GtTranslator* gt_translator_new(GtCodonIterator *ci)
{
  GtTranslator *tr;
  gt_assert(ci);
  tr = gt_translator_new_with_table(gt_trans_table_new_standard(NULL), ci);
  tr->owntable = true;
  return tr;
}
Beispiel #2
0
void gt_outputtranslationandorf(unsigned long pglnum, const GthAGS *ags,
                                unsigned long agsnum,
                                unsigned long translationtable,
                                GthInput *input,
                                unsigned int indentlevel,
                                GthOutput *out)
{
  unsigned long i;
  unsigned int nframe;
  const unsigned char *gen_seq_orig;
  GtStr *frame[3];
  char translated;
  GtTranslatorStatus status;
  GtTranslator *translator;
  GtTransTable *transtable;
  GtCodonIterator *ci;
  GthSplicedSeq *spliced_seq;
  GtArray *ranges;
  GtFile *outfp = out->outfp;

  /* output header */
  if (out->xmlout) {
    gth_indent(outfp, indentlevel);
    gt_file_xprintf(outfp, "<three_phase_translation "
                    "xmlns=\"http://www.genomethreader.org/GTH_output/"
                    "PGL_module/predicted_gene_location/AGS_information/"
                    "three_phase_translation/\">\n");
    indentlevel++;
    gth_indent(outfp, indentlevel);
    gt_file_xprintf(outfp, "<description PGL_serial=\"%lu\" "
                              "AGS_serial=\"%lu\" gDNA_strand=\"%c\"/>\n",
                       pglnum + OUTPUTOFFSET, agsnum + OUTPUTOFFSET,
                       SHOWSTRAND(gth_ags_is_forward(ags)));
  }
  else {
    gt_file_xprintf(outfp, "3-phase translation of AGS-%lu (%cstrand):\n\n",
                       agsnum + OUTPUTOFFSET,
                       SHOWSTRAND(gth_ags_is_forward(ags)));
  }

  ranges = gt_array_new(sizeof (GtRange));
  for (i = 0; i < gt_array_size(ags->exons); i++)
    gt_array_add(ranges, ((GthExonAGS*) gt_array_get(ags->exons, i))->range);

  /* get genomic sequence */
  gen_seq_orig = gth_input_original_genomic_sequence(input,
                                                     gth_ags_filenum(ags),
                                                     gth_ags_is_forward(ags));

  spliced_seq = gth_spliced_seq_new(gen_seq_orig, ranges);

  frame[0] = gt_str_new();
  frame[1] = gt_str_new();
  frame[2] = gt_str_new();

  /* prepare for translation */
  ci = gt_codon_iterator_simple_new((const char*) spliced_seq->splicedseq,
                                    spliced_seq->splicedseqlen, NULL);
  gt_assert(ci);
  transtable = gt_trans_table_new(translationtable, NULL);
  gt_assert(transtable);

  /* translate the template in all three frames */
  translator = gt_translator_new_with_table(transtable, ci);
  status = gt_translator_next(translator, &translated, &nframe, NULL);
  while (status == GT_TRANSLATOR_OK) {
    gt_str_append_char(frame[nframe], translated);
    status = gt_translator_next(translator, &translated, &nframe, NULL);
  }
  gt_assert(status != GT_TRANSLATOR_ERROR);
  gt_translator_delete(translator);
  gt_trans_table_delete(transtable);
  gt_codon_iterator_delete(ci);

  /* show the translation */
  showtranslation(spliced_seq, gt_str_get(frame[0]), gt_str_get(frame[1]),
                  gt_str_get(frame[2]), ags->exons, gth_ags_is_forward(ags),
                  gth_ags_total_length(ags), gth_ags_genomic_offset(ags),
                  indentlevel, out);

  /* show the (consolidated) ORFs */
  gthshowORFs(gt_str_get(frame[0]), gt_str_get(frame[1]), gt_str_get(frame[2]),
              gt_str_length(frame[0]), gt_str_length(frame[1]),
              gt_str_length(frame[2]), gth_ags_is_forward(ags),
              gth_ags_total_length(ags), gth_ags_genomic_offset(ags),
              gt_str_get(ags->gen_id), pglnum, agsnum, spliced_seq,
              indentlevel, out);

  if (out->xmlout) {
    indentlevel--;
    gth_indent(outfp, indentlevel);
    gt_file_xprintf(outfp, "</three_phase_translation>\n");
  }

  gth_spliced_seq_delete(spliced_seq);
  gt_array_delete(ranges);
  gt_str_delete(frame[0]);
  gt_str_delete(frame[1]);
  gt_str_delete(frame[2]);
}