Beispiel #1
0
static void ia64_machine_kexec(struct unw_frame_info *info, void *arg)
{
	xen_kexec_image_t *image = arg;
	int ii;

	/* Interrupts aren't acceptable while we reboot */
	local_irq_disable();

	/* Mask CMC and Performance Monitor interrupts */
	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);

	/* Mask ITV and Local Redirect Registers */
	ia64_set_itv(1 << 16);
	ia64_set_lrr0(1 << 16);
	ia64_set_lrr1(1 << 16);

	/* terminate possible nested in-service interrupts */
	for (ii = 0; ii < 16; ii++)
		ia64_eoi();

	/* unmask TPR and clear any pending interrupts */
	ia64_setreg(_IA64_REG_CR_TPR, 0);
	ia64_srlz_d();
	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
		ia64_eoi();
	platform_kernel_launch_event();
	relocate_new_kernel(image->indirection_page, image->start_address,
			    __pa(ia64_boot_param), image->reboot_code_buffer);
	BUG();
}
Beispiel #2
0
static u_int
ia64_ih_clock(struct thread *td, u_int xiv, struct trapframe *tf)
{
	struct eventtimer *et;
	uint64_t itc, load;
	uint32_t mode;

	PCPU_INC(md.stats.pcs_nclks);
	intrcnt[INTRCNT_CLOCK]++;

	itc = ia64_get_itc();
	PCPU_SET(md.clock, itc);

	mode = PCPU_GET(md.clock_mode);
	if (mode == CLOCK_ET_PERIODIC) {
		load = PCPU_GET(md.clock_load);
		ia64_set_itm(itc + load);
	} else
		ia64_set_itv((1 << 16) | xiv);

	ia64_set_eoi(0);
	ia64_srlz_d();

	et = &ia64_clock_et;
	if (et->et_active)
		et->et_event_cb(et, et->et_arg);
	return (1);
}
Beispiel #3
0
static void ia64_machine_kexec(struct unw_frame_info *info, void *arg)
{
	struct kimage *image = arg;
	relocate_new_kernel_t rnk;
	void *pal_addr = efi_get_pal_addr();
	unsigned long code_addr = (unsigned long)page_address(image->control_code_page);
	unsigned long vector;
	int ii;
	u64 fp, gp;
	ia64_fptr_t *init_handler = (ia64_fptr_t *)ia64_os_init_on_kdump;

	BUG_ON(!image);
	if (image->type == KEXEC_TYPE_CRASH) {
		crash_save_this_cpu();
		current->thread.ksp = (__u64)info->sw - 16;

		/* Register noop init handler */
		fp = ia64_tpa(init_handler->fp);
		gp = ia64_tpa(ia64_getreg(_IA64_REG_GP));
		ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, fp, gp, 0, fp, gp, 0);
	} else {
		/* Unregister init handlers of current kernel */
		ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 0, 0, 0, 0, 0, 0);
	}

	/* Unregister mca handler - No more recovery on current kernel */
	ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 0, 0, 0, 0, 0, 0);

	/* Interrupts aren't acceptable while we reboot */
	local_irq_disable();

	/* Mask CMC and Performance Monitor interrupts */
	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);

	/* Mask ITV and Local Redirect Registers */
	ia64_set_itv(1 << 16);
	ia64_set_lrr0(1 << 16);
	ia64_set_lrr1(1 << 16);

	/* terminate possible nested in-service interrupts */
	for (ii = 0; ii < 16; ii++)
		ia64_eoi();

	/* unmask TPR and clear any pending interrupts */
	ia64_setreg(_IA64_REG_CR_TPR, 0);
	ia64_srlz_d();
	vector = ia64_get_ivr();
	while (vector != IA64_SPURIOUS_INT_VECTOR) {
		ia64_eoi();
		vector = ia64_get_ivr();
	}
	platform_kernel_launch_event();
	rnk = (relocate_new_kernel_t)&code_addr;
	(*rnk)(image->head, image->start, ia64_boot_param,
		     GRANULEROUNDDOWN((unsigned long) pal_addr));
	BUG();
}
void
pcpu_initclock(void)
{

	PCPU_SET(clockadj, 0);
	PCPU_SET(clock, ia64_get_itc());
	ia64_set_itm(PCPU_GET(clock) + ia64_clock_reload);
	ia64_set_itv(CLOCK_VECTOR);	/* highest priority class */
	ia64_srlz_d();
}
Beispiel #5
0
void fixup_irqs(void)
{
	unsigned int irq;
	extern void ia64_process_pending_intr(void);
	extern volatile int time_keeper_id;

	/* Mask ITV to disable timer */
	ia64_set_itv(1 << 16);

	/*
	 * Find a new timesync master
	 */
	if (smp_processor_id() == time_keeper_id) {
		time_keeper_id = cpumask_first(cpu_online_mask);
		printk ("CPU %d is now promoted to time-keeper master\n", time_keeper_id);
	}

	/*
	 * Phase 1: Locate IRQs bound to this cpu and
	 * relocate them for cpu removal.
	 */
	migrate_irqs();

	/*
	 * Phase 2: Perform interrupt processing for all entries reported in
	 * local APIC.
	 */
	ia64_process_pending_intr();

	/*
	 * Phase 3: Now handle any interrupts not captured in local APIC.
	 * This is to account for cases that device interrupted during the time the
	 * rte was being disabled and re-programmed.
	 */
	for (irq=0; irq < NR_IRQS; irq++) {
		if (vectors_in_migration[irq]) {
			struct pt_regs *old_regs = set_irq_regs(NULL);

			vectors_in_migration[irq]=0;
			generic_handle_irq(irq);
			set_irq_regs(old_regs);
		}
	}

	/*
	 * Now let processor die. We do irq disable and max_xtp() to
	 * ensure there is no more interrupts routed to this processor.
	 * But the local timer interrupt can have 1 pending which we
	 * take care in timer_interrupt().
	 */
	max_xtp();
	local_irq_disable();
}
Beispiel #6
0
/*
 * Do not allocate memory (or fail in any way) in machine_kexec().
 * We are past the point of no return, committed to rebooting now.
 */
static void ia64_machine_kexec(struct unw_frame_info *info, void *arg)
{
    struct kimage *image = arg;
    relocate_new_kernel_t rnk;
    void *pal_addr = efi_get_pal_addr();
    unsigned long code_addr = (unsigned long)page_address(image->control_code_page);
    int ii;

    BUG_ON(!image);
    if (image->type == KEXEC_TYPE_CRASH) {
        crash_save_this_cpu();
        current->thread.ksp = (__u64)info->sw - 16;
    }

    /* Interrupts aren't acceptable while we reboot */
    local_irq_disable();

    /* Mask CMC and Performance Monitor interrupts */
    ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
    ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);

    /* Mask ITV and Local Redirect Registers */
    ia64_set_itv(1 << 16);
    ia64_set_lrr0(1 << 16);
    ia64_set_lrr1(1 << 16);

    /* terminate possible nested in-service interrupts */
    for (ii = 0; ii < 16; ii++)
        ia64_eoi();

    /* unmask TPR and clear any pending interrupts */
    ia64_setreg(_IA64_REG_CR_TPR, 0);
    ia64_srlz_d();
    while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
        ia64_eoi();
    platform_kernel_launch_event();
    rnk = (relocate_new_kernel_t)&code_addr;
    (*rnk)(image->head, image->start, ia64_boot_param,
             GRANULEROUNDDOWN((unsigned long) pal_addr));
    BUG();
}
Beispiel #7
0
/*
 * Encapsulate access to the itm structure for SMP.
 */
void
ia64_cpu_local_tick (void)
{
    int cpu = smp_processor_id();
    unsigned long shift = 0, delta;

    /* arrange for the cycle counter to generate a timer interrupt: */
    ia64_set_itv(IA64_TIMER_VECTOR);

    delta = local_cpu_data->itm_delta;
    /*
     * Stagger the timer tick for each CPU so they don't occur all at (almost) the
     * same time:
     */
    if (cpu) {
        unsigned long hi = 1UL << ia64_fls(cpu);
        shift = (2*(cpu - hi) + 1) * delta/hi/2;
    }
    local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
    ia64_set_itm(local_cpu_data->itm_next);
}
Beispiel #8
0
static void __init
check_sal_cache_flush (void)
{
	unsigned long flags;
	int cpu;
	u64 vector;

	cpu = get_cpu();
	local_irq_save(flags);

	/*
	 * Schedule a timer interrupt, wait until it's reported, and see if
	 * SAL_CACHE_FLUSH drops it.
	 */
	ia64_set_itv(IA64_TIMER_VECTOR);
	ia64_set_itm(ia64_get_itc() + 1000);

	while (!ia64_get_irr(IA64_TIMER_VECTOR))
		cpu_relax();

	ia64_sal_cache_flush(3);

	if (ia64_get_irr(IA64_TIMER_VECTOR)) {
		vector = ia64_get_ivr();
		ia64_eoi();
		WARN_ON(vector != IA64_TIMER_VECTOR);
	} else {
		sal_cache_flush_drops_interrupts = 1;
		printk(KERN_ERR "SAL: SAL_CACHE_FLUSH drops interrupts; "
			"PAL_CACHE_FLUSH will be used instead\n");
		ia64_eoi();
	}

	local_irq_restore(flags);
	put_cpu();
}
Beispiel #9
0
/*
 * cpu_init() initializes state that is per-CPU.  This function acts
 * as a 'CPU state barrier', nothing should get across.
 */
void
cpu_init (void)
{
	extern void __devinit ia64_mmu_init (void *);
	unsigned long num_phys_stacked;
	pal_vm_info_2_u_t vmi;
	unsigned int max_ctx;
	struct cpuinfo_ia64 *cpu_info;
	void *cpu_data;

	cpu_data = per_cpu_init();

	get_max_cacheline_size();

	/*
	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
	 * depends on the data returned by identify_cpu().  We break the dependency by
	 * accessing cpu_data() through the canonical per-CPU address.
	 */
	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
	identify_cpu(cpu_info);

#ifdef CONFIG_MCKINLEY
	{
#		define FEATURE_SET 16
		struct ia64_pal_retval iprv;

		if (cpu_info->family == 0x1f) {
			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
				              (iprv.v1 | 0x80), FEATURE_SET, 0);
		}
	}
#endif

	/* Clear the stack memory reserved for pt_regs: */
	memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));

	ia64_set_kr(IA64_KR_FPU_OWNER, 0);

	/*
	 * Initialize default control register to defer all speculative faults.  The
	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
	 * the kernel must have recovery code for all speculative accesses).  Turn on
	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
	 * be fine).
	 */
	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;
	if (current->mm)
		BUG();

	ia64_mmu_init(ia64_imva(cpu_data));

#ifdef CONFIG_IA32_SUPPORT
	ia32_cpu_init();
#endif

	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
	ia64_set_itc(0);

	/* disable all local interrupt sources: */
	ia64_set_itv(1 << 16);
	ia64_set_lrr0(1 << 16);
	ia64_set_lrr1(1 << 16);
	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);

	/* clear TPR & XTP to enable all interrupt classes: */
	ia64_setreg(_IA64_REG_CR_TPR, 0);
#ifdef CONFIG_SMP
	normal_xtp();
#endif

	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
	else {
		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
		max_ctx = (1U << 15) - 1;	/* use architected minimum */
	}
	while (max_ctx < ia64_ctx.max_ctx) {
		unsigned int old = ia64_ctx.max_ctx;
		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
			break;
	}

	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
		       "stacked regs\n");
		num_phys_stacked = 96;
	}
	/* size of physical stacked register partition plus 8 bytes: */
	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
	platform_cpu_init();
}
Beispiel #10
0
void __devinit ia64_disable_timer(void)
{
    ia64_set_itv(1 << 16);
}
Beispiel #11
0
static void rthal_set_itv(void)
{
    rthal_itm_next[rthal_processor_id()] = ia64_get_itc();
    ia64_set_itv(irq_to_vector(rthal_tick_irq));
}