/* Subroutine */ int igraphdnaitr_(integer *ido, char *bmat, integer *n, integer *k,
	 integer *np, integer *nb, doublereal *resid, doublereal *rnorm, 
	doublereal *v, integer *ldv, doublereal *h__, integer *ldh, integer *
	ipntr, doublereal *workd, integer *info)
{
    /* Initialized data */

    static logical first = TRUE_;

    /* System generated locals */
    integer h_dim1, h_offset, v_dim1, v_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer i__, j;
    static real t0, t1, t2, t3, t4, t5;
    static integer jj, ipj, irj, ivj;
    static doublereal ulp, tst1;
    extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer ierr, iter;
    static doublereal unfl, ovfl;
    static integer itry;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    static doublereal temp1;
    static logical orth1, orth2, step3, step4;
    static doublereal betaj;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *), igraphdgemv_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *);
    static integer infol;
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdaxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *), igraphdmout_(integer 
	    *, integer *, integer *, doublereal *, integer *, integer *, char 
	    *);
    static doublereal xtemp[2];
    extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, 
	    integer *, char *);
    static doublereal wnorm;
    extern /* Subroutine */ int igraphivout_(integer *, integer *, integer *, 
	    integer *, char *), igraphdgetv0_(integer *, char *, integer *, 
	    logical *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *
	    ), igraphdlabad_(doublereal *, doublereal *);
    static doublereal rnorm1;
    extern doublereal igraphdlamch_(char *);
    extern /* Subroutine */ int igraphdlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    extern doublereal igraphdlanhs_(char *, integer *, doublereal *, integer *, 
	    doublereal *);
    extern /* Subroutine */ int igraphsecond_(real *);
    static logical rstart;
    static integer msglvl;
    static doublereal smlnum;


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %-----------------------% */
/*     | Local Array Arguments | */
/*     %-----------------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */


/*     %---------------------% */
/*     | Intrinsic Functions | */
/*     %---------------------% */


/*     %-----------------% */
/*     | Data statements | */
/*     %-----------------% */

    /* Parameter adjustments */
    --workd;
    --resid;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    --ipntr;

    /* Function Body */

/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

    if (first) {

/*        %-----------------------------------------% */
/*        | Set machine-dependent constants for the | */
/*        | the splitting and deflation criterion.  | */
/*        | If norm(H) <= sqrt(OVFL),               | */
/*        | overflow should not occur.              | */
/*        | REFERENCE: LAPACK subroutine dlahqr     | */
/*        %-----------------------------------------% */

	unfl = igraphdlamch_("safe minimum");
	ovfl = 1. / unfl;
	igraphdlabad_(&unfl, &ovfl);
	ulp = igraphdlamch_("precision");
	smlnum = unfl * (*n / ulp);
	first = FALSE_;
    }

    if (*ido == 0) {

/*        %-------------------------------% */
/*        | Initialize timing statistics  | */
/*        | & message level for debugging | */
/*        %-------------------------------% */

	igraphsecond_(&t0);
	msglvl = debug_1.mnaitr;

/*        %------------------------------% */
/*        | Initial call to this routine | */
/*        %------------------------------% */

	*info = 0;
	step3 = FALSE_;
	step4 = FALSE_;
	rstart = FALSE_;
	orth1 = FALSE_;
	orth2 = FALSE_;
	j = *k + 1;
	ipj = 1;
	irj = ipj + *n;
	ivj = irj + *n;
    }

/*     %-------------------------------------------------% */
/*     | When in reverse communication mode one of:      | */
/*     | STEP3, STEP4, ORTH1, ORTH2, RSTART              | */
/*     | will be .true. when ....                        | */
/*     | STEP3: return from computing OP*v_{j}.          | */
/*     | STEP4: return from computing B-norm of OP*v_{j} | */
/*     | ORTH1: return from computing B-norm of r_{j+1}  | */
/*     | ORTH2: return from computing B-norm of          | */
/*     |        correction to the residual vector.       | */
/*     | RSTART: return from OP computations needed by   | */
/*     |         dgetv0.                                 | */
/*     %-------------------------------------------------% */

    if (step3) {
	goto L50;
    }
    if (step4) {
	goto L60;
    }
    if (orth1) {
	goto L70;
    }
    if (orth2) {
	goto L90;
    }
    if (rstart) {
	goto L30;
    }

/*     %-----------------------------% */
/*     | Else this is the first step | */
/*     %-----------------------------% */

/*     %--------------------------------------------------------------% */
/*     |                                                              | */
/*     |        A R N O L D I     I T E R A T I O N     L O O P       | */
/*     |                                                              | */
/*     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) | */
/*     %--------------------------------------------------------------% */
L1000:

    if (msglvl > 1) {
	igraphivout_(&debug_1.logfil, &c__1, &j, &debug_1.ndigit, "_naitr: generat"
		"ing Arnoldi vector number");
	igraphdvout_(&debug_1.logfil, &c__1, rnorm, &debug_1.ndigit, "_naitr: B-no"
		"rm of the current residual is");
    }

/*        %---------------------------------------------------% */
/*        | STEP 1: Check if the B norm of j-th residual      | */
/*        | vector is zero. Equivalent to determing whether   | */
/*        | an exact j-step Arnoldi factorization is present. | */
/*        %---------------------------------------------------% */

    betaj = *rnorm;
    if (*rnorm > 0.) {
	goto L40;
    }

/*           %---------------------------------------------------% */
/*           | Invariant subspace found, generate a new starting | */
/*           | vector which is orthogonal to the current Arnoldi | */
/*           | basis and continue the iteration.                 | */
/*           %---------------------------------------------------% */

    if (msglvl > 0) {
	igraphivout_(&debug_1.logfil, &c__1, &j, &debug_1.ndigit, "_naitr: ****** "
		"RESTART AT STEP ******");
    }

/*           %---------------------------------------------% */
/*           | ITRY is the loop variable that controls the | */
/*           | maximum amount of times that a restart is   | */
/*           | attempted. NRSTRT is used by stat.h         | */
/*           %---------------------------------------------% */

    betaj = 0.;
    ++timing_1.nrstrt;
    itry = 1;
L20:
    rstart = TRUE_;
    *ido = 0;
L30:

/*           %--------------------------------------% */
/*           | If in reverse communication mode and | */
/*           | RSTART = .true. flow returns here.   | */
/*           %--------------------------------------% */

    igraphdgetv0_(ido, bmat, &itry, &c_false, n, &j, &v[v_offset], ldv, &resid[1], 
	    rnorm, &ipntr[1], &workd[1], &ierr);
    if (*ido != 99) {
	goto L9000;
    }
    if (ierr < 0) {
	++itry;
	if (itry <= 3) {
	    goto L20;
	}

/*              %------------------------------------------------% */
/*              | Give up after several restart attempts.        | */
/*              | Set INFO to the size of the invariant subspace | */
/*              | which spans OP and exit.                       | */
/*              %------------------------------------------------% */

	*info = j - 1;
	igraphsecond_(&t1);
	timing_1.tnaitr += t1 - t0;
	*ido = 99;
	goto L9000;
    }

L40:

/*        %---------------------------------------------------------% */
/*        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  | */
/*        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow | */
/*        | when reciprocating a small RNORM, test against lower    | */
/*        | machine bound.                                          | */
/*        %---------------------------------------------------------% */

    igraphdcopy_(n, &resid[1], &c__1, &v[j * v_dim1 + 1], &c__1);
    if (*rnorm >= unfl) {
	temp1 = 1. / *rnorm;
	igraphdscal_(n, &temp1, &v[j * v_dim1 + 1], &c__1);
	igraphdscal_(n, &temp1, &workd[ipj], &c__1);
    } else {

/*            %-----------------------------------------% */
/*            | To scale both v_{j} and p_{j} carefully | */
/*            | use LAPACK routine SLASCL               | */
/*            %-----------------------------------------% */

	igraphdlascl_("General", &i__, &i__, rnorm, &c_b25, n, &c__1, &v[j * v_dim1 
		+ 1], n, &infol);
	igraphdlascl_("General", &i__, &i__, rnorm, &c_b25, n, &c__1, &workd[ipj], 
		n, &infol);
    }

/*        %------------------------------------------------------% */
/*        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} | */
/*        | Note that this is not quite yet r_{j}. See STEP 4    | */
/*        %------------------------------------------------------% */

    step3 = TRUE_;
    ++timing_1.nopx;
    igraphsecond_(&t2);
    igraphdcopy_(n, &v[j * v_dim1 + 1], &c__1, &workd[ivj], &c__1);
    ipntr[1] = ivj;
    ipntr[2] = irj;
    ipntr[3] = ipj;
    *ido = 1;

/*        %-----------------------------------% */
/*        | Exit in order to compute OP*v_{j} | */
/*        %-----------------------------------% */

    goto L9000;
L50:

/*        %----------------------------------% */
/*        | Back from reverse communication; | */
/*        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}   | */
/*        | if step3 = .true.                | */
/*        %----------------------------------% */

    igraphsecond_(&t3);
    timing_1.tmvopx += t3 - t2;
    step3 = FALSE_;

/*        %------------------------------------------% */
/*        | Put another copy of OP*v_{j} into RESID. | */
/*        %------------------------------------------% */

    igraphdcopy_(n, &workd[irj], &c__1, &resid[1], &c__1);

/*        %---------------------------------------% */
/*        | STEP 4:  Finish extending the Arnoldi | */
/*        |          factorization to length j.   | */
/*        %---------------------------------------% */

    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++timing_1.nbx;
	step4 = TRUE_;
	ipntr[1] = irj;
	ipntr[2] = ipj;
	*ido = 2;

/*           %-------------------------------------% */
/*           | Exit in order to compute B*OP*v_{j} | */
/*           %-------------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[ipj], &c__1);
    }
L60:

/*        %----------------------------------% */
/*        | Back from reverse communication; | */
/*        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} | */
/*        | if step4 = .true.                | */
/*        %----------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	timing_1.tmvbx += t3 - t2;
    }

    step4 = FALSE_;

/*        %-------------------------------------% */
/*        | The following is needed for STEP 5. | */
/*        | Compute the B-norm of OP*v_{j}.     | */
/*        %-------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	wnorm = igraphddot_(n, &resid[1], &c__1, &workd[ipj], &c__1);
	wnorm = sqrt((abs(wnorm)));
    } else if (*(unsigned char *)bmat == 'I') {
	wnorm = igraphdnrm2_(n, &resid[1], &c__1);
    }

/*        %-----------------------------------------% */
/*        | Compute the j-th residual corresponding | */
/*        | to the j step factorization.            | */
/*        | Use Classical Gram Schmidt and compute: | */
/*        | w_{j} <-  V_{j}^T * B * OP * v_{j}      | */
/*        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      | */
/*        %-----------------------------------------% */


/*        %------------------------------------------% */
/*        | Compute the j Fourier coefficients w_{j} | */
/*        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  | */
/*        %------------------------------------------% */

    igraphdgemv_("T", n, &j, &c_b25, &v[v_offset], ldv, &workd[ipj], &c__1, &c_b47, 
	    &h__[j * h_dim1 + 1], &c__1);

/*        %--------------------------------------% */
/*        | Orthogonalize r_{j} against V_{j}.   | */
/*        | RESID contains OP*v_{j}. See STEP 3. | */
/*        %--------------------------------------% */

    igraphdgemv_("N", n, &j, &c_b50, &v[v_offset], ldv, &h__[j * h_dim1 + 1], &c__1,
	     &c_b25, &resid[1], &c__1);

    if (j > 1) {
	h__[j + (j - 1) * h_dim1] = betaj;
    }

    igraphsecond_(&t4);

    orth1 = TRUE_;

    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++timing_1.nbx;
	igraphdcopy_(n, &resid[1], &c__1, &workd[irj], &c__1);
	ipntr[1] = irj;
	ipntr[2] = ipj;
	*ido = 2;

/*           %----------------------------------% */
/*           | Exit in order to compute B*r_{j} | */
/*           %----------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[ipj], &c__1);
    }
L70:

/*        %---------------------------------------------------% */
/*        | Back from reverse communication if ORTH1 = .true. | */
/*        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    | */
/*        %---------------------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	timing_1.tmvbx += t3 - t2;
    }

    orth1 = FALSE_;

/*        %------------------------------% */
/*        | Compute the B-norm of r_{j}. | */
/*        %------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	*rnorm = igraphddot_(n, &resid[1], &c__1, &workd[ipj], &c__1);
	*rnorm = sqrt((abs(*rnorm)));
    } else if (*(unsigned char *)bmat == 'I') {
	*rnorm = igraphdnrm2_(n, &resid[1], &c__1);
    }

/*        %-----------------------------------------------------------% */
/*        | STEP 5: Re-orthogonalization / Iterative refinement phase | */
/*        | Maximum NITER_ITREF tries.                                | */
/*        |                                                           | */
/*        |          s      = V_{j}^T * B * r_{j}                     | */
/*        |          r_{j}  = r_{j} - V_{j}*s                         | */
/*        |          alphaj = alphaj + s_{j}                          | */
/*        |                                                           | */
/*        | The stopping criteria used for iterative refinement is    | */
/*        | discussed in Parlett's book SEP, page 107 and in Gragg &  | */
/*        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         | */
/*        | Determine if we need to correct the residual. The goal is | */
/*        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  | */
/*        | The following test determines whether the sine of the     | */
/*        | angle between  OP*x and the computed residual is less     | */
/*        | than or equal to 0.717.                                   | */
/*        %-----------------------------------------------------------% */

    if (*rnorm > wnorm * .717f) {
	goto L100;
    }
    iter = 0;
    ++timing_1.nrorth;

/*        %---------------------------------------------------% */
/*        | Enter the Iterative refinement phase. If further  | */
/*        | refinement is necessary, loop back here. The loop | */
/*        | variable is ITER. Perform a step of Classical     | */
/*        | Gram-Schmidt using all the Arnoldi vectors V_{j}  | */
/*        %---------------------------------------------------% */

L80:

    if (msglvl > 2) {
	xtemp[0] = wnorm;
	xtemp[1] = *rnorm;
	igraphdvout_(&debug_1.logfil, &c__2, xtemp, &debug_1.ndigit, "_naitr: re-o"
		"rthonalization; wnorm and rnorm are");
	igraphdvout_(&debug_1.logfil, &j, &h__[j * h_dim1 + 1], &debug_1.ndigit, 
		"_naitr: j-th column of H");
    }

/*        %----------------------------------------------------% */
/*        | Compute V_{j}^T * B * r_{j}.                       | */
/*        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). | */
/*        %----------------------------------------------------% */

    igraphdgemv_("T", n, &j, &c_b25, &v[v_offset], ldv, &workd[ipj], &c__1, &c_b47, 
	    &workd[irj], &c__1);

/*        %---------------------------------------------% */
/*        | Compute the correction to the residual:     | */
/*        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). | */
/*        | The correction to H is v(:,1:J)*H(1:J,1:J)  | */
/*        | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j.         | */
/*        %---------------------------------------------% */

    igraphdgemv_("N", n, &j, &c_b50, &v[v_offset], ldv, &workd[irj], &c__1, &c_b25, 
	    &resid[1], &c__1);
    igraphdaxpy_(&j, &c_b25, &workd[irj], &c__1, &h__[j * h_dim1 + 1], &c__1);

    orth2 = TRUE_;
    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++timing_1.nbx;
	igraphdcopy_(n, &resid[1], &c__1, &workd[irj], &c__1);
	ipntr[1] = irj;
	ipntr[2] = ipj;
	*ido = 2;

/*           %-----------------------------------% */
/*           | Exit in order to compute B*r_{j}. | */
/*           | r_{j} is the corrected residual.  | */
/*           %-----------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[ipj], &c__1);
    }
L90:

/*        %---------------------------------------------------% */
/*        | Back from reverse communication if ORTH2 = .true. | */
/*        %---------------------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	timing_1.tmvbx += t3 - t2;
    }

/*        %-----------------------------------------------------% */
/*        | Compute the B-norm of the corrected residual r_{j}. | */
/*        %-----------------------------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	rnorm1 = igraphddot_(n, &resid[1], &c__1, &workd[ipj], &c__1);
	rnorm1 = sqrt((abs(rnorm1)));
    } else if (*(unsigned char *)bmat == 'I') {
	rnorm1 = igraphdnrm2_(n, &resid[1], &c__1);
    }

    if (msglvl > 0 && iter > 0) {
	igraphivout_(&debug_1.logfil, &c__1, &j, &debug_1.ndigit, "_naitr: Iterati"
		"ve refinement for Arnoldi residual");
	if (msglvl > 2) {
	    xtemp[0] = *rnorm;
	    xtemp[1] = rnorm1;
	    igraphdvout_(&debug_1.logfil, &c__2, xtemp, &debug_1.ndigit, "_naitr: "
		    "iterative refinement ; rnorm and rnorm1 are");
	}
    }

/*        %-----------------------------------------% */
/*        | Determine if we need to perform another | */
/*        | step of re-orthogonalization.           | */
/*        %-----------------------------------------% */

    if (rnorm1 > *rnorm * .717f) {

/*           %---------------------------------------% */
/*           | No need for further refinement.       | */
/*           | The cosine of the angle between the   | */
/*           | corrected residual vector and the old | */
/*           | residual vector is greater than 0.717 | */
/*           | In other words the corrected residual | */
/*           | and the old residual vector share an  | */
/*           | angle of less than arcCOS(0.717)      | */
/*           %---------------------------------------% */

	*rnorm = rnorm1;

    } else {

/*           %-------------------------------------------% */
/*           | Another step of iterative refinement step | */
/*           | is required. NITREF is used by stat.h     | */
/*           %-------------------------------------------% */

	++timing_1.nitref;
	*rnorm = rnorm1;
	++iter;
	if (iter <= 1) {
	    goto L80;
	}

/*           %-------------------------------------------------% */
/*           | Otherwise RESID is numerically in the span of V | */
/*           %-------------------------------------------------% */

	i__1 = *n;
	for (jj = 1; jj <= i__1; ++jj) {
	    resid[jj] = 0.;
/* L95: */
	}
	*rnorm = 0.;
    }

/*        %----------------------------------------------% */
/*        | Branch here directly if iterative refinement | */
/*        | wasn't necessary or after at most NITER_REF  | */
/*        | steps of iterative refinement.               | */
/*        %----------------------------------------------% */

L100:

    rstart = FALSE_;
    orth2 = FALSE_;

    igraphsecond_(&t5);
    timing_1.titref += t5 - t4;

/*        %------------------------------------% */
/*        | STEP 6: Update  j = j+1;  Continue | */
/*        %------------------------------------% */

    ++j;
    if (j > *k + *np) {
	igraphsecond_(&t1);
	timing_1.tnaitr += t1 - t0;
	*ido = 99;
	i__1 = *k + *np - 1;
	for (i__ = max(1,*k); i__ <= i__1; ++i__) {

/*              %--------------------------------------------% */
/*              | Check for splitting and deflation.         | */
/*              | Use a standard test as in the QR algorithm | */
/*              | REFERENCE: LAPACK subroutine dlahqr        | */
/*              %--------------------------------------------% */

	    tst1 = (d__1 = h__[i__ + i__ * h_dim1], abs(d__1)) + (d__2 = h__[
		    i__ + 1 + (i__ + 1) * h_dim1], abs(d__2));
	    if (tst1 == 0.) {
		i__2 = *k + *np;
		tst1 = igraphdlanhs_("1", &i__2, &h__[h_offset], ldh, &workd[*n + 1]);
	    }
/* Computing MAX */
	    d__2 = ulp * tst1;
	    if ((d__1 = h__[i__ + 1 + i__ * h_dim1], abs(d__1)) <= max(d__2,
		    smlnum)) {
		h__[i__ + 1 + i__ * h_dim1] = 0.;
	    }
/* L110: */
	}

	if (msglvl > 2) {
	    i__1 = *k + *np;
	    i__2 = *k + *np;
	    igraphdmout_(&debug_1.logfil, &i__1, &i__2, &h__[h_offset], ldh, &
		    debug_1.ndigit, "_naitr: Final upper Hessenberg matrix H"
		    " of order K+NP");
	}

	goto L9000;
    }

/*        %--------------------------------------------------------% */
/*        | Loop back to extend the factorization by another step. | */
/*        %--------------------------------------------------------% */

    goto L1000;

/*     %---------------------------------------------------------------% */
/*     |                                                               | */
/*     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  | */
/*     |                                                               | */
/*     %---------------------------------------------------------------% */

L9000:
    return 0;

/*     %---------------% */
/*     | End of igraphdnaitr | */
/*     %---------------% */

} /* igraphdnaitr_ */
Beispiel #2
0
   Subroutine */ int igraphdsaup2_(integer *ido, char *bmat, integer *n, char *
	which, integer *nev, integer *np, doublereal *tol, doublereal *resid, 
	integer *mode, integer *iupd, integer *ishift, integer *mxiter, 
	doublereal *v, integer *ldv, doublereal *h__, integer *ldh, 
	doublereal *ritz, doublereal *bounds, doublereal *q, integer *ldq, 
	doublereal *workl, integer *ipntr, doublereal *workd, integer *info)
{
    /* System generated locals */
    integer h_dim1, h_offset, q_dim1, q_offset, v_dim1, v_offset, i__1, i__2, 
	    i__3;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    double pow_dd(doublereal *, doublereal *);
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);

    /* Local variables */
    integer j;
    real t0, t1, t2, t3;
    integer kp[3];
    IGRAPH_F77_SAVE integer np0;
    integer nbx = 0;
    IGRAPH_F77_SAVE integer nev0;
    extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    IGRAPH_F77_SAVE doublereal eps23;
    integer ierr;
    IGRAPH_F77_SAVE integer iter;
    doublereal temp;
    integer nevd2;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    IGRAPH_F77_SAVE logical getv0;
    integer nevm2;
    IGRAPH_F77_SAVE logical cnorm;
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    IGRAPH_F77_SAVE integer nconv;
    IGRAPH_F77_SAVE logical initv;
    IGRAPH_F77_SAVE doublereal rnorm;
    real tmvbx = 0.0;
    extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, 
	    integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer *
	    , integer *, char *, ftnlen), igraphdgetv0_(integer *, char *, integer *
	    , logical *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    integer msaup2 = 0;
    real tsaup2;
    extern doublereal igraphdlamch_(char *);
    integer nevbef;
    extern /* Subroutine */ int igraphsecond_(real *);
    integer logfil, ndigit;
    extern /* Subroutine */ int igraphdseigt_(doublereal *, integer *, doublereal *,
	     integer *, doublereal *, doublereal *, doublereal *, integer *);
    IGRAPH_F77_SAVE logical update;
    extern /* Subroutine */ int igraphdsaitr_(integer *, char *, integer *, integer 
	    *, integer *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *), igraphdsgets_(integer *, char *, integer *, integer 
	    *, doublereal *, doublereal *, doublereal *), igraphdsapps_(
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *), igraphdsconv_(integer *, doublereal *, 
	    doublereal *, doublereal *, integer *);
    IGRAPH_F77_SAVE logical ushift;
    char wprime[2];
    IGRAPH_F77_SAVE integer msglvl;
    integer nptemp;
    extern /* Subroutine */ int igraphdsortr_(char *, logical *, integer *, 
	    doublereal *, doublereal *);
    IGRAPH_F77_SAVE integer kplusp;


/*     %----------------------------------------------------%   
       | Include files for debugging and timing information |   
       %----------------------------------------------------%   


       %------------------%   
       | Scalar Arguments |   
       %------------------%   


       %-----------------%   
       | Array Arguments |   
       %-----------------%   


       %------------%   
       | Parameters |   
       %------------%   


       %---------------%   
       | Local Scalars |   
       %---------------%   


       %----------------------%   
       | External Subroutines |   
       %----------------------%   


       %--------------------%   
       | External Functions |   
       %--------------------%   


       %---------------------%   
       | Intrinsic Functions |   
       %---------------------%   


       %-----------------------%   
       | Executable Statements |   
       %-----------------------%   

       Parameter adjustments */
    --workd;
    --resid;
    --workl;
    --bounds;
    --ritz;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    h_dim1 = *ldh;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --ipntr;

    /* Function Body */
    if (*ido == 0) {

/*        %-------------------------------%   
          | Initialize timing statistics  |   
          | & message level for debugging |   
          %-------------------------------% */

	igraphsecond_(&t0);
	msglvl = msaup2;

/*        %---------------------------------%   
          | Set machine dependent constant. |   
          %---------------------------------% */

	eps23 = igraphdlamch_("Epsilon-Machine");
	eps23 = pow_dd(&eps23, &c_b3);

/*        %-------------------------------------%   
          | nev0 and np0 are integer variables  |   
          | hold the initial values of NEV & NP |   
          %-------------------------------------% */

	nev0 = *nev;
	np0 = *np;

/*        %-------------------------------------%   
          | kplusp is the bound on the largest  |   
          |        Lanczos factorization built. |   
          | nconv is the current number of      |   
          |        "converged" eigenvlues.      |   
          | iter is the counter on the current  |   
          |      iteration step.                |   
          %-------------------------------------% */

	kplusp = nev0 + np0;
	nconv = 0;
	iter = 0;

/*        %--------------------------------------------%   
          | Set flags for computing the first NEV steps |   
          | of the Lanczos factorization.              |   
          %--------------------------------------------% */

	getv0 = TRUE_;
	update = FALSE_;
	ushift = FALSE_;
	cnorm = FALSE_;

	if (*info != 0) {

/*        %--------------------------------------------%   
          | User provides the initial residual vector. |   
          %--------------------------------------------% */

	    initv = TRUE_;
	    *info = 0;
	} else {
	    initv = FALSE_;
	}
    }

/*     %---------------------------------------------%   
       | Get a possibly random starting vector and   |   
       | force it into the range of the operator OP. |   
       %---------------------------------------------%   

   L10: */

    if (getv0) {
	igraphdgetv0_(ido, bmat, &c__1, &initv, n, &c__1, &v[v_offset], ldv, &resid[
		1], &rnorm, &ipntr[1], &workd[1], info);

	if (*ido != 99) {
	    goto L9000;
	}

	if (rnorm == 0.) {

/*           %-----------------------------------------%   
             | The initial vector is zero. Error exit. |   
             %-----------------------------------------% */

	    *info = -9;
	    goto L1200;
	}
	getv0 = FALSE_;
	*ido = 0;
    }

/*     %------------------------------------------------------------%   
       | Back from reverse communication: continue with update step |   
       %------------------------------------------------------------% */

    if (update) {
	goto L20;
    }

/*     %-------------------------------------------%   
       | Back from computing user specified shifts |   
       %-------------------------------------------% */

    if (ushift) {
	goto L50;
    }

/*     %-------------------------------------%   
       | Back from computing residual norm   |   
       | at the end of the current iteration |   
       %-------------------------------------% */

    if (cnorm) {
	goto L100;
    }

/*     %----------------------------------------------------------%   
       | Compute the first NEV steps of the Lanczos factorization |   
       %----------------------------------------------------------% */

    igraphdsaitr_(ido, bmat, n, &c__0, &nev0, mode, &resid[1], &rnorm, &v[v_offset],
	     ldv, &h__[h_offset], ldh, &ipntr[1], &workd[1], info);

/*     %---------------------------------------------------%   
       | ido .ne. 99 implies use of reverse communication  |   
       | to compute operations involving OP and possibly B |   
       %---------------------------------------------------% */

    if (*ido != 99) {
	goto L9000;
    }

    if (*info > 0) {

/*        %-----------------------------------------------------%   
          | dsaitr was unable to build an Lanczos factorization |   
          | of length NEV0. INFO is returned with the size of   |   
          | the factorization built. Exit main loop.            |   
          %-----------------------------------------------------% */

	*np = *info;
	*mxiter = iter;
	*info = -9999;
	goto L1200;
    }

/*     %--------------------------------------------------------------%   
       |                                                              |   
       |           M A I N  LANCZOS  I T E R A T I O N  L O O P       |   
       |           Each iteration implicitly restarts the Lanczos     |   
       |           factorization in place.                            |   
       |                                                              |   
       %--------------------------------------------------------------% */

L1000:

    ++iter;

    if (msglvl > 0) {
	igraphivout_(&logfil, &c__1, &iter, &ndigit, "_saup2: **** Start of major "
		"iteration number ****", (ftnlen)49);
    }
    if (msglvl > 1) {
	igraphivout_(&logfil, &c__1, nev, &ndigit, "_saup2: The length of the curr"
		"ent Lanczos factorization", (ftnlen)55);
	igraphivout_(&logfil, &c__1, np, &ndigit, "_saup2: Extend the Lanczos fact"
		"orization by", (ftnlen)43);
    }

/*        %------------------------------------------------------------%   
          | Compute NP additional steps of the Lanczos factorization. |   
          %------------------------------------------------------------% */

    *ido = 0;
L20:
    update = TRUE_;

    igraphdsaitr_(ido, bmat, n, nev, np, mode, &resid[1], &rnorm, &v[v_offset], ldv,
	     &h__[h_offset], ldh, &ipntr[1], &workd[1], info);

/*        %---------------------------------------------------%   
          | ido .ne. 99 implies use of reverse communication  |   
          | to compute operations involving OP and possibly B |   
          %---------------------------------------------------% */

    if (*ido != 99) {
	goto L9000;
    }

    if (*info > 0) {

/*           %-----------------------------------------------------%   
             | dsaitr was unable to build an Lanczos factorization |   
             | of length NEV0+NP0. INFO is returned with the size  |   
             | of the factorization built. Exit main loop.         |   
             %-----------------------------------------------------% */

	*np = *info;
	*mxiter = iter;
	*info = -9999;
	goto L1200;
    }
    update = FALSE_;

    if (msglvl > 1) {
	igraphdvout_(&logfil, &c__1, &rnorm, &ndigit, "_saup2: Current B-norm of r"
		"esidual for factorization", (ftnlen)52);
    }

/*        %--------------------------------------------------------%   
          | Compute the eigenvalues and corresponding error bounds |   
          | of the current symmetric tridiagonal matrix.           |   
          %--------------------------------------------------------% */

    igraphdseigt_(&rnorm, &kplusp, &h__[h_offset], ldh, &ritz[1], &bounds[1], &
	    workl[1], &ierr);

    if (ierr != 0) {
	*info = -8;
	goto L1200;
    }

/*        %----------------------------------------------------%   
          | Make a copy of eigenvalues and corresponding error |   
          | bounds obtained from _seigt.                       |   
          %----------------------------------------------------% */

    igraphdcopy_(&kplusp, &ritz[1], &c__1, &workl[kplusp + 1], &c__1);
    igraphdcopy_(&kplusp, &bounds[1], &c__1, &workl[(kplusp << 1) + 1], &c__1);

/*        %---------------------------------------------------%   
          | Select the wanted Ritz values and their bounds    |   
          | to be used in the convergence test.               |   
          | The selection is based on the requested number of |   
          | eigenvalues instead of the current NEV and NP to  |   
          | prevent possible misconvergence.                  |   
          | * Wanted Ritz values := RITZ(NP+1:NEV+NP)         |   
          | * Shifts := RITZ(1:NP) := WORKL(1:NP)             |   
          %---------------------------------------------------% */

    *nev = nev0;
    *np = np0;
    igraphdsgets_(ishift, which, nev, np, &ritz[1], &bounds[1], &workl[1]);

/*        %-------------------%   
          | Convergence test. |   
          %-------------------% */

    igraphdcopy_(nev, &bounds[*np + 1], &c__1, &workl[*np + 1], &c__1);
    igraphdsconv_(nev, &ritz[*np + 1], &workl[*np + 1], tol, &nconv);

    if (msglvl > 2) {
	kp[0] = *nev;
	kp[1] = *np;
	kp[2] = nconv;
	igraphivout_(&logfil, &c__3, kp, &ndigit, "_saup2: NEV, NP, NCONV are", (
		ftnlen)26);
	igraphdvout_(&logfil, &kplusp, &ritz[1], &ndigit, "_saup2: The eigenvalues"
		" of H", (ftnlen)28);
	igraphdvout_(&logfil, &kplusp, &bounds[1], &ndigit, "_saup2: Ritz estimate"
		"s of the current NCV Ritz values", (ftnlen)53);
    }

/*        %---------------------------------------------------------%   
          | Count the number of unwanted Ritz values that have zero |   
          | Ritz estimates. If any Ritz estimates are equal to zero |   
          | then a leading block of H of order equal to at least    |   
          | the number of Ritz values with zero Ritz estimates has  |   
          | split off. None of these Ritz values may be removed by  |   
          | shifting. Decrease NP the number of shifts to apply. If |   
          | no shifts may be applied, then prepare to exit          |   
          %---------------------------------------------------------% */

    nptemp = *np;
    i__1 = nptemp;
    for (j = 1; j <= i__1; ++j) {
	if (bounds[j] == 0.) {
	    --(*np);
	    ++(*nev);
	}
/* L30: */
    }

    if (nconv >= nev0 || iter > *mxiter || *np == 0) {

/*           %------------------------------------------------%   
             | Prepare to exit. Put the converged Ritz values |   
             | and corresponding bounds in RITZ(1:NCONV) and  |   
             | BOUNDS(1:NCONV) respectively. Then sort. Be    |   
             | careful when NCONV > NP since we don't want to |   
             | swap overlapping locations.                    |   
             %------------------------------------------------% */

	if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {

/*              %-----------------------------------------------------%   
                | Both ends of the spectrum are requested.            |   
                | Sort the eigenvalues into algebraically decreasing  |   
                | order first then swap low end of the spectrum next  |   
                | to high end in appropriate locations.               |   
                | NOTE: when np < floor(nev/2) be careful not to swap |   
                | overlapping locations.                              |   
                %-----------------------------------------------------% */

	    s_copy(wprime, "SA", (ftnlen)2, (ftnlen)2);
	    igraphdsortr_(wprime, &c_true, &kplusp, &ritz[1], &bounds[1])
		    ;
	    nevd2 = *nev / 2;
	    nevm2 = *nev - nevd2;
	    if (*nev > 1) {
		i__1 = min(nevd2,*np);
/* Computing MAX */
		i__2 = kplusp - nevd2 + 1, i__3 = kplusp - *np + 1;
		igraphdswap_(&i__1, &ritz[nevm2 + 1], &c__1, &ritz[max(i__2,i__3)], 
			&c__1);
		i__1 = min(nevd2,*np);
/* Computing MAX */
		i__2 = kplusp - nevd2 + 1, i__3 = kplusp - *np;
		igraphdswap_(&i__1, &bounds[nevm2 + 1], &c__1, &bounds[max(i__2,
			i__3) + 1], &c__1);
	    }

	} else {

/*              %--------------------------------------------------%   
                | LM, SM, LA, SA case.                             |   
                | Sort the eigenvalues of H into the an order that |   
                | is opposite to WHICH, and apply the resulting    |   
                | order to BOUNDS.  The eigenvalues are sorted so  |   
                | that the wanted part are always within the first |   
                | NEV locations.                                   |   
                %--------------------------------------------------% */

	    if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) {
		s_copy(wprime, "SM", (ftnlen)2, (ftnlen)2);
	    }
	    if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) {
		s_copy(wprime, "LM", (ftnlen)2, (ftnlen)2);
	    }
	    if (s_cmp(which, "LA", (ftnlen)2, (ftnlen)2) == 0) {
		s_copy(wprime, "SA", (ftnlen)2, (ftnlen)2);
	    }
	    if (s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) == 0) {
		s_copy(wprime, "LA", (ftnlen)2, (ftnlen)2);
	    }

	    igraphdsortr_(wprime, &c_true, &kplusp, &ritz[1], &bounds[1])
		    ;

	}

/*           %--------------------------------------------------%   
             | Scale the Ritz estimate of each Ritz value       |   
             | by 1 / max(eps23,magnitude of the Ritz value).   |   
             %--------------------------------------------------% */

	i__1 = nev0;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    d__2 = eps23, d__3 = (d__1 = ritz[j], abs(d__1));
	    temp = max(d__2,d__3);
	    bounds[j] /= temp;
/* L35: */
	}

/*           %----------------------------------------------------%   
             | Sort the Ritz values according to the scaled Ritz  |   
             | esitmates.  This will push all the converged ones  |   
             | towards the front of ritzr, ritzi, bounds          |   
             | (in the case when NCONV < NEV.)                    |   
             %----------------------------------------------------% */

	s_copy(wprime, "LA", (ftnlen)2, (ftnlen)2);
	igraphdsortr_(wprime, &c_true, &nev0, &bounds[1], &ritz[1]);

/*           %----------------------------------------------%   
             | Scale the Ritz estimate back to its original |   
             | value.                                       |   
             %----------------------------------------------% */

	i__1 = nev0;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    d__2 = eps23, d__3 = (d__1 = ritz[j], abs(d__1));
	    temp = max(d__2,d__3);
	    bounds[j] *= temp;
/* L40: */
	}

/*           %--------------------------------------------------%   
             | Sort the "converged" Ritz values again so that   |   
             | the "threshold" values and their associated Ritz |   
             | estimates appear at the appropriate position in  |   
             | ritz and bound.                                  |   
             %--------------------------------------------------% */

	if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) {

/*              %------------------------------------------------%   
                | Sort the "converged" Ritz values in increasing |   
                | order.  The "threshold" values are in the      |   
                | middle.                                        |   
                %------------------------------------------------% */

	    s_copy(wprime, "LA", (ftnlen)2, (ftnlen)2);
	    igraphdsortr_(wprime, &c_true, &nconv, &ritz[1], &bounds[1]);

	} else {

/*              %----------------------------------------------%   
                | In LM, SM, LA, SA case, sort the "converged" |   
                | Ritz values according to WHICH so that the   |   
                | "threshold" value appears at the front of    |   
                | ritz.                                        |   
                %----------------------------------------------% */
	    igraphdsortr_(which, &c_true, &nconv, &ritz[1], &bounds[1]);

	}

/*           %------------------------------------------%   
             |  Use h( 1,1 ) as storage to communicate  |   
             |  rnorm to _seupd if needed               |   
             %------------------------------------------% */

	h__[h_dim1 + 1] = rnorm;

	if (msglvl > 1) {
	    igraphdvout_(&logfil, &kplusp, &ritz[1], &ndigit, "_saup2: Sorted Ritz"
		    " values.", (ftnlen)27);
	    igraphdvout_(&logfil, &kplusp, &bounds[1], &ndigit, "_saup2: Sorted ri"
		    "tz estimates.", (ftnlen)30);
	}

/*           %------------------------------------%   
             | Max iterations have been exceeded. |   
             %------------------------------------% */

	if (iter > *mxiter && nconv < *nev) {
	    *info = 1;
	}

/*           %---------------------%   
             | No shifts to apply. |   
             %---------------------% */

	if (*np == 0 && nconv < nev0) {
	    *info = 2;
	}

	*np = nconv;
	goto L1100;

    } else if (nconv < *nev && *ishift == 1) {

/*           %---------------------------------------------------%   
             | Do not have all the requested eigenvalues yet.    |   
             | To prevent possible stagnation, adjust the number |   
             | of Ritz values and the shifts.                    |   
             %---------------------------------------------------% */

	nevbef = *nev;
/* Computing MIN */
	i__1 = nconv, i__2 = *np / 2;
	*nev += min(i__1,i__2);
	if (*nev == 1 && kplusp >= 6) {
	    *nev = kplusp / 2;
	} else if (*nev == 1 && kplusp > 2) {
	    *nev = 2;
	}
	*np = kplusp - *nev;

/*           %---------------------------------------%   
             | If the size of NEV was just increased |   
             | resort the eigenvalues.               |   
             %---------------------------------------% */

	if (nevbef < *nev) {
	    igraphdsgets_(ishift, which, nev, np, &ritz[1], &bounds[1], &workl[1]);
	}

    }

    if (msglvl > 0) {
	igraphivout_(&logfil, &c__1, &nconv, &ndigit, "_saup2: no. of \"converge"
		"d\" Ritz values at this iter.", (ftnlen)52);
	if (msglvl > 1) {
	    kp[0] = *nev;
	    kp[1] = *np;
	    igraphivout_(&logfil, &c__2, kp, &ndigit, "_saup2: NEV and NP are", (
		    ftnlen)22);
	    igraphdvout_(&logfil, nev, &ritz[*np + 1], &ndigit, "_saup2: \"wante"
		    "d\" Ritz values.", (ftnlen)29);
	    igraphdvout_(&logfil, nev, &bounds[*np + 1], &ndigit, "_saup2: Ritz es"
		    "timates of the \"wanted\" values ", (ftnlen)46);
	}
    }

    if (*ishift == 0) {

/*           %-----------------------------------------------------%   
             | User specified shifts: reverse communication to     |   
             | compute the shifts. They are returned in the first  |   
             | NP locations of WORKL.                              |   
             %-----------------------------------------------------% */

	ushift = TRUE_;
	*ido = 3;
	goto L9000;
    }

L50:

/*        %------------------------------------%   
          | Back from reverse communication;   |   
          | User specified shifts are returned |   
          | in WORKL(1:*NP)                   |   
          %------------------------------------% */

    ushift = FALSE_;


/*        %---------------------------------------------------------%   
          | Move the NP shifts to the first NP locations of RITZ to |   
          | free up WORKL.  This is for the non-exact shift case;   |   
          | in the exact shift case, dsgets already handles this.   |   
          %---------------------------------------------------------% */

    if (*ishift == 0) {
	igraphdcopy_(np, &workl[1], &c__1, &ritz[1], &c__1);
    }

    if (msglvl > 2) {
	igraphivout_(&logfil, &c__1, np, &ndigit, "_saup2: The number of shifts to"
		" apply ", (ftnlen)38);
	igraphdvout_(&logfil, np, &workl[1], &ndigit, "_saup2: shifts selected", (
		ftnlen)23);
	if (*ishift == 1) {
	    igraphdvout_(&logfil, np, &bounds[1], &ndigit, "_saup2: corresponding "
		    "Ritz estimates", (ftnlen)36);
	}
    }

/*        %---------------------------------------------------------%   
          | Apply the NP0 implicit shifts by QR bulge chasing.      |   
          | Each shift is applied to the entire tridiagonal matrix. |   
          | The first 2*N locations of WORKD are used as workspace. |   
          | After dsapps is done, we have a Lanczos                 |   
          | factorization of length NEV.                            |   
          %---------------------------------------------------------% */

    igraphdsapps_(n, nev, np, &ritz[1], &v[v_offset], ldv, &h__[h_offset], ldh, &
	    resid[1], &q[q_offset], ldq, &workd[1]);

/*        %---------------------------------------------%   
          | Compute the B-norm of the updated residual. |   
          | Keep B*RESID in WORKD(1:N) to be used in    |   
          | the first step of the next call to dsaitr.  |   
          %---------------------------------------------% */

    cnorm = TRUE_;
    igraphsecond_(&t2);
    if (*(unsigned char *)bmat == 'G') {
	++nbx;
	igraphdcopy_(n, &resid[1], &c__1, &workd[*n + 1], &c__1);
	ipntr[1] = *n + 1;
	ipntr[2] = 1;
	*ido = 2;

/*           %----------------------------------%   
             | Exit in order to compute B*RESID |   
             %----------------------------------% */

	goto L9000;
    } else if (*(unsigned char *)bmat == 'I') {
	igraphdcopy_(n, &resid[1], &c__1, &workd[1], &c__1);
    }

L100:

/*        %----------------------------------%   
          | Back from reverse communication; |   
          | WORKD(1:N) := B*RESID            |   
          %----------------------------------% */

    if (*(unsigned char *)bmat == 'G') {
	igraphsecond_(&t3);
	tmvbx += t3 - t2;
    }

    if (*(unsigned char *)bmat == 'G') {
	rnorm = igraphddot_(n, &resid[1], &c__1, &workd[1], &c__1);
	rnorm = sqrt((abs(rnorm)));
    } else if (*(unsigned char *)bmat == 'I') {
	rnorm = igraphdnrm2_(n, &resid[1], &c__1);
    }
    cnorm = FALSE_;
/* L130: */

    if (msglvl > 2) {
	igraphdvout_(&logfil, &c__1, &rnorm, &ndigit, "_saup2: B-norm of residual "
		"for NEV factorization", (ftnlen)48);
	igraphdvout_(&logfil, nev, &h__[(h_dim1 << 1) + 1], &ndigit, "_saup2: main"
		" diagonal of compressed H matrix", (ftnlen)44);
	i__1 = *nev - 1;
	igraphdvout_(&logfil, &i__1, &h__[h_dim1 + 2], &ndigit, "_saup2: subdiagon"
		"al of compressed H matrix", (ftnlen)42);
    }

    goto L1000;

/*     %---------------------------------------------------------------%   
       |                                                               |   
       |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |   
       |                                                               |   
       %---------------------------------------------------------------% */

L1100:

    *mxiter = iter;
    *nev = nconv;

L1200:
    *ido = 99;

/*     %------------%   
       | Error exit |   
       %------------% */

    igraphsecond_(&t1);
    tsaup2 = t1 - t0;

L9000:
    return 0;

/*     %---------------%   
       | End of dsaup2 |   
       %---------------% */

} /* igraphdsaup2_ */