Beispiel #1
0
		mat3 mat3::inverse(void)      // Gauss-Jordan elimination with partial pivoting
			{
			mat3 a(*this),	    // As a evolves from original mat into identity
			b(identity2D());   // b evolves from identity into inverse(a)
			int	 i, j, i1;

			// Loop over cols of a from left to right, eliminating above and below diag
			for (j=0; j<3; j++) {   // Find largest pivot in column j among rows j..2
			i1 = j;		    // Row with largest pivot candidate
			for (i=j+1; i<3; i++)
			if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
				i1 = i;

			// Swap rows i1 and j in a and b to put pivot on diagonal
			swap(a.v[i1], a.v[j]);
			swap(b.v[i1], b.v[j]);

			// Scale row j to have a unit diagonal
			if (a.v[j].n[j]==0.)
			VEC_ERROR("mat3::inverse: singular matrix; can't invert\n");
			b.v[j] /= a.v[j].n[j];
			a.v[j] /= a.v[j].n[j];

			// Eliminate off-diagonal elems in col j of a, doing identical ops to b
			for (i=0; i<3; i++)
			if (i!=j) {
			b.v[i] -= a.v[i].n[j]*b.v[j];
			a.v[i] -= a.v[i].n[j]*a.v[j];
			}
			}
			return b;
		}
Beispiel #2
0
inline identity2D identity(std::size_t nrows)
{
    return identity2D(nrows, nrows);
}
Beispiel #3
0
mat3::mat3()
{
    *this = identity2D();
}
Beispiel #4
0
		mat3::mat3(void) { *this = identity2D(); }