g_assert_cmpfloat(fabs(-322970.68313639 - ffm_vector_get(coef->w, 0)), <,
                    1e-6);
  g_assert_cmpfloat(fabs(51927.60978978 - ffm_vector_get(coef->w, 1)), <, 1e-6);
  g_assert_cmpfloat(fabs(94.76612018 - ffm_matrix_get(coef->V, 0, 0)), <, 1e-6);
  g_assert_cmpfloat(fabs(400 - ffm_matrix_get(coef->V, 0, 1)), <, 1e-6);

  free_ffm_coef(coef);
}

void test_sparse_als_first_order_interactions(TestFixture_T *pFix,
                                              gconstpointer pg) {
  ffm_vector *y_pred = ffm_vector_calloc(5);

  int n_features = pFix->X->n;
  int k = 0;
  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  ffm_param param = {.n_iter = 500,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_ALS,
                     .TASK = TASK_REGRESSION};
  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  sparse_predict(coef, pFix->X, y_pred);

  /* reference values from sklearn LinearRegression
  y_pred:  [ 321.05084746  346.6779661   -40.15254237  321.05084746
  790.37288136]
  coef: [  69.6779661   152.16949153]
  mse: 3134.91525424 */
  g_assert_cmpfloat(fabs(321.05084746 - ffm_vector_get(y_pred, 0)), <, 1e-6);
  g_assert_cmpfloat(fabs(346.6779661 - ffm_vector_get(y_pred, 1)), <, 1e-6);
  g_assert_cmpfloat(fabs(-40.15254237 - ffm_vector_get(y_pred, 2)), <, 1e-6);
  g_assert_cmpfloat(fabs(321.05084746 - ffm_vector_get(y_pred, 3)), <, 1e-6);
  g_assert_cmpfloat(fabs(790.37288136 - ffm_vector_get(y_pred, 4)), <, 1e-6);

  ffm_vector_free(y_pred);
  free_ffm_coef(coef);
}

void test_sparse_als_second_interactions(TestFixture_T *pFix,
                                         gconstpointer pg) {
  ffm_vector *y_pred = ffm_vector_calloc(5);

  int n_features = pFix->X->n;
  int k = 2;
  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  ffm_param param = {.n_iter = 1000, .init_sigma = 0.1, .SOLVER = SOLVER_ALS};
  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  sparse_predict(coef, pFix->X, y_pred);

  /* reference values from sklearn LinearRegression
  y_pred: [ 298.  266.   29.  298.  848.]
  coeff: [  9.   2.  40.]
  mse: 4.53374139449e-27 */
  g_assert_cmpfloat(fabs(298 - ffm_vector_get(y_pred, 0)), <, 1e-4);
  g_assert_cmpfloat(fabs(266 - ffm_vector_get(y_pred, 1)), <, 1e-4);
  g_assert_cmpfloat(fabs(29 - ffm_vector_get(y_pred, 2)), <, 1e-3);
  g_assert_cmpfloat(fabs(298 - ffm_vector_get(y_pred, 3)), <, 1e-4);
  g_assert_cmpfloat(fabs(848.0 - ffm_vector_get(y_pred, 4)), <, 1e-4);

  ffm_vector_free(y_pred);
  free_ffm_coef(coef);
}

void test_sparse_mcmc_second_interactions(TestFixture_T *pFix,
                                          gconstpointer pg) {
  int n_features = pFix->X->n;
  int n_samples = pFix->X->m;
  int k = 2;
  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  ffm_vector *y_pred = ffm_vector_calloc(n_samples);
  ffm_param param = {.n_iter = 100,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_MCMC,
                     .TASK = TASK_REGRESSION,
                     .rng_seed = 1234};
  sparse_fit(coef, pFix->X, pFix->X, pFix->y, y_pred, param);

  g_assert_cmpfloat(ffm_r2_score(pFix->y, y_pred), >, .98);

  ffm_vector_free(y_pred);
  free_ffm_coef(coef);
}

void test_sparse_mcmc_second_interactions_classification(TestFixture_T *pFix,
                                                         gconstpointer pg) {
  int n_features = pFix->X->n;
  int n_samples = pFix->X->m;
  int k = 2;
  ffm_vector_make_labels(pFix->y);
  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  ffm_vector *y_pred = ffm_vector_calloc(n_samples);
  ffm_param param = {.n_iter = 10,
                     .init_sigma = 0.1,
                     .SOLVER = SOLVER_MCMC,
                     .TASK = TASK_CLASSIFICATION};
  sparse_fit(coef, pFix->X, pFix->X, pFix->y, y_pred, param);

  g_assert_cmpfloat(ffm_vector_accuracy(pFix->y, y_pred), >=, .98);

  ffm_vector_free(y_pred);
  free_ffm_coef(coef);
}

void test_train_test_of_different_size(TestFixture_T *pFix, gconstpointer pg) {
  int n_features = pFix->X->n;
  int k = 2;

  int n_samples_short = 3;
  int m = n_samples_short;
  int n = n_features;
  cs *X = cs_spalloc(m, n, m * n, 1, 1); /* create triplet identity matrix */
  cs_entry(X, 0, 0, 6);
  cs_entry(X, 0, 1, 1);
  cs_entry(X, 1, 0, 2);
  cs_entry(X, 1, 1, 3);
  cs_entry(X, 2, 0, 3);
  cs *X_csc = cs_compress(X); /* A = compressed-column form of T */
  cs *X_t = cs_transpose(X_csc, 1);
  cs_spfree(X);

  ffm_vector *y = ffm_vector_calloc(n_samples_short);
  // y [ 298 266 29 298 848 ]
  y->data[0] = 298;
  y->data[1] = 266;
  y->data[2] = 29;

  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  ffm_vector *y_pred = ffm_vector_calloc(n_samples_short);

  ffm_param param = {.n_iter = 20, .init_sigma = 0.01};
  // test: train > test

  param.SOLVER = SOLVER_ALS;
  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  sparse_predict(coef, X_csc, y_pred);
  param.TASK = TASK_CLASSIFICATION;
  sparse_fit(coef, pFix->X, NULL, pFix->y, NULL, param);
  sparse_predict(coef, X_csc, y_pred);

  param.SOLVER = SOLVER_MCMC;
  param.TASK = TASK_CLASSIFICATION;
  sparse_fit(coef, pFix->X, X_csc, pFix->y, y_pred, param);
  param.TASK = TASK_REGRESSION;
  sparse_fit(coef, pFix->X, X_csc, pFix->y, y_pred, param);

  // test: train < test
  param.SOLVER = SOLVER_MCMC;
  param.TASK = TASK_CLASSIFICATION;
  sparse_fit(coef, X_csc, pFix->X, y_pred, pFix->y, param);
  param.TASK = TASK_REGRESSION;
  sparse_fit(coef, X_csc, pFix->X, y_pred, pFix->y, param);

  param.SOLVER = SOLVER_ALS;
  sparse_fit(coef, X_csc, NULL, y_pred, NULL, param);
  sparse_predict(coef, pFix->X, pFix->y);
  param.TASK = TASK_CLASSIFICATION;
  sparse_fit(coef, X_csc, NULL, y_pred, NULL, param);
  sparse_predict(coef, pFix->X, pFix->y);

  ffm_vector_free(y_pred);
  free_ffm_coef(coef);
  cs_spfree(X_t);
  cs_spfree(X_csc);
}

void test_sparse_als_generated_data(void) {
  int n_features = 10;
  int n_samples = 100;
  int k = 2;

  TestFixture_T *data = makeTestFixture(124, n_samples, n_features, k);

  ffm_vector *y_pred = ffm_vector_calloc(n_samples);

  ffm_coef *coef = alloc_fm_coef(n_features, k, false);
  ffm_param param = {.n_iter = 50, .init_sigma = 0.01, .SOLVER = SOLVER_ALS};
  param.init_lambda_w = 23.5;
  param.init_lambda_V = 23.5;
  sparse_fit(coef, data->X, NULL, data->y, NULL, param);
  sparse_predict(coef, data->X, y_pred);

  g_assert_cmpfloat(ffm_r2_score(data->y, y_pred), >, 0.85);

  ffm_vector_free(y_pred);
  free_ffm_coef(coef);
  TestFixtureDestructor(data, NULL);
}

void test_hyerparameter_sampling(void) {
  ffm_rng *rng = ffm_rng_seed(12345);

  int n_features = 20;
  int n_samples = 150;
  int k = 1;  // don't just change k, the rank is hard coded in the test
              // (ffm_vector_get(coef->lambda_V, 0);)

  int n_replication = 40;
  int n_draws = 1000;
  ffm_vector *alpha_rep = ffm_vector_calloc(n_replication);
  ffm_vector *lambda_w_rep = ffm_vector_calloc(n_replication);
  ffm_vector *lambda_V_rep = ffm_vector_calloc(n_replication);
  ffm_vector *mu_w_rep = ffm_vector_calloc(n_replication);
  ffm_vector *mu_V_rep = ffm_vector_calloc(n_replication);
  ffm_vector *err = ffm_vector_alloc(n_samples);

  for (int j = 0; j < n_replication; j++) {
    TestFixture_T *data = makeTestFixture(124, n_samples, n_features, k);
    ffm_coef *coef = data->coef;

    sparse_predict(coef, data->X, err);
    ffm_vector_scale(err, -1);
    ffm_vector_add(err, data->y);

    // make sure that distribution is converged bevore selecting
    // reference / init values
    for (int l = 0; l < 50; l++) sample_hyper_parameter(coef, err, rng);

    double alpha_init = coef->alpha;
    double lambda_w_init = coef->lambda_w;
    double lambda_V_init = ffm_vector_get(coef->lambda_V, 0);
    double mu_w_init = coef->mu_w;
    double mu_V_init = ffm_vector_get(coef->mu_V, 0);

    double alpha_count = 0;
    double lambda_w_count = 0, lambda_V_count = 0;
    double mu_w_count = 0, mu_V_count = 0;

    for (int l = 0; l < n_draws; l++) {
      sample_hyper_parameter(coef, err, rng);
      if (alpha_init > coef->alpha) alpha_count++;
      if (lambda_w_init > coef->lambda_w) lambda_w_count++;
      if (lambda_V_init > ffm_vector_get(coef->lambda_V, 0)) lambda_V_count++;
      if (mu_w_init > coef->mu_w) mu_w_count++;
      if (mu_V_init > ffm_vector_get(coef->mu_V, 0)) mu_V_count++;
    }
    ffm_vector_set(alpha_rep, j, alpha_count / (n_draws + 1));
    ffm_vector_set(lambda_w_rep, j, lambda_w_count / (n_draws + 1));
    ffm_vector_set(lambda_V_rep, j, lambda_V_count / (n_draws + 1));
    ffm_vector_set(mu_w_rep, j, mu_w_count / (n_draws + 1));
    ffm_vector_set(mu_V_rep, j, mu_V_count / (n_draws + 1));

    TestFixtureDestructor(data, NULL);
  }
  double chi_alpha = 0;
  for (int i = 0; i < n_replication; i++)
    chi_alpha +=
        ffm_pow_2(gsl_cdf_ugaussian_Qinv(ffm_vector_get(alpha_rep, i)));
  g_assert_cmpfloat(gsl_ran_chisq_pdf(chi_alpha, n_replication), <, .05);

  double chi_lambda_w = 0;
  for (int i = 0; i < n_replication; i++)
    chi_lambda_w +=
        ffm_pow_2(gsl_cdf_ugaussian_Qinv(ffm_vector_get(lambda_w_rep, i)));
  g_assert_cmpfloat(gsl_ran_chisq_pdf(chi_lambda_w, n_replication), <, .05);

  double chi_lambda_V = 0;
  for (int i = 0; i < n_replication; i++)
    chi_lambda_V +=
        ffm_pow_2(gsl_cdf_ugaussian_Qinv(ffm_vector_get(lambda_V_rep, i)));
  g_assert_cmpfloat(gsl_ran_chisq_pdf(chi_lambda_V, n_replication), <, .05);

  double chi_mu_w = 0;
  for (int i = 0; i < n_replication; i++)
    chi_mu_w += ffm_pow_2(gsl_cdf_ugaussian_Qinv(ffm_vector_get(mu_w_rep, i)));
  g_assert_cmpfloat(gsl_ran_chisq_pdf(chi_mu_w, n_replication), <, .05);

  double chi_mu_V = 0;
  for (int i = 0; i < n_replication; i++)
    chi_mu_V += ffm_pow_2(gsl_cdf_ugaussian_Qinv(ffm_vector_get(mu_V_rep, i)));
  g_assert_cmpfloat(gsl_ran_chisq_pdf(chi_mu_V, n_replication), <, .05);

  ffm_vector_free_all(alpha_rep, lambda_w_rep, lambda_V_rep, mu_w_rep, mu_V_rep,
                      err);
  ffm_rng_free(rng);
}
Beispiel #3
0
double
gsl_cdf_gaussian_Qinv (const double Q, const double sigma)
{
  return sigma * gsl_cdf_ugaussian_Qinv (Q);
}
Beispiel #4
0
double
gsl_cdf_gamma_Qinv (const double Q, const double a, const double b)
{
  double x;

  if (Q == 1.0)
    {
      return 0.0;
    }
  else if (Q == 0.0)
    {
      return GSL_POSINF;
    }

  /* Consider, small, large and intermediate cases separately.  The
     boundaries at 0.05 and 0.95 have not been optimised, but seem ok
     for an initial approximation. */

  if (Q < 0.05)
    {
      double x0 = -log (Q) + gsl_sf_lngamma (a);
      x = x0;
    }
  else if (Q > 0.95)
    {
      double x0 = exp ((gsl_sf_lngamma (a) + log1p (-Q)) / a);
      x = x0;
    }
  else
    {
      double xg = gsl_cdf_ugaussian_Qinv (Q);
      double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a;
      x = x0;
    }

  /* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards
     to an improved value of x (Abramowitz & Stegun, 3.6.6) 

     where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.
   */

  {
    double lambda, dQ, phi;
    unsigned int n = 0;

  start:
    dQ = Q - gsl_cdf_gamma_Q (x, a, 1.0);
    phi = gsl_ran_gamma_pdf (x, a, 1.0);

    if (dQ == 0.0 || n++ > 32)
      goto end;

    lambda = -dQ / GSL_MAX (2 * fabs (dQ / x), phi);

    {
      double step0 = lambda;
      double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;

      double step = step0;
      if (fabs (step1) < 0.5 * fabs (step0))
        step += step1;

      if (x + step > 0)
        x += step;
      else
        {
          x /= 2.0;
        }

      if (fabs (step0) > 1e-10 * x)
        goto start;
    }

  }

end:
  return b * x;
}
Beispiel #5
0
double
gsl_cdf_tdist_Qinv (const double Q, const double nu)
{
  double x, qtail;

  if (Q == 0.0)
    {
      return GSL_POSINF;
    }
  else if (Q == 1.0)
    {
      return GSL_NEGINF;
    }

  if (nu == 1.0)
    {
      x = tan (M_PI * (0.5 - Q));
      return x;
    }
  else if (nu == 2.0)
    {
      x = (1 - 2 * Q) / sqrt (2 * Q * (1 - Q));
      return x;
    }

  qtail = (Q < 0.5) ? Q : 1 - Q;

  if (sqrt (M_PI * nu / 2) * qtail > pow (0.05, nu / 2))
    {
      double xg = gsl_cdf_ugaussian_Qinv (Q);
      x = inv_cornish_fisher (xg, nu);
    }
  else
    {
      /* Use an asymptotic expansion of the tail of integral */

      double beta = gsl_sf_beta (0.5, nu / 2);

      if (Q < 0.5)
        {
          x = sqrt (nu) * pow (beta * nu * Q, -1.0 / nu);
        }
      else
        {
          x = -sqrt (nu) * pow (beta * nu * (1 - Q), -1.0 / nu);
        }

      /* Correct nu -> nu/(1+nu/x^2) in the leading term to account
         for higher order terms. This avoids overestimating x, which
         makes the iteration unstable due to the rapidly decreasing
         tails of the distribution. */

      x /= sqrt (1 + nu / (x * x));
    }

  {
    double dQ, phi;
    unsigned int n = 0;

  start:
    dQ = Q - gsl_cdf_tdist_Q (x, nu);
    phi = gsl_ran_tdist_pdf (x, nu);

    if (dQ == 0.0 || n++ > 32)
      goto end;

    {
      double lambda = - dQ / phi;
      double step0 = lambda;
      double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0);

      double step = step0;

      if (fabs (step1) < fabs (step0))
        {
          step += step1;
        }

      if (Q < 0.5 && x + step < 0)
        x /= 2;
      else if (Q > 0.5 && x + step > 0)
        x /= 2;
      else
        x += step;

      if (fabs (step) > 1e-10 * fabs (x))
        goto start;
    }
  }

end:

  return x;
}