void test_boostmultiprec() { typedef Matrix<Real,Dynamic,Dynamic> Mat; typedef Matrix<std::complex<Real>,Dynamic,Dynamic> MatC; std::cout << "NumTraits<Real>::epsilon() = " << NumTraits<Real>::epsilon() << std::endl; std::cout << "NumTraits<Real>::dummy_precision() = " << NumTraits<Real>::dummy_precision() << std::endl; std::cout << "NumTraits<Real>::lowest() = " << NumTraits<Real>::lowest() << std::endl; std::cout << "NumTraits<Real>::highest() = " << NumTraits<Real>::highest() << std::endl; std::cout << "NumTraits<Real>::digits10() = " << NumTraits<Real>::digits10() << std::endl; // chekc stream output { Mat A(10,10); A.setRandom(); std::stringstream ss; ss << A; } { MatC A(10,10); A.setRandom(); std::stringstream ss; ss << A; } for(int i = 0; i < g_repeat; i++) { int s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); CALL_SUBTEST_1( cholesky(Mat(s,s)) ); CALL_SUBTEST_2( lu_non_invertible<Mat>() ); CALL_SUBTEST_2( lu_invertible<Mat>() ); CALL_SUBTEST_2( lu_non_invertible<MatC>() ); CALL_SUBTEST_2( lu_invertible<MatC>() ); CALL_SUBTEST_3( qr(Mat(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_3( qr_invertible<Mat>() ); CALL_SUBTEST_4( qr<Mat>() ); CALL_SUBTEST_4( cod<Mat>() ); CALL_SUBTEST_4( qr_invertible<Mat>() ); CALL_SUBTEST_5( qr<Mat>() ); CALL_SUBTEST_5( qr_invertible<Mat>() ); CALL_SUBTEST_6( selfadjointeigensolver(Mat(s,s)) ); CALL_SUBTEST_7( eigensolver(Mat(s,s)) ); CALL_SUBTEST_8( generalized_eigensolver_real(Mat(s,s)) ); TEST_SET_BUT_UNUSED_VARIABLE(s) } CALL_SUBTEST_9(( jacobisvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); CALL_SUBTEST_10(( bdcsvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); }
typename GaussianProcess<TScalarType>::MatrixType GaussianProcess<TScalarType>::InvertKernelMatrix(const typename GaussianProcess<TScalarType>::MatrixType &K, typename GaussianProcess<TScalarType>::InversionMethod inv_method = GaussianProcess<TScalarType>::FullPivotLU, bool stable) const{ // compute core matrix if(debug){ std::cout << "GaussianProcess::InvertKernelMatrix: inverting kernel matrix... "; std::cout.flush(); } typename GaussianProcess<TScalarType>::MatrixType core; switch(inv_method){ // standard method: fast but not that accurate // Uses the LU decomposition with full pivoting for the inversion case FullPivotLU:{ if(debug) std::cout << " (inversion method: FullPivotLU) " << std::flush; try{ if(stable){ core = K.inverse(); } else{ if(debug) std::cout << " (using lapack) " << std::flush; core = lapack::lu_invert<TScalarType>(K); } } catch(lapack::LAPACKException& e){ core = K.inverse(); } } break; // very accurate and very slow method, use it for small problems // Uses the two-sided Jacobi SVD decomposition case JacobiSVD:{ if(debug) std::cout << " (inversion method: JacobiSVD) " << std::flush; Eigen::JacobiSVD<MatrixType> jacobisvd(K, Eigen::ComputeThinU | Eigen::ComputeThinV); if((jacobisvd.singularValues().real().array() < 0).any() && debug){ std::cout << "GaussianProcess::InvertKernelMatrix: warning: there are negative eigenvalues."; std::cout.flush(); } core = jacobisvd.matrixV() * VectorType(1/jacobisvd.singularValues().array()).asDiagonal() * jacobisvd.matrixU().transpose(); } break; // accurate method and faster than Jacobi SVD. // Uses the bidiagonal divide and conquer SVD case BDCSVD:{ if(debug) std::cout << " (inversion method: BDCSVD) " << std::flush; #ifdef EIGEN_BDCSVD_H Eigen::BDCSVD<MatrixType> bdcsvd(K, Eigen::ComputeThinU | Eigen::ComputeThinV); if((bdcsvd.singularValues().real().array() < 0).any() && debug){ std::cout << "GaussianProcess::InvertKernelMatrix: warning: there are negative eigenvalues."; std::cout.flush(); } core = bdcsvd.matrixV() * VectorType(1/bdcsvd.singularValues().array()).asDiagonal() * bdcsvd.matrixU().transpose(); #else // this is checked, since BDCSVD is currently not in the newest release throw std::string("GaussianProcess::InvertKernelMatrix: BDCSVD is not supported by the provided Eigen library."); #endif } break; // faster than the SVD method but less stable // computes the eigenvalues/eigenvectors of selfadjoint matrices case SelfAdjointEigenSolver:{ if(debug) std::cout << " (inversion method: SelfAdjointEigenSolver) " << std::flush; try{ core = lapack::chol_invert<TScalarType>(K); } catch(lapack::LAPACKException& e){ Eigen::SelfAdjointEigenSolver<MatrixType> es; es.compute(K); VectorType eigenValues = es.eigenvalues().reverse(); MatrixType eigenVectors = es.eigenvectors().rowwise().reverse(); if((eigenValues.real().array() < 0).any() && debug){ std::cout << "GaussianProcess::InvertKernelMatrix: warning: there are negative eigenvalues."; std::cout.flush(); } core = eigenVectors * VectorType(1/eigenValues.array()).asDiagonal() * eigenVectors.transpose(); } } break; } if(debug) std::cout << "[done]" << std::endl; return core; }