Beispiel #1
0
/* [Carlson, Numer. Math. 33 (1979) 1, (4.2)] */
int
gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result)
{
  const double sin_phi  = sin(phi);
  const double sin2_phi = sin_phi  * sin_phi;
  const double x = 1.0 - sin2_phi;
  const double y = 1.0 - k*k*sin2_phi;
  if(x < GSL_DBL_EPSILON) {
    return gsl_sf_ellint_Ecomp_e(k, mode, result);
  }
  else {
    gsl_sf_result rf;
    gsl_sf_result rd;
    const double sin3_phi = sin2_phi * sin_phi;
    const int rfstatus = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf);
    const int rdstatus = gsl_sf_ellint_RD_e(x, y, 1.0, mode, &rd);
    result->val  = sin_phi * rf.val - k*k/3.0 * sin3_phi * rd.val;
    result->err  = GSL_DBL_EPSILON * fabs(sin_phi * rf.val);
    result->err += fabs(sin_phi*rf.err);
    result->err += k*k/3.0 * GSL_DBL_EPSILON * fabs(sin3_phi * rd.val);
    result->err += k*k/3.0 * fabs(sin3_phi*rd.err);
    return GSL_ERROR_SELECT_2(rfstatus, rdstatus);
  }
}
Beispiel #2
0
double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode)
{
  EVAL_RESULT(gsl_sf_ellint_RF_e(x, y, z, mode, &result));
}
Beispiel #3
0
      /**
       * C++ version of gsl_sf_ellint_RF_e().
       * Carlson's symmetric basis of functions
       *
       * RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
       * @param x A real number
       * @param y A real number
       * @param z A real number
       * @param mode The mode
       * @param result The result as a @c gsl::sf::result object
       * @return GSL_SUCCESS or GSL_EDOM
       */
      inline int RF_e( double x, double y, double z, mode_t mode, result& result ){
	return gsl_sf_ellint_RF_e( x, y, z, mode, &result ); }