void init_haar(t_haar *haar)
{
  init_feature(haar->typea);
  init_feature(haar->typeb);
  init_feature(haar->typec);
  init_feature(haar->typed);
  init_feature(haar->typee);
}
Beispiel #2
0
int main(int argc, char *argv[])
{
    boolean print_parse = FALSE;
    boolean print_expanded = FALSE;
    char *arg;
    char *source_name = NULL;
    char *output_name = NULL;
    FILE *file;

    add_header_handler("module", set_module);
    add_header_handler("library", set_library);
    add_header_handler(NULL, end_of_headers);

    init_sym_table();
    init_feature();
    init_info();
    init_expand();
    init_compile();
    
#ifdef MACOS
	add_feature(symbol("macos"));
#	ifndef SHLB
	argc = ccommand( &argv );
#	endif
#endif


    while ((arg = *++argv) != NULL) {
	if (arg[0] == '-') {
	    switch (arg[1]) {
	      case 'd':
		if (arg[2] == '\0') {
		    print_parse = TRUE;
		    print_expanded = TRUE;
		}
		else {
		    char *ptr;
		    for (ptr = arg+2; *ptr != '\0'; ptr++) {
			switch (*ptr) {
			  case 'p':
			    print_parse = TRUE;
			    break;
			  case 'e':
			    print_expanded = TRUE;
			    break;
			  default:
			    fprintf(stderr, "Invalid thing to print: ``%c''\n",
				    *ptr);
			    usage();
			}
		    }
		}
		break;

	      case 'o':
		if (output_name != NULL) {
		    fprintf(stderr, "-o can only be used once.\n");
		    usage();
		}
		else if (arg[2] != '\0')
		    output_name = arg+2;
		else if (*++argv == NULL) {
		    fprintf(stderr, "-o must be followed by the output "
			    "file name.\n");
		    usage();
		}
		else
		    output_name = *argv;
		break;

	      case 'l':
		if (LibraryName != NULL) {
		    fprintf(stderr, "-l can only be used once.\n");
		    usage();
		}
		if (arg[2] != '\0')
		    LibraryName = symbol(arg+2);
		else if (*++argv == NULL) {
		    fprintf(stderr, "-l must be followed by the library "
			    "name.\n");
		    usage();
		}
		else
		    LibraryName = symbol(*argv);
		break;

	      case 'q':
		GiveWarnings = FALSE;
		break;

	      case 'D':
		if (arg[2] != '\0')
		    add_feature(symbol(arg + 2));
		else if (*++argv == NULL) {
		    fprintf(stderr,
			    "-D must be followed by the feature to define.\n");
		    usage();
		}
		else
		    add_feature(symbol(*argv));
		break;

	      case 'U':
		if (arg[2] != '\0')
		    remove_feature(symbol(arg + 2));
		else if (*++argv == NULL) {
		    fprintf(stderr, "-U must be followed by the feature "
			    "to undefine.\n");
		    usage();
		}
		else
		    remove_feature(symbol(*argv));
		break;

	      default:
		fprintf(stderr, "Invalid flag: ``%s''\n", arg);
		usage();
	    }
	}
	else if (source_name != NULL) {
	    fprintf(stderr, "Too many files\n");
	    usage();
	}
	else
	    source_name = arg;
    }

    if (source_name == NULL)
	usage();


    yyin = fopen(source_name, "rb");
    if (yyin == NULL) {
        /* Try the same filename but in the current directory */
        /* Start ptr at the null termination, and work backwards to a 
	   path separator. */
        char *ptr = source_name + strlen(source_name);
        for ( ; ptr != source_name; ptr--) {
	    if (*ptr == '/' || *ptr == '\\') {
	        /* We're pointing at the path separator, which is too far */
	        ptr++;
	        break;
	    }
	}
	/* If ptr is a different string than source_name, and it isn't
	   the empty string... */
	if (ptr != source_name && *ptr != 0) {
	    yyin = fopen(ptr, "rb");
	}
	if (yyin == NULL) {
	    perror(source_name);
	    exit(1);
	}
    }

    current_file = source_name;

    yyparse();

    if (print_parse) {
	printf("================ Original Parse Tree ================\n");
	print_body(Program, 0);
    }

    if (nerrors != 0)
	exit(1);

    /* Do the various source-to-source expansions. */
    expand(Program);

    if (print_expanded) {
	printf("================ Expanded Parse Tree ================\n");
	print_body(Program, 0);
    }

    if (nerrors != 0)
	exit(1);

    /* Run environment analysis */
    environment_analysis(Program);

    if (nerrors != 0)
	exit(1);

    if (output_name == NULL)
	output_name = make_output_name(source_name, ".dbc");

    if (strcmp(output_name, "-") == 0)
        file = stdout;
    else
        file = fopen(output_name, "wb");

    if (file == NULL) {
	perror(output_name);
	exit(1);
    }

    dump_setup_output(source_name, file);

    /* Generate code. */
    compile(Program);

    dump_finalize_output();

    fclose(file);

    exit(0);
    return 0;
}
Beispiel #3
0
StrongClassifier* adaboost_learning(CascadeClassifier *cc, std::list<float *> &positiveSet, int numPos,
        std::list<float *> &negativeSet, int numNeg, std::list<float *> &validateSet, std::vector<Feature *> &featureSet,
            float maxfpr, float maxfnr)
{
    StrongClassifier *sc = new StrongClassifier;

    int width = cc->WIDTH;
    int height = cc->HEIGHT;

    float *weights = NULL, *values = NULL;

    int sampleSize = numPos + numNeg;
    int fsize = featureSet.size();

    float cfpr = 1.0;

    init_weights(&weights, numPos, numNeg);

    values = new float[sampleSize];
    memset(values, 0, sizeof(float) * sampleSize);

    while(cfpr > maxfpr)
    {
        std::list<float *>::iterator iter;
        float minError = 1, error, beta;
        WeakClassifier *bestWC = NULL;

        for(int i = 0; i < fsize; i++)
        {
            Feature *feat = new Feature;
            WeakClassifier *wc = new WeakClassifier;

            init_feature(feat, featureSet[i]);
            init_weak_classifier(wc, 0, 0, feat);

            iter = positiveSet.begin();
            for(int j = 0; j < numPos; j++, iter++)
                values[j] = get_value(feat, *iter, width, 0, 0);

            iter = negativeSet.begin();
            for(int j = 0; j < numNeg; j++, iter++)
                values[j + numPos] = get_value(feat, *iter, width, 0, 0);

            error = train(wc, values, numPos, numNeg, weights);

            if(error < minError)
            {
                if(bestWC != NULL){
                    clear(bestWC);
                    bestWC = NULL;
                }

                bestWC = wc;

                minError = error;

                printf("Select best weak classifier, min error: %f\r", minError);
                fflush(stdout);
            }

            else
                delete wc;
        }

        assert(minError > 0);

        printf("best weak classifier error = %f                      \n", minError);

        beta = minError / (1 - minError);

        int tp = 0;
        iter = positiveSet.begin();

        for(int i = 0; i < numPos; i++, iter++){
            if(classify(bestWC, *iter, width, 0, 0) == 1){
                weights[i] *= beta;
                tp ++;
            }
        }

        int tn = 0;
        iter = negativeSet.begin();

        for(int i = numPos; i < sampleSize; i++, iter++){
            if(classify(bestWC, *iter, width, 0, 0) != 1){
                weights[i] *= beta;
                tn++;
            }
        }

        update_weights(weights, numPos, numNeg);

        printf("TP = %d, TN = %d, beta = %f, log(1/beta) = %f\n", tp, tn, beta, log(1/beta));

        add(sc, bestWC, log(1/beta));

        train(sc, positiveSet, width, maxfnr);

        cfpr = fpr(sc, validateSet, width);

        printf("fpr validate: %f\n", fpr(sc, validateSet, width));
        printf("fpr negative: %f\n", fpr(sc, negativeSet, width));

        printf("\n");
    }

    printf("\nWeak classifier size %ld\n", sc->wcs.size());


    delete [] values;
    delete [] weights;

    return sc;
}