Beispiel #1
0
void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
{

	Vector3 invTranslate = -position;
	Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
	Quaternion invRot = orientation.inverse();

	invTranslate *= invScale; 
	invTranslate = invRot.rotate(invTranslate); 


	Matrix3 rot3x3, scale3x3;
	rot3x3 = invRot.toRotationMatrix();
	scale3x3 = Matrix3::ZERO;
	scale3x3[0][0] = invScale.x;
	scale3x3[1][1] = invScale.y;
	scale3x3[2][2] = invScale.z;


	*this = scale3x3 * rot3x3;
	this->setTrans(invTranslate);


	d[3][0] = 0; d[3][1] = 0; d[3][2] = 0; d[3][3] = 1;
}
Beispiel #2
0
    //-----------------------------------------------------------------------
    void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
    {
        // Invert the parameters
        Vector3 invTranslate = -position;
        Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
        Quaternion invRot = orientation.Inverse();

        // Because we're inverting, order is translation, rotation, scale
        // So make translation relative to scale & rotation
        invTranslate *= invScale; // scale
        invTranslate = invRot * invTranslate; // rotate

        // Next, make a 3x3 rotation matrix and apply inverse scale
        Matrix3 rot3x3, scale3x3;
        invRot.ToRotationMatrix(rot3x3);
        scale3x3 = Matrix3::ZERO;
        scale3x3[0][0] = invScale.x;
        scale3x3[1][1] = invScale.y;
        scale3x3[2][2] = invScale.z;

        // Set up final matrix with scale, rotation and translation
        *this = scale3x3 * rot3x3;
        this->setTrans(invTranslate);

        // No projection term
        m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
    }
    //-----------------------------------------------------------------------
    void Matrix4::MakeInverseTransform(Vector3 position, Vector3 scale, Quaternion orientation)
    {
        // Invert the parameters
        Vector3 invTranslate = -position;
        Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
        Quaternion invRot = orientation.Inverse();

        // Because we're inverting, order is translation, rotation, scale
        // So make translation relative to scale & rotation
        invTranslate *= invScale; // scale
        invTranslate = invRot * invTranslate; // rotate

        // Next, make a 3x3 rotation matrix and apply inverse scale
        Matrix3^ rot3x3, ^scale3x3;
        rot3x3 = invRot.ToRotationMatrix();
        scale3x3 = Matrix3::ZERO;
        scale3x3->m00 = invScale.x;
        scale3x3->m11 = invScale.y;
        scale3x3->m22 = invScale.z;

        // Set up final matrix with scale, rotation and translation
        *this = scale3x3 * rot3x3;
        this->SetTrans(invTranslate);

        // No projection term
        m30 = 0; m31 = 0; m32 = 0; m33 = 1;
    }
Beispiel #4
0
void Matrix3x4::Decompose(Vector3& translation, Quaternion& rotation, Vector3& scale) const
{
    translation.x_ = m03_;
    translation.y_ = m13_;
    translation.z_ = m23_;

    scale.x_ = sqrtf(m00_ * m00_ + m10_ * m10_ + m20_ * m20_);
    scale.y_ = sqrtf(m01_ * m01_ + m11_ * m11_ + m21_ * m21_);
    scale.z_ = sqrtf(m02_ * m02_ + m12_ * m12_ + m22_ * m22_);

    Vector3 invScale(1.0f / scale.x_, 1.0f / scale.y_, 1.0f / scale.z_);
    rotation = Quaternion(ToMatrix3().Scaled(invScale));
}
Beispiel #5
0
void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
{
	Vector3 invTranslate = -position;
	Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
	Quaternion invRot = orientation.getInverse();

	invTranslate *= invScale;
	invTranslate = invRot * invTranslate;

	Matrix3 rot3x3 = invRot.ToRotationMatrix();
	m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x;
	m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y;
	m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z;		

	m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
}
Beispiel #6
0
	void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
	{
		// Invert the parameters
		Vector3 invTranslate = Vector3(-position.x,-position.y,-position.z);
		Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
		Quaternion invRot = orientation.inverse();

		// Because we're inverting, order is translation, rotation, scale
		// So make translation relative to scale & rotation
		invTranslate = invRot * invTranslate; // rotate
		invTranslate *= invScale; // scale

		// Next, make a 3x3 rotation matrix
		Matrix3 rot3x3;
		invRot.ToRotationMatrix(rot3x3);

		// Set up final matrix with scale, rotation and translation
		m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x;
		m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y;
		m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z;		

		// No projection term
		m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
	}
Beispiel #7
0
//--------------------------------------
static void m_matF_x_scale_x_planeF_C(const F32* m, const F32* s, const F32* p, F32* presult)
{
   // We take in a matrix, a scale factor, and a plane equation.  We want to output
   //  the resultant normal
   // We have T = m*s
   // To multiply the normal, we want Inv(Tr(m*s))
   //  Inv(Tr(ms)) = Inv(Tr(s) * Tr(m))
   //              = Inv(Tr(m)) * Inv(Tr(s))
   //
   //  Inv(Tr(s)) = Inv(s) = [ 1/x   0   0  0]
   //                        [   0 1/y   0  0]
   //                        [   0   0 1/z  0]
   //                        [   0   0   0  1]
   //
   // Since m is an affine matrix,
   //  Tr(m) = [ [       ] 0 ]
   //          [ [   R   ] 0 ]
   //          [ [       ] 0 ]
   //          [ [ x y z ] 1 ]
   //
   // Inv(Tr(m)) = [ [    -1 ] 0 ]
   //              [ [   R   ] 0 ]
   //              [ [       ] 0 ]
   //              [ [ A B C ] 1 ]
   // Where:
   //
   //  P = (x, y, z)
   //  A = -(Row(0, r) * P);
   //  B = -(Row(1, r) * P);
   //  C = -(Row(2, r) * P);

   MatrixF invScale(true);
   F32* pScaleElems = invScale;
   pScaleElems[MatrixF::idx(0, 0)] = 1.0f / s[0];
   pScaleElems[MatrixF::idx(1, 1)] = 1.0f / s[1];
   pScaleElems[MatrixF::idx(2, 2)] = 1.0f / s[2];

   const Point3F shear( m[MatrixF::idx(3, 0)], m[MatrixF::idx(3, 1)], m[MatrixF::idx(3, 2)] );

   const Point3F row0(m[MatrixF::idx(0, 0)], m[MatrixF::idx(0, 1)], m[MatrixF::idx(0, 2)]);
   const Point3F row1(m[MatrixF::idx(1, 0)], m[MatrixF::idx(1, 1)], m[MatrixF::idx(1, 2)]);
   const Point3F row2(m[MatrixF::idx(2, 0)], m[MatrixF::idx(2, 1)], m[MatrixF::idx(2, 2)]);

   const F32 A = -mDot(row0, shear);
   const F32 B = -mDot(row1, shear);
   const F32 C = -mDot(row2, shear);

   MatrixF invTrMatrix(true);
   F32* destMat = invTrMatrix;
   destMat[MatrixF::idx(0, 0)] = m[MatrixF::idx(0, 0)];
   destMat[MatrixF::idx(1, 0)] = m[MatrixF::idx(1, 0)];
   destMat[MatrixF::idx(2, 0)] = m[MatrixF::idx(2, 0)];
   destMat[MatrixF::idx(0, 1)] = m[MatrixF::idx(0, 1)];
   destMat[MatrixF::idx(1, 1)] = m[MatrixF::idx(1, 1)];
   destMat[MatrixF::idx(2, 1)] = m[MatrixF::idx(2, 1)];
   destMat[MatrixF::idx(0, 2)] = m[MatrixF::idx(0, 2)];
   destMat[MatrixF::idx(1, 2)] = m[MatrixF::idx(1, 2)];
   destMat[MatrixF::idx(2, 2)] = m[MatrixF::idx(2, 2)];
   destMat[MatrixF::idx(0, 3)] = A;
   destMat[MatrixF::idx(1, 3)] = B;
   destMat[MatrixF::idx(2, 3)] = C;
   invTrMatrix.mul(invScale);

   Point3F norm(p[0], p[1], p[2]);
   Point3F point = norm * -p[3];
   invTrMatrix.mulP(norm);
   norm.normalize();

   MatrixF temp;
   memcpy(temp, m, sizeof(F32) * 16);
   point.x *= s[0];
   point.y *= s[1];
   point.z *= s[2];
   temp.mulP(point);

   PlaneF resultPlane(point, norm);
   presult[0] = resultPlane.x;
   presult[1] = resultPlane.y;
   presult[2] = resultPlane.z;
   presult[3] = resultPlane.d;
}