Beispiel #1
0
int
MPU9250::gyro_ioctl(struct file *filp, int cmd, unsigned long arg)
{
	switch (cmd) {

	/* these are shared with the accel side */
	case SENSORIOCSPOLLRATE:
	case SENSORIOCGPOLLRATE:
	case SENSORIOCRESET:
		return ioctl(filp, cmd, arg);

	case SENSORIOCSQUEUEDEPTH: {
			/* lower bound is mandatory, upper bound is a sanity check */
			if ((arg < 1) || (arg > 100)) {
				return -EINVAL;
			}

			irqstate_t flags = px4_enter_critical_section();

			if (!_gyro_reports->resize(arg)) {
				px4_leave_critical_section(flags);
				return -ENOMEM;
			}

			px4_leave_critical_section(flags);

			return OK;
		}

	case SENSORIOCGQUEUEDEPTH:
		return _gyro_reports->size();

	case GYROIOCGSAMPLERATE:
		return _sample_rate;

	case GYROIOCSSAMPLERATE:
		_set_sample_rate(arg);
		return OK;

	case GYROIOCGLOWPASS:
		return _gyro_filter_x.get_cutoff_freq();

	case GYROIOCSLOWPASS:
		// set software filtering
		_gyro_filter_x.set_cutoff_frequency(1.0e6f / _call_interval, arg);
		_gyro_filter_y.set_cutoff_frequency(1.0e6f / _call_interval, arg);
		_gyro_filter_z.set_cutoff_frequency(1.0e6f / _call_interval, arg);
		return OK;

	case GYROIOCSSCALE:
		/* copy scale in */
		memcpy(&_gyro_scale, (struct gyro_calibration_s *) arg, sizeof(_gyro_scale));
		return OK;

	case GYROIOCGSCALE:
		/* copy scale out */
		memcpy((struct gyro_calibration_s *) arg, &_gyro_scale, sizeof(_gyro_scale));
		return OK;

	case GYROIOCSRANGE:
		/* XXX not implemented */
		// XXX change these two values on set:
		// _gyro_range_scale = xx
		// _gyro_range_rad_s = xx
		return -EINVAL;

	case GYROIOCGRANGE:
		return (unsigned long)(_gyro_range_rad_s * 180.0f / M_PI_F + 0.5f);

	case GYROIOCSELFTEST:
		return gyro_self_test();

#ifdef GYROIOCSHWLOWPASS

	case GYROIOCSHWLOWPASS:
		_set_dlpf_filter(arg);
		return OK;
#endif

#ifdef GYROIOCGHWLOWPASS

	case GYROIOCGHWLOWPASS:
		return _dlpf_freq;
#endif

	default:
		/* give it to the superclass */
		return CDev::ioctl(filp, cmd, arg);
	}
}
int
BMI055_gyro::ioctl(struct file *filp, int cmd, unsigned long arg)
{
	switch (cmd) {

	case SENSORIOCSPOLLRATE: {
			switch (arg) {

			/* switching to manual polling */
			case SENSOR_POLLRATE_MANUAL:
				stop();
				_call_interval = 0;
				return OK;

			/* external signalling not supported */
			case SENSOR_POLLRATE_EXTERNAL:

			/* zero would be bad */
			case 0:
				return -EINVAL;

			/* set default/max polling rate */
			case SENSOR_POLLRATE_MAX:
				return ioctl(filp, SENSORIOCSPOLLRATE, BMI055_GYRO_MAX_RATE);

			case SENSOR_POLLRATE_DEFAULT:
				return ioctl(filp, SENSORIOCSPOLLRATE, BMI055_GYRO_DEFAULT_RATE);

			/* adjust to a legal polling interval in Hz */
			default: {
					/* do we need to start internal polling? */
					bool want_start = (_call_interval == 0);

					/* convert hz to hrt interval via microseconds */
					unsigned ticks = 1000000 / arg;

					/* check against maximum rate */
					if (ticks < 1000) {
						return -EINVAL;
					}

					float cutoff_freq_hz_gyro = _gyro_filter_x.get_cutoff_freq();
					float sample_rate = 1.0e6f / ticks;
					_gyro_filter_x.set_cutoff_frequency(sample_rate, cutoff_freq_hz_gyro);
					_gyro_filter_y.set_cutoff_frequency(sample_rate, cutoff_freq_hz_gyro);
					_gyro_filter_z.set_cutoff_frequency(sample_rate, cutoff_freq_hz_gyro);

					/* update interval for next measurement */
					_call_interval = ticks;

					/*
					  set call interval faster than the sample time. We
					  then detect when we have duplicate samples and reject
					  them. This prevents aliasing due to a beat between the
					  stm32 clock and the bmi055 clock
					 */
					_call.period = _call_interval - BMI055_TIMER_REDUCTION;

					/* if we need to start the poll state machine, do it */
					if (want_start) {
						start();
					}

					return OK;
				}
			}
		}

	case SENSORIOCGPOLLRATE:
		if (_call_interval == 0) {
			return SENSOR_POLLRATE_MANUAL;
		}

		return 1000000 / _call_interval;

	case SENSORIOCRESET:
		return reset();

	case SENSORIOCSQUEUEDEPTH: {
			/* lower bound is mandatory, upper bound is a sanity check */
			if ((arg < 1) || (arg > 100)) {
				return -EINVAL;
			}

			irqstate_t flags = px4_enter_critical_section();

			if (!_gyro_reports->resize(arg)) {
				px4_leave_critical_section(flags);
				return -ENOMEM;
			}

			px4_leave_critical_section(flags);

			return OK;
		}

	case GYROIOCGSAMPLERATE:
		return _gyro_sample_rate;

	case GYROIOCSSAMPLERATE:
		return gyro_set_sample_rate(arg);

	case GYROIOCSSCALE:
		/* copy scale in */
		memcpy(&_gyro_scale, (struct gyro_calibration_s *) arg, sizeof(_gyro_scale));
		return OK;

	case GYROIOCGSCALE:
		/* copy scale out */
		memcpy((struct gyro_calibration_s *) arg, &_gyro_scale, sizeof(_gyro_scale));
		return OK;

	case GYROIOCSRANGE:
		return set_gyro_range(arg);

	case GYROIOCGRANGE:
		return (unsigned long)(_gyro_range_rad_s * 180.0f / M_PI_F + 0.5f);

	case GYROIOCSELFTEST:
		return gyro_self_test();

	default:
		/* give it to the superclass */
		return SPI::ioctl(filp, cmd, arg);
	}
}