//Initialize all the peripherals void init_peripherals(void) { //Hardware modules: init_systick_timer(); //SysTick timer init_usart1(2000000); //USART1 (RS-485 #1) init_usart6(2000000); //USART6 (RS-485 #2) init_rs485_outputs(); init_leds(); init_switches(); init_dio(); //All inputs by default init_adc1(); init_spi4(); //Plan //init_spi5(); //FLASH //init_spi6(); //Expansion init_i2c1(); init_imu(); init_adva_fc_pins(); init_pwr_out(); //Software: init_master_slave_comm(); //All RGB LEDs OFF LEDR(0); LEDG(0); LEDB(0); //Default analog input states: set_default_analog(); }
int main(int argc,char **argv) { int i; //iterator pid *x,*y,*z; //structs representing 3 pid controllers imu_t *imu; fd_set net_set; double oldmag,magdiff; struct timeval timeout; int axes[4]={0,0,0,0}; int x_adjust,y_adjust,z_adjust; int sock = init_net(); register_int(); x=init_pid(3500,000,000); y=init_pid(3400,000,1000); z=init_pid(000,000,000); timeout.tv_sec=0; timeout.tv_usec=REFRESH_TIME; for(i=0;i<4;i++) { //initialize PWM modules motors[i]=init_pwm(i); } imu = init_imu(); update_imu(imu); oldmag=imu->mpu.fusedEuler[VEC3_Z] * RAD_TO_DEGREE; while(1) { ////printf("loop\n"); FD_ZERO(&net_set); FD_SET(sock,&net_set); if(select(sock+1,&net_set,(fd_set *) 0,(fd_set *) 0, &timeout)==1) { ////printf("reading from the socket\n"); //read from sock if(!update_axis(sock,axes)) { break; } } else { ////printf("reading from the imu\n"); //update imu update_imu(imu); timeout.tv_sec=0; timeout.tv_usec=REFRESH_TIME; magdiff=imu->mpu.fusedEuler[VEC3_Z] * RAD_TO_DEGREE-oldmag; if(magdiff>300) { magdiff-=360; } if(magdiff<-300) { magdiff+=360; } x_adjust = update_pid(x,0/*axes[1]*.00061*/,imu->mpu.fusedEuler[VEC3_X] * RAD_TO_DEGREE); y_adjust = update_pid(y,0/*axes[2]*.00061*/,imu->mpu.fusedEuler[VEC3_Y] * RAD_TO_DEGREE); //printf("X axis value: %lf\n",imu->mpu.fusedEuler[VEC3_X]*RAD_TO_DEGREE); //printf("Y axis value: %lf\n",imu->mpu.fusedEuler[VEC3_Y]*RAD_TO_DEGREE); z_adjust = update_pid(z,axes[3]*.00061,magdiff); oldmag=imu->mpu.fusedEuler[VEC3_Z] * RAD_TO_DEGREE; set_duty(motors[0],900000+axes[0]*16-z_adjust-y_adjust+x_adjust); set_duty(motors[1],900000+axes[0]*16+z_adjust-y_adjust-x_adjust); set_duty(motors[2],900000+axes[0]*16-z_adjust+y_adjust-x_adjust); set_duty(motors[3],900000+axes[0]*16+z_adjust+y_adjust+x_adjust); } } exit_fxn(0); }
/****************************************** ***************SETUP********************* ******************************************/ void setup() { Serial.begin(115200); GCS.init(var_info); Thread::load_tasks(tasks); // GCS.wait_gcs_connect(); init_radio(); init_imu(); motorsQuad.init(); leds.negate_state(R); }
// It all starts here: int main(void) { // start with default user settings in case there's nothing in eeprom default_user_settings(); // try to load settings from eeprom read_user_settings_from_eeprom(); // set our LED as a digital output lib_digitalio_initpin(LED1_OUTPUT,DIGITALOUTPUT); //initialize the libraries that require initialization lib_timers_init(); lib_i2c_init(); // pause a moment before initializing everything. To make sure everything is powered up lib_timers_delaymilliseconds(100); // initialize all other modules init_rx(); init_outputs(); serial_init(); init_gyro(); init_acc(); init_baro(); init_compass(); init_gps(); init_imu(); // set the default i2c speed to 400 KHz. If a device needs to slow it down, it can, but it should set it back. lib_i2c_setclockspeed(I2C_400_KHZ); // initialize state global.state.armed=0; global.state.calibratingCompass=0; global.state.calibratingAccAndGyro=0; global.state.navigationMode=NAVIGATION_MODE_OFF; global.failsafeTimer=lib_timers_starttimer(); // run loop for(;;) { // check to see what switches are activated check_checkbox_items(); // check for config program activity serial_check_for_action(); calculate_timesliver(); // run the imu to estimate the current attitude of the aircraft imu_calculate_estimated_attitude(); // arm and disarm via rx aux switches if (global.rxValues[THROTTLE_INDEX]<FPSTICKLOW) { // see if we want to change armed modes if (!global.state.armed) { if (global.activeCheckboxItems & CHECKBOX_MASK_ARM) { global.state.armed=1; #if (GPS_TYPE!=NO_GPS) navigation_set_home_to_current_location(); #endif global.home.heading=global.currentEstimatedEulerAttitude[YAW_INDEX]; global.home.location.altitude=global.baroRawAltitude; } } else if (!(global.activeCheckboxItems & CHECKBOX_MASK_ARM)) global.state.armed=0; } #if (GPS_TYPE!=NO_GPS) // turn on or off navigation when appropriate if (global.state.navigationMode==NAVIGATION_MODE_OFF) { if (global.activeCheckboxItems & CHECKBOX_MASK_RETURNTOHOME) { // return to home switch turned on navigation_set_destination(global.home.location.latitude,global.home.location.longitude); global.state.navigationMode=NAVIGATION_MODE_RETURN_TO_HOME; } else if (global.activeCheckboxItems & CHECKBOX_MASK_POSITIONHOLD) { // position hold turned on navigation_set_destination(global.gps.currentLatitude,global.gps.currentLongitude); global.state.navigationMode=NAVIGATION_MODE_POSITION_HOLD; } } else { // we are currently navigating // turn off navigation if desired if ((global.state.navigationMode==NAVIGATION_MODE_RETURN_TO_HOME && !(global.activeCheckboxItems & CHECKBOX_MASK_RETURNTOHOME)) || (global.state.navigationMode==NAVIGATION_MODE_POSITION_HOLD && !(global.activeCheckboxItems & CHECKBOX_MASK_POSITIONHOLD))) { global.state.navigationMode=NAVIGATION_MODE_OFF; // we will be turning control back over to the pilot. reset_pilot_control(); } } #endif // read the receiver read_rx(); // turn on the LED when we are stable and the gps has 5 satelites or more #if (GPS_TYPE==NO_GPS) lib_digitalio_setoutput(LED1_OUTPUT, (global.state.stable==0)==LED1_ON); #else lib_digitalio_setoutput(LED1_OUTPUT, (!(global.state.stable && global.gps.numSatelites>=5))==LED1_ON); #endif // get the angle error. Angle error is the difference between our current attitude and our desired attitude. // It can be set by navigation, or by the pilot, etc. fixedpointnum angleError[3]; // let the pilot control the aircraft. get_angle_error_from_pilot_input(angleError); #if (GPS_TYPE!=NO_GPS) // read the gps unsigned char gotNewGpsReading=read_gps(); // if we are navigating, use navigation to determine our desired attitude (tilt angles) if (global.state.navigationMode!=NAVIGATION_MODE_OFF) { // we are navigating navigation_set_angle_error(gotNewGpsReading,angleError); } #endif if (global.rxValues[THROTTLE_INDEX]<FPSTICKLOW) { // We are probably on the ground. Don't accumnulate error when we can't correct it reset_pilot_control(); // bleed off integrated error by averaging in a value of zero lib_fp_lowpassfilter(&global.integratedAngleError[ROLL_INDEX],0L,global.timesliver>>TIMESLIVEREXTRASHIFT,FIXEDPOINTONEOVERONEFOURTH,0); lib_fp_lowpassfilter(&global.integratedAngleError[PITCH_INDEX],0L,global.timesliver>>TIMESLIVEREXTRASHIFT,FIXEDPOINTONEOVERONEFOURTH,0); lib_fp_lowpassfilter(&global.integratedAngleError[YAW_INDEX],0L,global.timesliver>>TIMESLIVEREXTRASHIFT,FIXEDPOINTONEOVERONEFOURTH,0); } #ifndef NO_AUTOTUNE // let autotune adjust the angle error if the pilot has autotune turned on if (global.activeCheckboxItems & CHECKBOX_MASK_AUTOTUNE) { if (!(global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOTUNE)) { autotune(angleError,AUTOTUNE_STARTING); // tell autotune that we just started autotuning } else { autotune(angleError,AUTOTUNE_TUNING); // tell autotune that we are in the middle of autotuning } } else if (global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOTUNE) { autotune(angleError,AUTOTUNE_STOPPING); // tell autotune that we just stopped autotuning } #endif // This gets reset every loop cycle // keep a flag to indicate whether we shoud apply altitude hold. The pilot can turn it on or // uncrashability/autopilot mode can turn it on. global.state.altitudeHold=0; if (global.activeCheckboxItems & CHECKBOX_MASK_ALTHOLD) { global.state.altitudeHold=1; if (!(global.previousActiveCheckboxItems & CHECKBOX_MASK_ALTHOLD)) { // we just turned on alt hold. Remember our current alt. as our target global.altitudeHoldDesiredAltitude=global.altitude; global.integratedAltitudeError=0; } } fixedpointnum throttleOutput; #ifndef NO_AUTOPILOT // autopilot is available if (global.activeCheckboxItems & CHECKBOX_MASK_AUTOPILOT) { if (!(global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOPILOT)) { // let autopilot know to transition to the starting state autopilot(AUTOPILOT_STARTING); } else { // autopilot normal run state autopilot(AUTOPILOT_RUNNING); } } else if (global.previousActiveCheckboxItems & CHECKBOX_MASK_AUTOPILOT) { // tell autopilot that we just stopped autotuning autopilot(AUTOPILOT_STOPPING); } else { // get the pilot's throttle component // convert from fixedpoint -1 to 1 to fixedpoint 0 to 1 throttleOutput=(global.rxValues[THROTTLE_INDEX]>>1)+FIXEDPOINTCONSTANT(.5)+FPTHROTTLETOMOTOROFFSET; } #else // get the pilot's throttle component // convert from fixedpoint -1 to 1 to fixedpoint 0 to 1 throttleOutput=(global.rxValues[THROTTLE_INDEX]>>1)+FIXEDPOINTCONSTANT(.5)+FPTHROTTLETOMOTOROFFSET; #endif #ifndef NO_UNCRASHABLE uncrashable(gotNewGpsReading,angleError,&throttleOutput); #endif #if (BAROMETER_TYPE!=NO_BAROMETER) // check for altitude hold and adjust the throttle output accordingly if (global.state.altitudeHold) { global.integratedAltitudeError+=lib_fp_multiply(global.altitudeHoldDesiredAltitude-global.altitude,global.timesliver); lib_fp_constrain(&global.integratedAltitudeError,-INTEGRATED_ANGLE_ERROR_LIMIT,INTEGRATED_ANGLE_ERROR_LIMIT); // don't let the integrated error get too high // do pid for the altitude hold and add it to the throttle output throttleOutput+=lib_fp_multiply(global.altitudeHoldDesiredAltitude-global.altitude,settings.pid_pgain[ALTITUDE_INDEX])-lib_fp_multiply(global.altitudeVelocity,settings.pid_dgain[ALTITUDE_INDEX])+lib_fp_multiply(global.integratedAltitudeError,settings.pid_igain[ALTITUDE_INDEX]); } #endif #ifndef NO_AUTOTHROTTLE if ((global.activeCheckboxItems & CHECKBOX_MASK_AUTOTHROTTLE) || global.state.altitudeHold) { if (global.estimatedDownVector[Z_INDEX]>FIXEDPOINTCONSTANT(.3)) { // Divide the throttle by the throttleOutput by the z component of the down vector // This is probaly the slow way, but it's a way to do fixed point division fixedpointnum recriprocal=lib_fp_invsqrt(global.estimatedDownVector[Z_INDEX]); recriprocal=lib_fp_multiply(recriprocal,recriprocal); throttleOutput=lib_fp_multiply(throttleOutput-AUTOTHROTTLE_DEAD_AREA,recriprocal)+AUTOTHROTTLE_DEAD_AREA; } } #endif #ifndef NO_FAILSAFE // if we don't hear from the receiver for over a second, try to land safely if (lib_timers_gettimermicroseconds(global.failsafeTimer)>1000000L) { throttleOutput=FPFAILSAFEMOTOROUTPUT; // make sure we are level! angleError[ROLL_INDEX]=-global.currentEstimatedEulerAttitude[ROLL_INDEX]; angleError[PITCH_INDEX]=-global.currentEstimatedEulerAttitude[PITCH_INDEX]; } #endif // calculate output values. Output values will range from 0 to 1.0 // calculate pid outputs based on our angleErrors as inputs fixedpointnum pidOutput[3]; // Gain Scheduling essentialy modifies the gains depending on // throttle level. If GAIN_SCHEDULING_FACTOR is 1.0, it multiplies PID outputs by 1.5 when at full throttle, // 1.0 when at mid throttle, and .5 when at zero throttle. This helps // eliminate the wobbles when decending at low throttle. fixedpointnum gainSchedulingMultiplier=lib_fp_multiply(throttleOutput-FIXEDPOINTCONSTANT(.5),FIXEDPOINTCONSTANT(GAIN_SCHEDULING_FACTOR))+FIXEDPOINTONE; for (int x=0;x<3;++x) { global.integratedAngleError[x]+=lib_fp_multiply(angleError[x],global.timesliver); // don't let the integrated error get too high (windup) lib_fp_constrain(&global.integratedAngleError[x],-INTEGRATED_ANGLE_ERROR_LIMIT,INTEGRATED_ANGLE_ERROR_LIMIT); // do the attitude pid pidOutput[x]=lib_fp_multiply(angleError[x],settings.pid_pgain[x])-lib_fp_multiply(global.gyrorate[x],settings.pid_dgain[x])+(lib_fp_multiply(global.integratedAngleError[x],settings.pid_igain[x])>>4); // add gain scheduling. pidOutput[x]=lib_fp_multiply(gainSchedulingMultiplier,pidOutput[x]); } lib_fp_constrain(&throttleOutput,0,FIXEDPOINTONE); // Keep throttle output between 0 and 1 compute_mix(throttleOutput, pidOutput); // aircraft type dependent mixes #if (NUM_SERVOS>0) // do not update servos during unarmed calibration of sensors which are sensitive to vibration if (global.state.armed || (!global.state.calibratingAccAndGyro)) write_servo_outputs(); #endif write_motor_outputs(); }
virtual void init_sensors(uint16_t& acc1G, float& gyro_scale, int boardVersion, const std::function<void(void)>& imu_updated_callback) override { imu_updated_callback_ = imu_updated_callback; init_imu(acc1G, gyro_scale, boardVersion); }
void setup(){ init_ros(); init_imu(); init_controller(); init_encoder(); }
//Initialize and enables all the peripherals void init_peripherals(void) { //Motor control variables & peripherals: init_motor(); //Init Control: init_ctrl_data_structure(); //Timebases: init_tb_timers(); //UART 2 - RS-485 init_rs485(); //Analog, expansion port: init_analog(); //Clutch: init_clutch(); //Enable Global Interrupts CyGlobalIntEnable; //I2C1 (internal, potentiometers, Safety-CoP & IMU) init_i2c1(); //Peripherals that depend on I2C: #ifdef USE_I2C_INT //MPU-6500 IMU: #ifdef USE_IMU init_imu(); CyDelay(25); init_imu(); CyDelay(25); init_imu(); CyDelay(25); #endif //USE_IMU //Strain amplifier: #ifdef USE_STRAIN init_strain(); #endif //USE_STRAIN #endif //USE_I2C_INT //I2C2 (external) #ifdef USE_I2C_EXT //Enable pull-ups: I2C_OPT_PU_Write(1); //I2C2 peripheral: init_i2c2(); //Set RGB LED - Starts Green i2c_write_minm_rgb(SET_RGB, 0, 255, 0); #endif //USE_I2C_EXT //Magnetic encoder: init_as5047(); // First DieTemp reading is always inaccurate -- throw out the first one #ifdef USE_DIETEMP DieTemp_1_GetTemp(&temp); #endif //USB CDC #ifdef USE_USB init_usb(); #endif //USE_USB }