static GEN bound_for_coeff(long m, GEN rr, GEN *maxroot) { long i,r1, lrr=lg(rr); GEN p1,b1,b2,B,M, C = matpascal(m-1); for (r1=1; r1 < lrr; r1++) if (typ(rr[r1]) != t_REAL) break; r1--; rr = gabs(rr,0); *maxroot = vecmax(rr); for (i=1; i<lrr; i++) if (gcmp(gel(rr,i), gen_1) < 0) gel(rr,i) = gen_1; for (b1=gen_1,i=1; i<=r1; i++) b1 = gmul(b1, gel(rr,i)); for (b2=gen_1 ; i<lrr; i++) b2 = gmul(b2, gel(rr,i)); B = gmul(b1, gsqr(b2)); /* Mahler measure */ M = cgetg(m+2, t_VEC); gel(M,1) = gel(M,2) = gen_0; /* unused */ for (i=1; i<m; i++) { p1 = gadd(gmul(gcoeff(C, m, i+1), B),/* binom(m-1, i) */ gcoeff(C, m, i)); /* binom(m-1, i-1) */ gel(M,i+2) = ceil_safe(p1); } return M; }
/* return a bound for T_2(P), P | polbase in C[X] * NB: Mignotte bound: A | S ==> * |a_i| <= binom(d-1, i-1) || S ||_2 + binom(d-1, i) lc(S) * * Apply to sigma(S) for all embeddings sigma, then take the L_2 norm over * sigma, then take the sup over i. **/ static GEN nf_Mignotte_bound(GEN nf, GEN polbase) { GEN G = gmael(nf,5,2), lS = leading_term(polbase); /* t_INT */ GEN p1, C, N2, matGS, binlS, bin; long prec, i, j, d = degpol(polbase), n = degpol(nf[1]), r1 = nf_get_r1(nf); binlS = bin = vecbinome(d-1); if (!gcmp1(lS)) binlS = gmul(lS, bin); N2 = cgetg(n+1, t_VEC); prec = gprecision(G); for (;;) { nffp_t F; matGS = cgetg(d+2, t_MAT); for (j=0; j<=d; j++) gel(matGS,j+1) = arch_for_T2(G, gel(polbase,j+2)); matGS = shallowtrans(matGS); for (j=1; j <= r1; j++) /* N2[j] = || sigma_j(S) ||_2 */ { gel(N2,j) = gsqrt( QuickNormL2(gel(matGS,j), DEFAULTPREC), DEFAULTPREC ); if (lg(N2[j]) < DEFAULTPREC) goto PRECPB; } for ( ; j <= n; j+=2) { GEN q1 = QuickNormL2(gel(matGS,j ), DEFAULTPREC); GEN q2 = QuickNormL2(gel(matGS,j+1), DEFAULTPREC); p1 = gmul2n(mpadd(q1, q2), -1); gel(N2,j) = gel(N2,j+1) = gsqrt( p1, DEFAULTPREC ); if (lg(N2[j]) < DEFAULTPREC) goto PRECPB; } if (j > n) break; /* done */ PRECPB: prec = (prec<<1)-2; remake_GM(nf, &F, prec); G = F.G; if (DEBUGLEVEL>1) pari_warn(warnprec, "nf_factor_bound", prec); } /* Take sup over 0 <= i <= d of * sum_sigma | binom(d-1, i-1) ||sigma(S)||_2 + binom(d-1,i) lc(S) |^2 */ /* i = 0: n lc(S)^2 */ C = mulsi(n, sqri(lS)); /* i = d: sum_sigma ||sigma(S)||_2^2 */ p1 = gnorml2(N2); if (gcmp(C, p1) < 0) C = p1; for (i = 1; i < d; i++) { GEN s = gen_0; for (j = 1; j <= n; j++) { p1 = mpadd( mpmul(gel(bin,i), gel(N2,j)), gel(binlS,i+1) ); s = mpadd(s, gsqr(p1)); } if (gcmp(C, s) < 0) C = s; } return C; }
static void bestlift_init(long a, GEN nf, GEN pr, GEN C, nflift_t *L) { const long D = 100; const double alpha = ((double)D-1) / D; /* LLL parameter */ const long d = degpol(nf[1]); pari_sp av = avma; GEN prk, PRK, B, GSmin, pk; pari_timer ti; TIMERstart(&ti); if (!a) a = (long)bestlift_bound(C, d, alpha, pr_norm(pr)); for (;; avma = av, a<<=1) { if (DEBUGLEVEL>2) fprintferr("exponent: %ld\n",a); PRK = prk = idealpows(nf, pr, a); pk = gcoeff(prk,1,1); /* reduce size first, "scramble" matrix */ PRK = lllintpartial_ip(PRK); /* now floating point reduction is fast */ PRK = lllint_fp_ip(PRK, 4); PRK = lllint_i(PRK, D, 0, NULL, NULL, &B); if (!PRK) { PRK = prk; GSmin = pk; } /* nf = Q */ else { pari_sp av2 = avma; GEN S = invmat( get_R(PRK) ), BB = GS_norms(B, DEFAULTPREC); GEN smax = gen_0; long i, j; for (i=1; i<=d; i++) { GEN s = gen_0; for (j=1; j<=d; j++) s = gadd(s, gdiv( gsqr(gcoeff(S,i,j)), gel(BB,j))); if (gcmp(s, smax) > 0) smax = s; } GSmin = gerepileupto(av2, ginv(gmul2n(smax, 2))); } if (gcmp(GSmin, C) >= 0) break; } if (DEBUGLEVEL>2) fprintferr("for this exponent, GSmin = %Z\nTime reduction: %ld\n", GSmin, TIMER(&ti)); L->k = a; L->den = L->pk = pk; L->prk = PRK; L->iprk = ZM_inv(PRK, pk); L->GSmin= GSmin; L->prkHNF = prk; init_proj(L, gel(nf,1), gel(pr,1)); }
static GEN sqrmod(GEN x, Red *R) { return R->red(gsqr(x), R); }
/* Naive recombination of modular factors: combine up to maxK modular * factors, degree <= klim and divisible by hint * * target = polynomial we want to factor * famod = array of modular factors. Product should be congruent to * target/lc(target) modulo p^a * For true factors: S1,S2 <= p^b, with b <= a and p^(b-a) < 2^31 */ static GEN nfcmbf(nfcmbf_t *T, GEN p, long a, long maxK, long klim) { GEN pol = T->pol, nf = T->nf, famod = T->fact, dn = T->dn; GEN bound = T->bound; GEN nfpol = gel(nf,1); long K = 1, cnt = 1, i,j,k, curdeg, lfamod = lg(famod)-1, dnf = degpol(nfpol); GEN res = cgetg(3, t_VEC); pari_sp av0 = avma; GEN pk = gpowgs(p,a), pks2 = shifti(pk,-1); GEN ind = cgetg(lfamod+1, t_VECSMALL); GEN degpol = cgetg(lfamod+1, t_VECSMALL); GEN degsofar = cgetg(lfamod+1, t_VECSMALL); GEN listmod = cgetg(lfamod+1, t_COL); GEN fa = cgetg(lfamod+1, t_COL); GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc; GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk; GEN Clt = mul_content(C, lt); GEN C2lt = mul_content(C,Clt); const double Bhigh = get_Bhigh(lfamod, dnf); trace_data _T1, _T2, *T1, *T2; pari_timer ti; TIMERstart(&ti); if (maxK < 0) maxK = lfamod-1; C2ltpol = C2lt? gmul(C2lt,pol): pol; { GEN q = ceil_safe(sqrtr(T->BS_2)); GEN t1,t2, ltdn, lt2dn; GEN trace1 = cgetg(lfamod+1, t_MAT); GEN trace2 = cgetg(lfamod+1, t_MAT); ltdn = mul_content(lt, dn); lt2dn= mul_content(ltdn, lt); for (i=1; i <= lfamod; i++) { pari_sp av = avma; GEN P = gel(famod,i); long d = degpol(P); degpol[i] = d; P += 2; t1 = gel(P,d-1);/* = - S_1 */ t2 = gsqr(t1); if (d > 1) t2 = gsub(t2, gmul2n(gel(P,d-2), 1)); /* t2 = S_2 Newton sum */ t2 = typ(t2)!=t_INT? FpX_rem(t2, Tpk, pk): modii(t2, pk); if (lt) { if (typ(t2)!=t_INT) { t1 = FpX_red(gmul(ltdn, t1), pk); t2 = FpX_red(gmul(lt2dn,t2), pk); } else { t1 = remii(mulii(ltdn, t1), pk); t2 = remii(mulii(lt2dn,t2), pk); } } gel(trace1,i) = gclone( nf_bestlift(t1, NULL, T->L) ); gel(trace2,i) = gclone( nf_bestlift(t2, NULL, T->L) ); avma = av; } T1 = init_trace(&_T1, trace1, T->L, q); T2 = init_trace(&_T2, trace2, T->L, q); for (i=1; i <= lfamod; i++) { gunclone(gel(trace1,i)); gunclone(gel(trace2,i)); } } degsofar[0] = 0; /* sentinel */ /* ind runs through strictly increasing sequences of length K, * 1 <= ind[i] <= lfamod */ nextK: if (K > maxK || 2*K > lfamod) goto END; if (DEBUGLEVEL > 3) fprintferr("\n### K = %d, %Z combinations\n", K,binomial(utoipos(lfamod), K)); setlg(ind, K+1); ind[1] = 1; i = 1; curdeg = degpol[ind[1]]; for(;;) { /* try all combinations of K factors */ for (j = i; j < K; j++) { degsofar[j] = curdeg; ind[j+1] = ind[j]+1; curdeg += degpol[ind[j+1]]; } if (curdeg <= klim && curdeg % T->hint == 0) /* trial divide */ { GEN t, y, q, list; pari_sp av; av = avma; /* d - 1 test */ if (T1) { t = get_trace(ind, T1); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>6) fprintferr("."); avma = av; goto NEXT; } } /* d - 2 test */ if (T2) { t = get_trace(ind, T2); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>3) fprintferr("|"); avma = av; goto NEXT; } } avma = av; y = lt; /* full computation */ for (i=1; i<=K; i++) { GEN q = gel(famod, ind[i]); if (y) q = gmul(y, q); y = FqX_centermod(q, Tpk, pk, pks2); } y = nf_pol_lift(y, bound, T); if (!y) { if (DEBUGLEVEL>3) fprintferr("@"); avma = av; goto NEXT; } /* try out the new combination: y is the candidate factor */ q = RgXQX_divrem(C2ltpol, y, nfpol, ONLY_DIVIDES); if (!q) { if (DEBUGLEVEL>3) fprintferr("*"); avma = av; goto NEXT; } /* found a factor */ list = cgetg(K+1, t_VEC); gel(listmod,cnt) = list; for (i=1; i<=K; i++) list[i] = famod[ind[i]]; y = Q_primpart(y); gel(fa,cnt++) = QXQX_normalize(y, nfpol); /* fix up pol */ pol = q; for (i=j=k=1; i <= lfamod; i++) { /* remove used factors */ if (j <= K && i == ind[j]) j++; else { famod[k] = famod[i]; update_trace(T1, k, i); update_trace(T2, k, i); degpol[k] = degpol[i]; k++; } } lfamod -= K; if (lfamod < 2*K) goto END; i = 1; curdeg = degpol[ind[1]]; if (C2lt) pol = Q_primpart(pol); if (lt) lt = absi(leading_term(pol)); Clt = mul_content(C, lt); C2lt = mul_content(C,Clt); C2ltpol = C2lt? gmul(C2lt,pol): pol; if (DEBUGLEVEL > 2) { fprintferr("\n"); msgTIMER(&ti, "to find factor %Z",y); fprintferr("remaining modular factor(s): %ld\n", lfamod); } continue; } NEXT: for (i = K+1;;) { if (--i == 0) { K++; goto nextK; } if (++ind[i] <= lfamod - K + i) { curdeg = degsofar[i-1] + degpol[ind[i]]; if (curdeg <= klim) break; } } } END: if (degpol(pol) > 0) { /* leftover factor */ if (signe(leading_term(pol)) < 0) pol = gneg_i(pol); if (C2lt && lfamod < 2*K) pol = QXQX_normalize(Q_primpart(pol), nfpol); setlg(famod, lfamod+1); gel(listmod,cnt) = shallowcopy(famod); gel(fa,cnt++) = pol; } if (DEBUGLEVEL>6) fprintferr("\n"); if (cnt == 2) { avma = av0; gel(res,1) = mkvec(T->pol); gel(res,2) = mkvec(T->fact); } else { setlg(listmod, cnt); setlg(fa, cnt); gel(res,1) = fa; gel(res,2) = listmod; res = gerepilecopy(av0, res); } return res; }
void mimc_perm_gadget<field_type>::snark_perm() { field_type x = input_state; field_type tmp; int index = varCount; index += 1; //mimc_snarkboard<field_type> pb; snarkvar<field_type> X, Y, Z; for(int i = 0;i < num_round;i++) { linear_term<field_type> u(0, fONE, key); X.add_var(u); u.reset(index, fONE, x); index++; X.add_var(u); Y.clear(); Y = X; u.reset(index, fONE, fZERO); Z.clear(); Z.add_var(u); index++; // std::cout<<"BEFORE SQR\n\n"; // std::cout<<"X ->\n";X.print_snarkvar(); // std::cout<<"Y ->\n";Y.print_snarkvar(); // std::cout<<"Z ->\n";Z.print_snarkvar(); f2n_sqr_gadget<field_type> gsqr(&X, &Z, mptr); gsqr.generate_r1cs_constraint(); gsqr.generate_r1cs_witness(); // std::cout<<"AFTER SQR\n\n"; // std::cout<<"X ->\n";X.print_snarkvar(); // std::cout<<"Y ->\n";Y.print_snarkvar(); // std::cout<<"Z ->\n";Z.print_snarkvar(); Z.lc[0].var_val = Z.lc_val; X.clear(); X = Z; Z.clear(); u.reset(index, fONE, fZERO); Z.add_var(u); // std::cout<<"BEFORE MUL\n\n"; // std::cout<<"X ->\n";X.print_snarkvar(); // std::cout<<"Y ->\n";Y.print_snarkvar(); // std::cout<<"Z ->\n";Z.print_snarkvar(); f2n_mul_gadget<field_type> gmul(&X, &Y, &Z, mptr); gmul.generate_r1cs_constraint(); gmul.generate_r1cs_witness(); // std::cout<<"AFTER MUL\n\n"; // std::cout<<"X ->\n";X.print_snarkvar(); // std::cout<<"Y ->\n";Y.print_snarkvar(); // std::cout<<"Z ->\n";Z.print_snarkvar(); X.clear(); x = Z.lc_val; Y.clear(); } }