Beispiel #1
0
static void
ttm_lock_send_sig(int signo)
{
	struct proc *p;

	p = curproc;	/* XXXKIB curthread ? */
	PROC_LOCK(p);
	kern_psignal(p, signo);
	PROC_UNLOCK(p);
}
Beispiel #2
0
/*
 * Called by events that want to shut down.. e.g  <CTL><ALT><DEL> on a PC
 */
void
shutdown_nice(int howto)
{

	if (initproc != NULL) {
		/* Send a signal to init(8) and have it shutdown the world. */
		PROC_LOCK(initproc);
		if (howto & RB_POWEROFF)
			kern_psignal(initproc, SIGUSR2);
		else if (howto & RB_HALT)
			kern_psignal(initproc, SIGUSR1);
		else
			kern_psignal(initproc, SIGINT);
		PROC_UNLOCK(initproc);
	} else {
		/* No init(8) running, so simply reboot. */
		kern_reboot(howto | RB_NOSYNC);
	}
}
Beispiel #3
0
/*
 * This function is called by the hv_kvp_deinit -
 * destroy character device
 */
static void
hv_kvp_dev_destroy(void)
{

        if (daemon_task != NULL) {
		PROC_LOCK(daemon_task);
        	kern_psignal(daemon_task, SIGKILL);
		PROC_UNLOCK(daemon_task);
	}
	
	destroy_dev(hv_kvp_dev);
	free(hv_kvp_dev_buf, M_HV_KVP_DEV_BUF);
	return;
}
Beispiel #4
0
int
procfs_doprocctl(PFS_FILL_ARGS)
{
	int error;
	struct namemap *nm;

	if (uio == NULL || uio->uio_rw != UIO_WRITE)
		return (EOPNOTSUPP);

	/*
	 * Map signal names into signal generation
	 * or debug control.  Unknown commands and/or signals
	 * return EOPNOTSUPP.
	 *
	 * Sending a signal while the process is being debugged
	 * also has the side effect of letting the target continue
	 * to run.  There is no way to single-step a signal delivery.
	 */
	error = EOPNOTSUPP;

	sbuf_trim(sb);
	sbuf_finish(sb);
	nm = findname(ctlnames, sbuf_data(sb), sbuf_len(sb));
	if (nm) {
		printf("procfs: got a %s command\n", sbuf_data(sb));
		error = procfs_control(td, p, nm->nm_val);
	} else {
		nm = findname(signames, sbuf_data(sb), sbuf_len(sb));
		if (nm) {
			printf("procfs: got a sig%s\n", sbuf_data(sb));
			PROC_LOCK(p);

			if (TRACE_WAIT_P(td->td_proc, p)) {
				p->p_xstat = nm->nm_val;
#ifdef FIX_SSTEP
				FIX_SSTEP(FIRST_THREAD_IN_PROC(p));
#endif
				p->p_flag &= ~P_STOPPED_SIG;
				PROC_SLOCK(p);
				thread_unsuspend(p);
				PROC_SUNLOCK(p);
			} else
				kern_psignal(p, nm->nm_val);
			PROC_UNLOCK(p);
			error = 0;
		}
	}

	return (error);
}
Beispiel #5
0
static void
pmclog_stop_kthread(struct pmc_owner *po)
{

	mtx_lock(&pmc_kthread_mtx);
	po->po_flags &= ~PMC_PO_OWNS_LOGFILE;
	if (po->po_kthread != NULL) {
		PROC_LOCK(po->po_kthread);
		kern_psignal(po->po_kthread, SIGHUP);
		PROC_UNLOCK(po->po_kthread);
	}
	wakeup_one(po);
	while (po->po_kthread)
		msleep(po->po_kthread, &pmc_kthread_mtx, PPAUSE, "pmckstp", 0);
	mtx_unlock(&pmc_kthread_mtx);
}
Beispiel #6
0
void
shutdown_nice(int howto)
{

	shutdown_howto = howto;

	/* Send a signal to init(8) and have it shutdown the world */
	if (initproc != NULL) {
		PROC_LOCK(initproc);
		kern_psignal(initproc, SIGINT);
		PROC_UNLOCK(initproc);
	} else {
		/* No init(8) running, so simply reboot */
		kern_reboot(RB_NOSYNC);
	}
	return;
}
Beispiel #7
0
void
trap(struct trapframe *frame)
{
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	int i = 0, ucode = 0, code;
	u_int type;
	register_t addr = 0;
	vm_offset_t eva;
	ksiginfo_t ksi;
#ifdef POWERFAIL_NMI
	static int lastalert = 0;
#endif

	PCPU_INC(cnt.v_trap);
	type = frame->tf_trapno;

#ifdef SMP
	/* Handler for NMI IPIs used for stopping CPUs. */
	if (type == T_NMI) {
	         if (ipi_nmi_handler() == 0)
	                   goto out;
	}
#endif /* SMP */

#ifdef KDB
	if (kdb_active) {
		kdb_reenter();
		goto out;
	}
#endif

	if (type == T_RESERVED) {
		trap_fatal(frame, 0);
		goto out;
	}

#ifdef	HWPMC_HOOKS
	/*
	 * CPU PMCs interrupt using an NMI so we check for that first.
	 * If the HWPMC module is active, 'pmc_hook' will point to
	 * the function to be called.  A return value of '1' from the
	 * hook means that the NMI was handled by it and that we can
	 * return immediately.
	 */
	if (type == T_NMI && pmc_intr &&
	    (*pmc_intr)(PCPU_GET(cpuid), frame))
	    goto out;
#endif

	if (type == T_MCHK) {
		if (!mca_intr())
			trap_fatal(frame, 0);
		goto out;
	}

#ifdef KDTRACE_HOOKS
	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in it's per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 *
	 * If the DTrace kernel module has registered a trap handler,
	 * call it and if it returns non-zero, assume that it has
	 * handled the trap and modified the trap frame so that this
	 * function can return normally.
	 */
	if ((type == T_PROTFLT || type == T_PAGEFLT) &&
	    dtrace_trap_func != NULL)
		if ((*dtrace_trap_func)(frame, type))
			goto out;
	if (type == T_DTRACE_PROBE || type == T_DTRACE_RET ||
	    type == T_BPTFLT) {
		struct reg regs;

		fill_frame_regs(frame, &regs);
		if (type == T_DTRACE_PROBE &&
		    dtrace_fasttrap_probe_ptr != NULL &&
		    dtrace_fasttrap_probe_ptr(&regs) == 0)
			goto out;
		if (type == T_BPTFLT &&
		    dtrace_pid_probe_ptr != NULL &&
		    dtrace_pid_probe_ptr(&regs) == 0)
			goto out;
		if (type == T_DTRACE_RET &&
		    dtrace_return_probe_ptr != NULL &&
		    dtrace_return_probe_ptr(&regs) == 0)
			goto out;
	}
#endif

	if ((frame->tf_eflags & PSL_I) == 0) {
		/*
		 * Buggy application or kernel code has disabled
		 * interrupts and then trapped.  Enabling interrupts
		 * now is wrong, but it is better than running with
		 * interrupts disabled until they are accidentally
		 * enabled later.
		 */
		if (ISPL(frame->tf_cs) == SEL_UPL || (frame->tf_eflags & PSL_VM))
			uprintf(
			    "pid %ld (%s): trap %d with interrupts disabled\n",
			    (long)curproc->p_pid, curthread->td_name, type);
		else if (type != T_BPTFLT && type != T_TRCTRAP &&
			 frame->tf_eip != (int)cpu_switch_load_gs) {
			/*
			 * XXX not quite right, since this may be for a
			 * multiple fault in user mode.
			 */
			printf("kernel trap %d with interrupts disabled\n",
			    type);
			/*
			 * Page faults need interrupts disabled until later,
			 * and we shouldn't enable interrupts while holding
			 * a spin lock or if servicing an NMI.
			 */
			if (type != T_NMI && type != T_PAGEFLT &&
			    td->td_md.md_spinlock_count == 0)
				enable_intr();
		}
	}
	eva = 0;
	code = frame->tf_err;
	if (type == T_PAGEFLT) {
		/*
		 * For some Cyrix CPUs, %cr2 is clobbered by
		 * interrupts.  This problem is worked around by using
		 * an interrupt gate for the pagefault handler.  We
		 * are finally ready to read %cr2 and then must
		 * reenable interrupts.
		 *
		 * If we get a page fault while in a critical section, then
		 * it is most likely a fatal kernel page fault.  The kernel
		 * is already going to panic trying to get a sleep lock to
		 * do the VM lookup, so just consider it a fatal trap so the
		 * kernel can print out a useful trap message and even get
		 * to the debugger.
		 *
		 * If we get a page fault while holding a non-sleepable
		 * lock, then it is most likely a fatal kernel page fault.
		 * If WITNESS is enabled, then it's going to whine about
		 * bogus LORs with various VM locks, so just skip to the
		 * fatal trap handling directly.
		 */
		eva = rcr2();
		if (td->td_critnest != 0 ||
		    WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL,
		    "Kernel page fault") != 0)
			trap_fatal(frame, eva);
		else
			enable_intr();
	}

        if ((ISPL(frame->tf_cs) == SEL_UPL) ||
	    ((frame->tf_eflags & PSL_VM) && 
		!(PCPU_GET(curpcb)->pcb_flags & PCB_VM86CALL))) {
		/* user trap */

		td->td_pticks = 0;
		td->td_frame = frame;
		addr = frame->tf_eip;
		if (td->td_ucred != p->p_ucred) 
			cred_update_thread(td);

		switch (type) {
		case T_PRIVINFLT:	/* privileged instruction fault */
			i = SIGILL;
			ucode = ILL_PRVOPC;
			break;

		case T_BPTFLT:		/* bpt instruction fault */
		case T_TRCTRAP:		/* trace trap */
			enable_intr();
			frame->tf_eflags &= ~PSL_T;
			i = SIGTRAP;
			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
#ifdef DEV_NPX
			ucode = npxtrap();
			if (ucode == -1)
				goto userout;
#else
			ucode = 0;
#endif
			i = SIGFPE;
			break;

			/*
			 * The following two traps can happen in
			 * vm86 mode, and, if so, we want to handle
			 * them specially.
			 */
		case T_PROTFLT:		/* general protection fault */
		case T_STKFLT:		/* stack fault */
			if (frame->tf_eflags & PSL_VM) {
				i = vm86_emulate((struct vm86frame *)frame);
				if (i == 0)
					goto user;
				break;
			}
			i = SIGBUS;
			ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR;
			break;
		case T_SEGNPFLT:	/* segment not present fault */
			i = SIGBUS;
			ucode = BUS_ADRERR;
			break;
		case T_TSSFLT:		/* invalid TSS fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_DOUBLEFLT:	/* double fault */
		default:
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		case T_PAGEFLT:		/* page fault */

			i = trap_pfault(frame, TRUE, eva);
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
			if (i == -2) {
				/*
				 * The f00f hack workaround has triggered, so
				 * treat the fault as an illegal instruction 
				 * (T_PRIVINFLT) instead of a page fault.
				 */
				type = frame->tf_trapno = T_PRIVINFLT;

				/* Proceed as in that case. */
				ucode = ILL_PRVOPC;
				i = SIGILL;
				break;
			}
#endif
			if (i == -1)
				goto userout;
			if (i == 0)
				goto user;

			if (i == SIGSEGV)
				ucode = SEGV_MAPERR;
			else {
				if (prot_fault_translation == 0) {
					/*
					 * Autodetect.
					 * This check also covers the images
					 * without the ABI-tag ELF note.
					 */
					if (SV_CURPROC_ABI() == SV_ABI_FREEBSD
					    && p->p_osrel >= P_OSREL_SIGSEGV) {
						i = SIGSEGV;
						ucode = SEGV_ACCERR;
					} else {
						i = SIGBUS;
						ucode = BUS_PAGE_FAULT;
					}
				} else if (prot_fault_translation == 1) {
					/*
					 * Always compat mode.
					 */
					i = SIGBUS;
					ucode = BUS_PAGE_FAULT;
				} else {
					/*
					 * Always SIGSEGV mode.
					 */
					i = SIGSEGV;
					ucode = SEGV_ACCERR;
				}
			}
			addr = eva;
			break;

		case T_DIVIDE:		/* integer divide fault */
			ucode = FPE_INTDIV;
			i = SIGFPE;
			break;

#ifdef DEV_ISA
		case T_NMI:
#ifdef POWERFAIL_NMI
#ifndef TIMER_FREQ
#  define TIMER_FREQ 1193182
#endif
			if (time_second - lastalert > 10) {
				log(LOG_WARNING, "NMI: power fail\n");
				sysbeep(880, hz);
				lastalert = time_second;
			}
			goto userout;
#else /* !POWERFAIL_NMI */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto userout;
			} else if (panic_on_nmi)
				panic("NMI indicates hardware failure");
			break;
#endif /* POWERFAIL_NMI */
#endif /* DEV_ISA */

		case T_OFLOW:		/* integer overflow fault */
			ucode = FPE_INTOVF;
			i = SIGFPE;
			break;

		case T_BOUND:		/* bounds check fault */
			ucode = FPE_FLTSUB;
			i = SIGFPE;
			break;

		case T_DNA:
#ifdef DEV_NPX
			KASSERT(PCB_USER_FPU(td->td_pcb),
			    ("kernel FPU ctx has leaked"));
			/* transparent fault (due to context switch "late") */
			if (npxdna())
				goto userout;
#endif
			uprintf("pid %d killed due to lack of floating point\n",
				p->p_pid);
			i = SIGKILL;
			ucode = 0;
			break;

		case T_FPOPFLT:		/* FPU operand fetch fault */
			ucode = ILL_COPROC;
			i = SIGILL;
			break;

		case T_XMMFLT:		/* SIMD floating-point exception */
			ucode = 0; /* XXX */
			i = SIGFPE;
			break;
		}
	} else {
		/* kernel trap */

		KASSERT(cold || td->td_ucred != NULL,
		    ("kernel trap doesn't have ucred"));
		switch (type) {
		case T_PAGEFLT:			/* page fault */
			(void) trap_pfault(frame, FALSE, eva);
			goto out;

		case T_DNA:
#ifdef DEV_NPX
			KASSERT(!PCB_USER_FPU(td->td_pcb),
			    ("Unregistered use of FPU in kernel"));
			if (npxdna())
				goto out;
#endif
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
		case T_XMMFLT:		/* SIMD floating-point exception */
		case T_FPOPFLT:		/* FPU operand fetch fault */
			/*
			 * XXXKIB for now disable any FPU traps in kernel
			 * handler registration seems to be overkill
			 */
			trap_fatal(frame, 0);
			goto out;

			/*
			 * The following two traps can happen in
			 * vm86 mode, and, if so, we want to handle
			 * them specially.
			 */
		case T_PROTFLT:		/* general protection fault */
		case T_STKFLT:		/* stack fault */
			if (frame->tf_eflags & PSL_VM) {
				i = vm86_emulate((struct vm86frame *)frame);
				if (i != 0)
					/*
					 * returns to original process
					 */
					vm86_trap((struct vm86frame *)frame);
				goto out;
			}
			if (type == T_STKFLT)
				break;

			/* FALL THROUGH */

		case T_SEGNPFLT:	/* segment not present fault */
			if (PCPU_GET(curpcb)->pcb_flags & PCB_VM86CALL)
				break;

			/*
			 * Invalid %fs's and %gs's can be created using
			 * procfs or PT_SETREGS or by invalidating the
			 * underlying LDT entry.  This causes a fault
			 * in kernel mode when the kernel attempts to
			 * switch contexts.  Lose the bad context
			 * (XXX) so that we can continue, and generate
			 * a signal.
			 */
			if (frame->tf_eip == (int)cpu_switch_load_gs) {
				PCPU_GET(curpcb)->pcb_gs = 0;
#if 0				
				PROC_LOCK(p);
				kern_psignal(p, SIGBUS);
				PROC_UNLOCK(p);
#endif				
				goto out;
			}

			if (td->td_intr_nesting_level != 0)
				break;

			/*
			 * Invalid segment selectors and out of bounds
			 * %eip's and %esp's can be set up in user mode.
			 * This causes a fault in kernel mode when the
			 * kernel tries to return to user mode.  We want
			 * to get this fault so that we can fix the
			 * problem here and not have to check all the
			 * selectors and pointers when the user changes
			 * them.
			 */
			if (frame->tf_eip == (int)doreti_iret) {
				frame->tf_eip = (int)doreti_iret_fault;
				goto out;
			}
			if (frame->tf_eip == (int)doreti_popl_ds) {
				frame->tf_eip = (int)doreti_popl_ds_fault;
				goto out;
			}
			if (frame->tf_eip == (int)doreti_popl_es) {
				frame->tf_eip = (int)doreti_popl_es_fault;
				goto out;
			}
			if (frame->tf_eip == (int)doreti_popl_fs) {
				frame->tf_eip = (int)doreti_popl_fs_fault;
				goto out;
			}
			if (PCPU_GET(curpcb)->pcb_onfault != NULL) {
				frame->tf_eip =
				    (int)PCPU_GET(curpcb)->pcb_onfault;
				goto out;
			}
			break;

		case T_TSSFLT:
			/*
			 * PSL_NT can be set in user mode and isn't cleared
			 * automatically when the kernel is entered.  This
			 * causes a TSS fault when the kernel attempts to
			 * `iret' because the TSS link is uninitialized.  We
			 * want to get this fault so that we can fix the
			 * problem here and not every time the kernel is
			 * entered.
			 */
			if (frame->tf_eflags & PSL_NT) {
				frame->tf_eflags &= ~PSL_NT;
				goto out;
			}
			break;

		case T_TRCTRAP:	 /* trace trap */
			if (frame->tf_eip == (int)IDTVEC(lcall_syscall)) {
				/*
				 * We've just entered system mode via the
				 * syscall lcall.  Continue single stepping
				 * silently until the syscall handler has
				 * saved the flags.
				 */
				goto out;
			}
			if (frame->tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
				/*
				 * The syscall handler has now saved the
				 * flags.  Stop single stepping it.
				 */
				frame->tf_eflags &= ~PSL_T;
				goto out;
			}
			/*
			 * Ignore debug register trace traps due to
			 * accesses in the user's address space, which
			 * can happen under several conditions such as
			 * if a user sets a watchpoint on a buffer and
			 * then passes that buffer to a system call.
			 * We still want to get TRCTRAPS for addresses
			 * in kernel space because that is useful when
			 * debugging the kernel.
			 */
			if (user_dbreg_trap() && 
			   !(PCPU_GET(curpcb)->pcb_flags & PCB_VM86CALL)) {
				/*
				 * Reset breakpoint bits because the
				 * processor doesn't
				 */
				load_dr6(rdr6() & 0xfffffff0);
				goto out;
			}
			/*
			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
			 */
		case T_BPTFLT:
			/*
			 * If KDB is enabled, let it handle the debugger trap.
			 * Otherwise, debugger traps "can't happen".
			 */
#ifdef KDB
			if (kdb_trap(type, 0, frame))
				goto out;
#endif
			break;

#ifdef DEV_ISA
		case T_NMI:
#ifdef POWERFAIL_NMI
			if (time_second - lastalert > 10) {
				log(LOG_WARNING, "NMI: power fail\n");
				sysbeep(880, hz);
				lastalert = time_second;
			}
			goto out;
#else /* !POWERFAIL_NMI */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef KDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (kdb_on_nmi) {
					printf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* KDB */
				goto out;
			} else if (panic_on_nmi == 0)
				goto out;
			/* FALLTHROUGH */
#endif /* POWERFAIL_NMI */
#endif /* DEV_ISA */
		}

		trap_fatal(frame, eva);
		goto out;
	}

	/* Translate fault for emulators (e.g. Linux) */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	ksiginfo_init_trap(&ksi);
	ksi.ksi_signo = i;
	ksi.ksi_code = ucode;
	ksi.ksi_addr = (void *)addr;
	ksi.ksi_trapno = type;
	trapsignal(td, &ksi);

#ifdef DEBUG
	if (type <= MAX_TRAP_MSG) {
		uprintf("fatal process exception: %s",
			trap_msg[type]);
		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
			uprintf(", fault VA = 0x%lx", (u_long)eva);
		uprintf("\n");
	}
#endif

user:
	userret(td, frame);
	mtx_assert(&Giant, MA_NOTOWNED);
	KASSERT(PCB_USER_FPU(td->td_pcb),
	    ("Return from trap with kernel FPU ctx leaked"));
userout:
out:
	return;
}
Beispiel #8
0
static void
soaio_process_job(struct socket *so, struct sockbuf *sb, struct kaiocb *job)
{
	struct ucred *td_savedcred;
	struct thread *td;
	struct file *fp;
	struct uio uio;
	struct iovec iov;
	size_t cnt;
	int error, flags;

	SOCKBUF_UNLOCK(sb);
	aio_switch_vmspace(job);
	td = curthread;
	fp = job->fd_file;
retry:
	td_savedcred = td->td_ucred;
	td->td_ucred = job->cred;

	cnt = job->uaiocb.aio_nbytes;
	iov.iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
	iov.iov_len = cnt;
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = 0;
	uio.uio_resid = cnt;
	uio.uio_segflg = UIO_USERSPACE;
	uio.uio_td = td;
	flags = MSG_NBIO;

	/* TODO: Charge ru_msg* to job. */

	if (sb == &so->so_rcv) {
		uio.uio_rw = UIO_READ;
#ifdef MAC
		error = mac_socket_check_receive(fp->f_cred, so);
		if (error == 0)

#endif
			error = soreceive(so, NULL, &uio, NULL, NULL, &flags);
	} else {
		uio.uio_rw = UIO_WRITE;
#ifdef MAC
		error = mac_socket_check_send(fp->f_cred, so);
		if (error == 0)
#endif
			error = sosend(so, NULL, &uio, NULL, NULL, flags, td);
		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0) {
			PROC_LOCK(job->userproc);
			kern_psignal(job->userproc, SIGPIPE);
			PROC_UNLOCK(job->userproc);
		}
	}

	cnt -= uio.uio_resid;
	td->td_ucred = td_savedcred;

	/* XXX: Not sure if this is needed? */
	if (cnt != 0 && (error == ERESTART || error == EINTR ||
	    error == EWOULDBLOCK))
		error = 0;
	if (error == EWOULDBLOCK) {
		/*
		 * A read() or write() on the socket raced with this
		 * request.  If the socket is now ready, try again.
		 * If it is not, place this request at the head of the
		 * queue to try again when the socket is ready.
		 */
		SOCKBUF_LOCK(sb);		
		empty_results++;
		if (soaio_ready(so, sb)) {
			empty_retries++;
			SOCKBUF_UNLOCK(sb);
			goto retry;
		}

		if (!aio_set_cancel_function(job, soo_aio_cancel)) {
			MPASS(cnt == 0);
			SOCKBUF_UNLOCK(sb);
			aio_cancel(job);
			SOCKBUF_LOCK(sb);
		} else {
			TAILQ_INSERT_HEAD(&sb->sb_aiojobq, job, list);
		}
	} else {
		aio_complete(job, cnt, error);
		SOCKBUF_LOCK(sb);
	}
}
Beispiel #9
0
int
sc_mouse_ioctl(struct tty *tp, u_long cmd, caddr_t data, struct thread *td)
{
    mouse_info_t *mouse;
    mouse_info_t buf;
    scr_stat *cur_scp;
    scr_stat *scp;
    struct proc *p1;
    int s;
    int f;

    scp = SC_STAT(tp);

    switch (cmd) {

    case CONS_MOUSECTL:		/* control mouse arrow */
    case OLD_CONS_MOUSECTL:

	mouse = (mouse_info_t*)data;

	random_harvest_queue(mouse, sizeof(mouse_info_t), 2, RANDOM_MOUSE);

	if (cmd == OLD_CONS_MOUSECTL) {
	    static u_char swapb[] = { 0, 4, 2, 6, 1, 5, 3, 7 };
	    old_mouse_info_t *old_mouse = (old_mouse_info_t *)data;

	    mouse = &buf;
	    mouse->operation = old_mouse->operation;
	    switch (mouse->operation) {
	    case MOUSE_MODE:
		mouse->u.mode = old_mouse->u.mode;
		break;
	    case MOUSE_SHOW:
	    case MOUSE_HIDE:
		break;
	    case MOUSE_MOVEABS:
	    case MOUSE_MOVEREL:
	    case MOUSE_ACTION:
		mouse->u.data.x = old_mouse->u.data.x;
		mouse->u.data.y = old_mouse->u.data.y;
		mouse->u.data.z = 0;
		mouse->u.data.buttons = swapb[old_mouse->u.data.buttons & 0x7];
		break;
	    case MOUSE_GETINFO:
		old_mouse->u.data.x = scp->mouse_xpos;
		old_mouse->u.data.y = scp->mouse_ypos;
		old_mouse->u.data.buttons = swapb[scp->mouse_buttons & 0x7];
		return 0;
	    default:
		return EINVAL;
	    }
	}

	cur_scp = scp->sc->cur_scp;

	switch (mouse->operation) {
	case MOUSE_MODE:
	    if (ISSIGVALID(mouse->u.mode.signal)) {
		scp->mouse_signal = mouse->u.mode.signal;
		scp->mouse_proc = td->td_proc;
		scp->mouse_pid = td->td_proc->p_pid;
	    }
	    else {
		scp->mouse_signal = 0;
		scp->mouse_proc = NULL;
		scp->mouse_pid = 0;
	    }
	    return 0;

	case MOUSE_SHOW:
	    s = spltty();
	    if (!(scp->sc->flags & SC_MOUSE_ENABLED)) {
		scp->sc->flags |= SC_MOUSE_ENABLED;
		cur_scp->status &= ~MOUSE_HIDDEN;
		if (!ISGRAPHSC(cur_scp))
		    mark_all(cur_scp);
	    }
	    splx(s);
	    return 0;
	    /* NOTREACHED */

	case MOUSE_HIDE:
	    s = spltty();
	    if (scp->sc->flags & SC_MOUSE_ENABLED) {
		scp->sc->flags &= ~SC_MOUSE_ENABLED;
		sc_remove_all_mouse(scp->sc);
	    }
	    splx(s);
	    return 0;
	    /* NOTREACHED */

	case MOUSE_MOVEABS:
	    s = spltty();
	    scp->mouse_xpos = mouse->u.data.x;
	    scp->mouse_ypos = mouse->u.data.y;
	    set_mouse_pos(scp);
	    splx(s);
	    break;

	case MOUSE_MOVEREL:
	    s = spltty();
	    scp->mouse_xpos += mouse->u.data.x;
	    scp->mouse_ypos += mouse->u.data.y;
	    set_mouse_pos(scp);
	    splx(s);
	    break;

	case MOUSE_GETINFO:
	    mouse->u.data.x = scp->mouse_xpos;
	    mouse->u.data.y = scp->mouse_ypos;
	    mouse->u.data.z = 0;
	    mouse->u.data.buttons = scp->mouse_buttons;
	    return 0;

	case MOUSE_ACTION:
	case MOUSE_MOTION_EVENT:
	    /* send out mouse event on /dev/sysmouse */
#if 0
	    /* this should maybe only be settable from /dev/consolectl SOS */
	    if (SC_VTY(tp->t_dev) != SC_CONSOLECTL)
		return ENOTTY;
#endif
	    s = spltty();
	    if (mouse->u.data.x != 0 || mouse->u.data.y != 0) {
		cur_scp->mouse_xpos += mouse->u.data.x;
		cur_scp->mouse_ypos += mouse->u.data.y;
		set_mouse_pos(cur_scp);
	    }
	    f = 0;
	    if (mouse->operation == MOUSE_ACTION) {
		f = cur_scp->mouse_buttons ^ mouse->u.data.buttons;
		cur_scp->mouse_buttons = mouse->u.data.buttons;
	    }
	    splx(s);

	    if (sysmouse_event(mouse) == 0)
		return 0;

	    /* 
	     * If any buttons are down or the mouse has moved a lot, 
	     * stop the screen saver.
	     */
	    if (((mouse->operation == MOUSE_ACTION) && mouse->u.data.buttons)
		|| (mouse->u.data.x*mouse->u.data.x
			+ mouse->u.data.y*mouse->u.data.y
			>= SC_WAKEUP_DELTA*SC_WAKEUP_DELTA)) {
		sc_touch_scrn_saver();
	    }

	    cur_scp->status &= ~MOUSE_HIDDEN;

	    if (cur_scp->mouse_level > 0) {
	    	sc_mouse_input(scp, mouse);
		break;
	    }

	    if (cur_scp->mouse_signal && cur_scp->mouse_proc) {
    		/* has controlling process died? */
		if (cur_scp->mouse_proc != (p1 = pfind(cur_scp->mouse_pid))) {
		    	cur_scp->mouse_signal = 0;
			cur_scp->mouse_proc = NULL;
			cur_scp->mouse_pid = 0;
			if (p1)
			    PROC_UNLOCK(p1);
		} else {
		    kern_psignal(cur_scp->mouse_proc, cur_scp->mouse_signal);
		    PROC_UNLOCK(cur_scp->mouse_proc);
		    break;
		}
	    }

#ifndef SC_NO_CUTPASTE
	    if (ISGRAPHSC(cur_scp) || (cut_buffer == NULL))
		break;

	    if ((mouse->operation == MOUSE_ACTION) && f) {
		/* process button presses */
		if (cur_scp->mouse_buttons & MOUSE_BUTTON1DOWN)
		    mouse_cut_start(cur_scp);
		else
		    mouse_cut_end(cur_scp);
		if (cur_scp->mouse_buttons & MOUSE_BUTTON2DOWN ||
		    cur_scp->mouse_buttons & MOUSE_BUTTON3DOWN)
		    sc_mouse_paste(cur_scp);
	    }
#endif /* SC_NO_CUTPASTE */
	    break;

	case MOUSE_BUTTON_EVENT:
	    if ((mouse->u.event.id & MOUSE_BUTTONS) == 0)
		return EINVAL;
	    if (mouse->u.event.value < 0)
		return EINVAL;
#if 0
	    /* this should maybe only be settable from /dev/consolectl SOS */
	    if (SC_VTY(tp->t_dev) != SC_CONSOLECTL)
		return ENOTTY;
#endif
	    if (mouse->u.event.value > 0)
		cur_scp->mouse_buttons |= mouse->u.event.id;
	    else
		cur_scp->mouse_buttons &= ~mouse->u.event.id;

	    if (sysmouse_event(mouse) == 0)
		return 0;

	    /* if a button is held down, stop the screen saver */
	    if (mouse->u.event.value > 0)
		sc_touch_scrn_saver();

	    cur_scp->status &= ~MOUSE_HIDDEN;

	    if (cur_scp->mouse_level > 0) {
	    	sc_mouse_input(scp, mouse);
		break;
	    }

	    if (cur_scp->mouse_signal && cur_scp->mouse_proc) {
		if (cur_scp->mouse_proc != (p1 = pfind(cur_scp->mouse_pid))){
		    	cur_scp->mouse_signal = 0;
			cur_scp->mouse_proc = NULL;
			cur_scp->mouse_pid = 0;
			if (p1)
			    PROC_UNLOCK(p1);
		} else {
		    kern_psignal(cur_scp->mouse_proc, cur_scp->mouse_signal);
		    PROC_UNLOCK(cur_scp->mouse_proc);
		    break;
		}
	    }

#ifndef SC_NO_CUTPASTE
	    if (ISGRAPHSC(cur_scp) || (cut_buffer == NULL))
		break;

	    switch (mouse->u.event.id) {
	    case MOUSE_BUTTON1DOWN:
	        switch (mouse->u.event.value % 4) {
		case 0:	/* up */
		    mouse_cut_end(cur_scp);
		    break;
		case 1: /* single click: start cut operation */
		    mouse_cut_start(cur_scp);
		    break;
		case 2:	/* double click: cut a word */
		    mouse_cut_word(cur_scp);
		    mouse_cut_end(cur_scp);
		    break;
		case 3:	/* triple click: cut a line */
		    mouse_cut_line(cur_scp);
		    mouse_cut_end(cur_scp);
		    break;
		}
		break;
	    case SC_MOUSE_PASTEBUTTON:
	        switch (mouse->u.event.value) {
		case 0:	/* up */
		    break;
		default:
		    sc_mouse_paste(cur_scp);
		    break;
		}
		break;
	    case SC_MOUSE_EXTENDBUTTON:
	        switch (mouse->u.event.value) {
		case 0:	/* up */
		    if (!(cur_scp->mouse_buttons & MOUSE_BUTTON1DOWN))
		        mouse_cut_end(cur_scp);
		    break;
		default:
		    mouse_cut_extend(cur_scp);
		    break;
		}
		break;
	    }
#endif /* SC_NO_CUTPASTE */
	    break;

	case MOUSE_MOUSECHAR:
	    if (mouse->u.mouse_char < 0) {
		mouse->u.mouse_char = scp->sc->mouse_char;
	    } else {
		if (mouse->u.mouse_char > UCHAR_MAX - 3)
		    return EINVAL;
		s = spltty();
		sc_remove_all_mouse(scp->sc);
#ifndef SC_NO_FONT_LOADING
		if (ISTEXTSC(cur_scp) && (cur_scp->font != NULL))
		    sc_load_font(cur_scp, 0, cur_scp->font_size,
				 cur_scp->font_width,
				 cur_scp->font + cur_scp->font_size
				 * cur_scp->sc->mouse_char,
				 cur_scp->sc->mouse_char, 4);
#endif
		scp->sc->mouse_char = mouse->u.mouse_char;
		splx(s);
	    }
	    break;

	default:
	    return EINVAL;
	}

	return 0;
    }

    return ENOIOCTL;
}
Beispiel #10
0
/*
 * Process an asynchronous software trap.
 * This is relatively easy.
 * This function will return with preemption disabled.
 */
void
ast(struct trapframe *framep)
{
	struct thread *td;
	struct proc *p;
	int flags;
	int sig;

	td = curthread;
	p = td->td_proc;

	CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, p->p_pid,
            p->p_comm);
	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
	WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
	mtx_assert(&Giant, MA_NOTOWNED);
	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
	td->td_frame = framep;
	td->td_pticks = 0;

	/*
	 * This updates the td_flag's for the checks below in one
	 * "atomic" operation with turning off the astpending flag.
	 * If another AST is triggered while we are handling the
	 * AST's saved in flags, the astpending flag will be set and
	 * ast() will be called again.
	 */
	thread_lock(td);
	flags = td->td_flags;
	td->td_flags &= ~(TDF_ASTPENDING | TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK |
	    TDF_NEEDRESCHED | TDF_ALRMPEND | TDF_PROFPEND | TDF_MACPEND);
	thread_unlock(td);
	PCPU_INC(cnt.v_trap);

	if (td->td_ucred != p->p_ucred) 
		cred_update_thread(td);
	if (td->td_pflags & TDP_OWEUPC && p->p_flag & P_PROFIL) {
		addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
		td->td_profil_ticks = 0;
		td->td_pflags &= ~TDP_OWEUPC;
	}
#ifdef HWPMC_HOOKS
	/* Handle Software PMC callchain capture. */
	if (PMC_IS_PENDING_CALLCHAIN(td))
		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_USER_CALLCHAIN_SOFT, (void *) framep);
#endif
	if (flags & TDF_ALRMPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGVTALRM);
		PROC_UNLOCK(p);
	}
	if (flags & TDF_PROFPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGPROF);
		PROC_UNLOCK(p);
	}
#ifdef MAC
	if (flags & TDF_MACPEND)
		mac_thread_userret(td);
#endif
	if (flags & TDF_NEEDRESCHED) {
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(1, 1, __func__);
#endif
		thread_lock(td);
		sched_prio(td, td->td_user_pri);
		mi_switch(SW_INVOL | SWT_NEEDRESCHED, NULL);
		thread_unlock(td);
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(0, 1, __func__);
#endif
	}

	/*
	 * Check for signals. Unlocked reads of p_pendingcnt or
	 * p_siglist might cause process-directed signal to be handled
	 * later.
	 */
	if (flags & TDF_NEEDSIGCHK || p->p_pendingcnt > 0 ||
	    !SIGISEMPTY(p->p_siglist)) {
		PROC_LOCK(p);
		mtx_lock(&p->p_sigacts->ps_mtx);
		while ((sig = cursig(td)) != 0)
			postsig(sig);
		mtx_unlock(&p->p_sigacts->ps_mtx);
		PROC_UNLOCK(p);
	}
	/*
	 * We need to check to see if we have to exit or wait due to a
	 * single threading requirement or some other STOP condition.
	 */
	if (flags & TDF_NEEDSUSPCHK) {
		PROC_LOCK(p);
		thread_suspend_check(0);
		PROC_UNLOCK(p);
	}

	if (td->td_pflags & TDP_OLDMASK) {
		td->td_pflags &= ~TDP_OLDMASK;
		kern_sigprocmask(td, SIG_SETMASK, &td->td_oldsigmask, NULL, 0);
	}

	userret(td, framep);
}
Beispiel #11
0
static void
pmclog_loop(void *arg)
{
	int error;
	struct pmc_owner *po;
	struct pmclog_buffer *lb;
	struct proc *p;
	struct ucred *ownercred;
	struct ucred *mycred;
	struct thread *td;
	struct uio auio;
	struct iovec aiov;
	size_t nbytes;

	po = (struct pmc_owner *) arg;
	p = po->po_owner;
	td = curthread;
	mycred = td->td_ucred;

	PROC_LOCK(p);
	ownercred = crhold(p->p_ucred);
	PROC_UNLOCK(p);

	PMCDBG(LOG,INI,1, "po=%p kt=%p", po, po->po_kthread);
	KASSERT(po->po_kthread == curthread->td_proc,
	    ("[pmclog,%d] proc mismatch po=%p po/kt=%p curproc=%p", __LINE__,
		po, po->po_kthread, curthread->td_proc));

	lb = NULL;


	/*
	 * Loop waiting for I/O requests to be added to the owner
	 * struct's queue.  The loop is exited when the log file
	 * is deconfigured.
	 */

	mtx_lock(&pmc_kthread_mtx);

	for (;;) {

		/* check if we've been asked to exit */
		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
			break;

		if (lb == NULL) { /* look for a fresh buffer to write */
			mtx_lock_spin(&po->po_mtx);
			if ((lb = TAILQ_FIRST(&po->po_logbuffers)) == NULL) {
				mtx_unlock_spin(&po->po_mtx);

				/* No more buffers and shutdown required. */
				if (po->po_flags & PMC_PO_SHUTDOWN) {
					mtx_unlock(&pmc_kthread_mtx);
					/*
			 		 * Close the file to get PMCLOG_EOF
					 * error in pmclog(3).
					 */
					fo_close(po->po_file, curthread);
					mtx_lock(&pmc_kthread_mtx);
					break;
				}

				(void) msleep(po, &pmc_kthread_mtx, PWAIT,
				    "pmcloop", 0);
				continue;
			}

			TAILQ_REMOVE(&po->po_logbuffers, lb, plb_next);
			mtx_unlock_spin(&po->po_mtx);
		}

		mtx_unlock(&pmc_kthread_mtx);

		/* process the request */
		PMCDBG(LOG,WRI,2, "po=%p base=%p ptr=%p", po,
		    lb->plb_base, lb->plb_ptr);
		/* change our thread's credentials before issuing the I/O */

		aiov.iov_base = lb->plb_base;
		aiov.iov_len  = nbytes = lb->plb_ptr - lb->plb_base;

		auio.uio_iov    = &aiov;
		auio.uio_iovcnt = 1;
		auio.uio_offset = -1;
		auio.uio_resid  = nbytes;
		auio.uio_rw     = UIO_WRITE;
		auio.uio_segflg = UIO_SYSSPACE;
		auio.uio_td     = td;

		/* switch thread credentials -- see kern_ktrace.c */
		td->td_ucred = ownercred;
		error = fo_write(po->po_file, &auio, ownercred, 0, td);
		td->td_ucred = mycred;

		if (error) {
			/* XXX some errors are recoverable */
			/* send a SIGIO to the owner and exit */
			PROC_LOCK(p);
			kern_psignal(p, SIGIO);
			PROC_UNLOCK(p);

			mtx_lock(&pmc_kthread_mtx);

			po->po_error = error; /* save for flush log */

			PMCDBG(LOG,WRI,2, "po=%p error=%d", po, error);

			break;
		}

		mtx_lock(&pmc_kthread_mtx);

		/* put the used buffer back into the global pool */
		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);

		mtx_lock_spin(&pmc_bufferlist_mtx);
		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
		mtx_unlock_spin(&pmc_bufferlist_mtx);

		lb = NULL;
	}

	wakeup_one(po->po_kthread);
	po->po_kthread = NULL;

	mtx_unlock(&pmc_kthread_mtx);

	/* return the current I/O buffer to the global pool */
	if (lb) {
		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);

		mtx_lock_spin(&pmc_bufferlist_mtx);
		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
		mtx_unlock_spin(&pmc_bufferlist_mtx);
	}

	/*
	 * Exit this thread, signalling the waiter
	 */

	crfree(ownercred);

	kproc_exit(0);
}
Beispiel #12
0
/*
 * Exit: deallocate address space and other resources, change proc state to
 * zombie, and unlink proc from allproc and parent's lists.  Save exit status
 * and rusage for wait().  Check for child processes and orphan them.
 */
void
exit1(struct thread *td, int rv)
{
	struct proc *p, *nq, *q;
	struct vnode *vtmp;
	struct vnode *ttyvp = NULL;
	struct plimit *plim;

	mtx_assert(&Giant, MA_NOTOWNED);

	p = td->td_proc;
	/*
	 * XXX in case we're rebooting we just let init die in order to
	 * work around an unsolved stack overflow seen very late during
	 * shutdown on sparc64 when the gmirror worker process exists.
	 */
	if (p == initproc && rebooting == 0) {
		printf("init died (signal %d, exit %d)\n",
		    WTERMSIG(rv), WEXITSTATUS(rv));
		panic("Going nowhere without my init!");
	}

	/*
	 * MUST abort all other threads before proceeding past here.
	 */
	PROC_LOCK(p);
	while (p->p_flag & P_HADTHREADS) {
		/*
		 * First check if some other thread got here before us.
		 * If so, act appropriately: exit or suspend.
		 */
		thread_suspend_check(0);

		/*
		 * Kill off the other threads. This requires
		 * some co-operation from other parts of the kernel
		 * so it may not be instantaneous.  With this state set
		 * any thread entering the kernel from userspace will
		 * thread_exit() in trap().  Any thread attempting to
		 * sleep will return immediately with EINTR or EWOULDBLOCK
		 * which will hopefully force them to back out to userland
		 * freeing resources as they go.  Any thread attempting
		 * to return to userland will thread_exit() from userret().
		 * thread_exit() will unsuspend us when the last of the
		 * other threads exits.
		 * If there is already a thread singler after resumption,
		 * calling thread_single will fail; in that case, we just
		 * re-check all suspension request, the thread should
		 * either be suspended there or exit.
		 */
		if (!thread_single(SINGLE_EXIT))
			break;

		/*
		 * All other activity in this process is now stopped.
		 * Threading support has been turned off.
		 */
	}
	KASSERT(p->p_numthreads == 1,
	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
	racct_sub(p, RACCT_NTHR, 1);
	/*
	 * Wakeup anyone in procfs' PIOCWAIT.  They should have a hold
	 * on our vmspace, so we should block below until they have
	 * released their reference to us.  Note that if they have
	 * requested S_EXIT stops we will block here until they ack
	 * via PIOCCONT.
	 */
	_STOPEVENT(p, S_EXIT, rv);

	/*
	 * Ignore any pending request to stop due to a stop signal.
	 * Once P_WEXIT is set, future requests will be ignored as
	 * well.
	 */
	p->p_flag &= ~P_STOPPED_SIG;
	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));

	/*
	 * Note that we are exiting and do another wakeup of anyone in
	 * PIOCWAIT in case they aren't listening for S_EXIT stops or
	 * decided to wait again after we told them we are exiting.
	 */
	p->p_flag |= P_WEXIT;
	wakeup(&p->p_stype);

	/*
	 * Wait for any processes that have a hold on our vmspace to
	 * release their reference.
	 */
	while (p->p_lock > 0)
		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);

	p->p_xstat = rv;	/* Let event handler change exit status */
	PROC_UNLOCK(p);
	/* Drain the limit callout while we don't have the proc locked */
	callout_drain(&p->p_limco);

#ifdef AUDIT
	/*
	 * The Sun BSM exit token contains two components: an exit status as
	 * passed to exit(), and a return value to indicate what sort of exit
	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
	 * what the return value is.
	 */
	AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0);
	AUDIT_SYSCALL_EXIT(0, td);
#endif

	/* Are we a task leader? */
	if (p == p->p_leader) {
		mtx_lock(&ppeers_lock);
		q = p->p_peers;
		while (q != NULL) {
			PROC_LOCK(q);
			kern_psignal(q, SIGKILL);
			PROC_UNLOCK(q);
			q = q->p_peers;
		}
		while (p->p_peers != NULL)
			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
		mtx_unlock(&ppeers_lock);
	}

	/*
	 * Check if any loadable modules need anything done at process exit.
	 * E.g. SYSV IPC stuff
	 * XXX what if one of these generates an error?
	 */
	EVENTHANDLER_INVOKE(process_exit, p);

	/*
	 * If parent is waiting for us to exit or exec,
	 * P_PPWAIT is set; we will wakeup the parent below.
	 */
	PROC_LOCK(p);
	rv = p->p_xstat;	/* Event handler could change exit status */
	stopprofclock(p);
	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);

	/*
	 * Stop the real interval timer.  If the handler is currently
	 * executing, prevent it from rearming itself and let it finish.
	 */
	if (timevalisset(&p->p_realtimer.it_value) &&
	    callout_stop(&p->p_itcallout) == 0) {
		timevalclear(&p->p_realtimer.it_interval);
		msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
		KASSERT(!timevalisset(&p->p_realtimer.it_value),
		    ("realtime timer is still armed"));
	}
	PROC_UNLOCK(p);

	/*
	 * Reset any sigio structures pointing to us as a result of
	 * F_SETOWN with our pid.
	 */
	funsetownlst(&p->p_sigiolst);

	/*
	 * If this process has an nlminfo data area (for lockd), release it
	 */
	if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
		(*nlminfo_release_p)(p);

	/*
	 * Close open files and release open-file table.
	 * This may block!
	 */
	fdescfree(td);

	/*
	 * If this thread tickled GEOM, we need to wait for the giggling to
	 * stop before we return to userland
	 */
	if (td->td_pflags & TDP_GEOM)
		g_waitidle();

	/*
	 * Remove ourself from our leader's peer list and wake our leader.
	 */
	mtx_lock(&ppeers_lock);
	if (p->p_leader->p_peers) {
		q = p->p_leader;
		while (q->p_peers != p)
			q = q->p_peers;
		q->p_peers = p->p_peers;
		wakeup(p->p_leader);
	}
	mtx_unlock(&ppeers_lock);

	vmspace_exit(td);

	sx_xlock(&proctree_lock);
	if (SESS_LEADER(p)) {
		struct session *sp = p->p_session;
		struct tty *tp;

		/*
		 * s_ttyp is not zero'd; we use this to indicate that
		 * the session once had a controlling terminal. (for
		 * logging and informational purposes)
		 */
		SESS_LOCK(sp);
		ttyvp = sp->s_ttyvp;
		tp = sp->s_ttyp;
		sp->s_ttyvp = NULL;
		sp->s_ttydp = NULL;
		sp->s_leader = NULL;
		SESS_UNLOCK(sp);

		/*
		 * Signal foreground pgrp and revoke access to
		 * controlling terminal if it has not been revoked
		 * already.
		 *
		 * Because the TTY may have been revoked in the mean
		 * time and could already have a new session associated
		 * with it, make sure we don't send a SIGHUP to a
		 * foreground process group that does not belong to this
		 * session.
		 */

		if (tp != NULL) {
			tty_lock(tp);
			if (tp->t_session == sp)
				tty_signal_pgrp(tp, SIGHUP);
			tty_unlock(tp);
		}

		if (ttyvp != NULL) {
			sx_xunlock(&proctree_lock);
			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
				VOP_REVOKE(ttyvp, REVOKEALL);
				VOP_UNLOCK(ttyvp, 0);
			}
			sx_xlock(&proctree_lock);
		}
	}
	fixjobc(p, p->p_pgrp, 0);
	sx_xunlock(&proctree_lock);
	(void)acct_process(td);

	/* Release the TTY now we've unlocked everything. */
	if (ttyvp != NULL)
		vrele(ttyvp);
#ifdef KTRACE
	ktrprocexit(td);
#endif
	/*
	 * Release reference to text vnode
	 */
	if ((vtmp = p->p_textvp) != NULL) {
		p->p_textvp = NULL;
		vrele(vtmp);
	}

	/*
	 * Release our limits structure.
	 */
	plim = p->p_limit;
	p->p_limit = NULL;
	lim_free(plim);

	tidhash_remove(td);

	/*
	 * Remove proc from allproc queue and pidhash chain.
	 * Place onto zombproc.  Unlink from parent's child list.
	 */
	sx_xlock(&allproc_lock);
	LIST_REMOVE(p, p_list);
	LIST_INSERT_HEAD(&zombproc, p, p_list);
	LIST_REMOVE(p, p_hash);
	sx_xunlock(&allproc_lock);

	/*
	 * Call machine-dependent code to release any
	 * machine-dependent resources other than the address space.
	 * The address space is released by "vmspace_exitfree(p)" in
	 * vm_waitproc().
	 */
	cpu_exit(td);

	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);

	/*
	 * Reparent all of our children to init.
	 */
	sx_xlock(&proctree_lock);
	q = LIST_FIRST(&p->p_children);
	if (q != NULL)		/* only need this if any child is S_ZOMB */
		wakeup(initproc);
	for (; q != NULL; q = nq) {
		nq = LIST_NEXT(q, p_sibling);
		PROC_LOCK(q);
		proc_reparent(q, initproc);
		q->p_sigparent = SIGCHLD;
		/*
		 * Traced processes are killed
		 * since their existence means someone is screwing up.
		 */
		if (q->p_flag & P_TRACED) {
			struct thread *temp;

			/*
			 * Since q was found on our children list, the
			 * proc_reparent() call moved q to the orphan
			 * list due to present P_TRACED flag. Clear
			 * orphan link for q now while q is locked.
			 */
			clear_orphan(q);
			q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
			FOREACH_THREAD_IN_PROC(q, temp)
				temp->td_dbgflags &= ~TDB_SUSPEND;
			kern_psignal(q, SIGKILL);
		}
		PROC_UNLOCK(q);
	}

	/*
	 * Also get rid of our orphans.
	 */
	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
		PROC_LOCK(q);
		clear_orphan(q);
		PROC_UNLOCK(q);
	}

	/* Save exit status. */
	PROC_LOCK(p);
	p->p_xthread = td;

	/* Tell the prison that we are gone. */
	prison_proc_free(p->p_ucred->cr_prison);

#ifdef KDTRACE_HOOKS
	/*
	 * Tell the DTrace fasttrap provider about the exit if it
	 * has declared an interest.
	 */
	if (dtrace_fasttrap_exit)
		dtrace_fasttrap_exit(p);
#endif

	/*
	 * Notify interested parties of our demise.
	 */
	KNOTE_LOCKED(&p->p_klist, NOTE_EXIT);

#ifdef KDTRACE_HOOKS
	int reason = CLD_EXITED;
	if (WCOREDUMP(rv))
		reason = CLD_DUMPED;
	else if (WIFSIGNALED(rv))
		reason = CLD_KILLED;
	SDT_PROBE(proc, kernel, , exit, reason, 0, 0, 0, 0);
#endif

	/*
	 * Just delete all entries in the p_klist. At this point we won't
	 * report any more events, and there are nasty race conditions that
	 * can beat us if we don't.
	 */
	knlist_clear(&p->p_klist, 1);

	/*
	 * If this is a process with a descriptor, we may not need to deliver
	 * a signal to the parent.  proctree_lock is held over
	 * procdesc_exit() to serialize concurrent calls to close() and
	 * exit().
	 */
	if (p->p_procdesc == NULL || procdesc_exit(p)) {
		/*
		 * Notify parent that we're gone.  If parent has the
		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
		 * notify process 1 instead (and hope it will handle this
		 * situation).
		 */
		PROC_LOCK(p->p_pptr);
		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
		if (p->p_pptr->p_sigacts->ps_flag &
		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
			struct proc *pp;

			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
			pp = p->p_pptr;
			PROC_UNLOCK(pp);
			proc_reparent(p, initproc);
			p->p_sigparent = SIGCHLD;
			PROC_LOCK(p->p_pptr);

			/*
			 * Notify parent, so in case he was wait(2)ing or
			 * executing waitpid(2) with our pid, he will
			 * continue.
			 */
			wakeup(pp);
		} else
			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);

		if (p->p_pptr == initproc)
			kern_psignal(p->p_pptr, SIGCHLD);
		else if (p->p_sigparent != 0) {
			if (p->p_sigparent == SIGCHLD)
				childproc_exited(p);
			else	/* LINUX thread */
				kern_psignal(p->p_pptr, p->p_sigparent);
		}
	} else
		PROC_LOCK(p->p_pptr);
	sx_xunlock(&proctree_lock);

	/*
	 * The state PRS_ZOMBIE prevents other proesses from sending
	 * signal to the process, to avoid memory leak, we free memory
	 * for signal queue at the time when the state is set.
	 */
	sigqueue_flush(&p->p_sigqueue);
	sigqueue_flush(&td->td_sigqueue);

	/*
	 * We have to wait until after acquiring all locks before
	 * changing p_state.  We need to avoid all possible context
	 * switches (including ones from blocking on a mutex) while
	 * marked as a zombie.  We also have to set the zombie state
	 * before we release the parent process' proc lock to avoid
	 * a lost wakeup.  So, we first call wakeup, then we grab the
	 * sched lock, update the state, and release the parent process'
	 * proc lock.
	 */
	wakeup(p->p_pptr);
	cv_broadcast(&p->p_pwait);
	sched_exit(p->p_pptr, td);
	PROC_SLOCK(p);
	p->p_state = PRS_ZOMBIE;
	PROC_UNLOCK(p->p_pptr);

	/*
	 * Hopefully no one will try to deliver a signal to the process this
	 * late in the game.
	 */
	knlist_destroy(&p->p_klist);

	/*
	 * Save our children's rusage information in our exit rusage.
	 */
	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);

	/*
	 * Make sure the scheduler takes this thread out of its tables etc.
	 * This will also release this thread's reference to the ucred.
	 * Other thread parts to release include pcb bits and such.
	 */
	thread_exit();
}
Beispiel #13
0
static int
procfs_control(struct thread *td, struct proc *p, int op)
{
	int error = 0;
	struct thread *temp;

	/*
	 * Attach - attaches the target process for debugging
	 * by the calling process.
	 */
	if (op == PROCFS_CTL_ATTACH) {
		sx_xlock(&proctree_lock);
		PROC_LOCK(p);
		if ((error = p_candebug(td, p)) != 0)
			goto out;
		if (p->p_flag & P_TRACED) {
			error = EBUSY;
			goto out;
		}

		/* Can't trace yourself! */
		if (p->p_pid == td->td_proc->p_pid) {
			error = EINVAL;
			goto out;
		}

		/*
		 * Go ahead and set the trace flag.
		 * Save the old parent (it's reset in
		 *   _DETACH, and also in kern_exit.c:wait4()
		 * Reparent the process so that the tracing
		 *   proc gets to see all the action.
		 * Stop the target.
		 */
		p->p_flag |= P_TRACED;
		faultin(p);
		p->p_xstat = 0;		/* XXX ? */
		if (p->p_pptr != td->td_proc) {
			p->p_oppid = p->p_pptr->p_pid;
			proc_reparent(p, td->td_proc);
		}
		kern_psignal(p, SIGSTOP);
out:
		PROC_UNLOCK(p);
		sx_xunlock(&proctree_lock);
		return (error);
	}

	/*
	 * Authorization check: rely on normal debugging protection, except
	 * allow processes to disengage debugging on a process onto which
	 * they have previously attached, but no longer have permission to
	 * debug.
	 */
	PROC_LOCK(p);
	if (op != PROCFS_CTL_DETACH &&
	    ((error = p_candebug(td, p)))) {
		PROC_UNLOCK(p);
		return (error);
	}

	/*
	 * Target process must be stopped, owned by (td) and
	 * be set up for tracing (P_TRACED flag set).
	 * Allow DETACH to take place at any time for sanity.
	 * Allow WAIT any time, of course.
	 */
	switch (op) {
	case PROCFS_CTL_DETACH:
	case PROCFS_CTL_WAIT:
		break;

	default:
		if (!TRACE_WAIT_P(td->td_proc, p)) {
			PROC_UNLOCK(p);
			return (EBUSY);
		}
	}


#ifdef FIX_SSTEP
	/*
	 * do single-step fixup if needed
	 */
	FIX_SSTEP(FIRST_THREAD_IN_PROC(p));
#endif

	/*
	 * Don't deliver any signal by default.
	 * To continue with a signal, just send
	 * the signal name to the ctl file
	 */
	p->p_xstat = 0;

	switch (op) {
	/*
	 * Detach.  Cleans up the target process, reparent it if possible
	 * and set it running once more.
	 */
	case PROCFS_CTL_DETACH:
		/* if not being traced, then this is a painless no-op */
		if ((p->p_flag & P_TRACED) == 0) {
			PROC_UNLOCK(p);
			return (0);
		}

		/* not being traced any more */
		p->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);

		/* remove pending SIGTRAP, else the process will die */
		sigqueue_delete_proc(p, SIGTRAP);
		FOREACH_THREAD_IN_PROC(p, temp)
			temp->td_dbgflags &= ~TDB_SUSPEND;
		PROC_UNLOCK(p);

		/* give process back to original parent */
		sx_xlock(&proctree_lock);
		if (p->p_oppid != p->p_pptr->p_pid) {
			struct proc *pp;

			pp = pfind(p->p_oppid);
			PROC_LOCK(p);
			if (pp) {
				PROC_UNLOCK(pp);
				proc_reparent(p, pp);
			}
		} else
			PROC_LOCK(p);
		p->p_oppid = 0;
		p->p_stops = 0;
		p->p_flag &= ~P_WAITED;	/* XXX ? */
		sx_xunlock(&proctree_lock);

		wakeup(td->td_proc);	/* XXX for CTL_WAIT below ? */

		break;

	/*
	 * Step.  Let the target process execute a single instruction.
	 * What does it mean to single step a threaded program?
	 */
	case PROCFS_CTL_STEP:
		error = proc_sstep(FIRST_THREAD_IN_PROC(p));
		if (error) {
			PROC_UNLOCK(p);
			return (error);
		}
		break;

	/*
	 * Run.  Let the target process continue running until a breakpoint
	 * or some other trap.
	 */
	case PROCFS_CTL_RUN:
		p->p_flag &= ~P_STOPPED_SIG;	/* this uses SIGSTOP */
		break;

	/*
	 * Wait for the target process to stop.
	 * If the target is not being traced then just wait
	 * to enter
	 */
	case PROCFS_CTL_WAIT:
		if (p->p_flag & P_TRACED) {
			while (error == 0 &&
					(P_SHOULDSTOP(p)) &&
					(p->p_flag & P_TRACED) &&
					(p->p_pptr == td->td_proc))
				error = msleep(p, &p->p_mtx,
						PWAIT|PCATCH, "procfsx", 0);
			if (error == 0 && !TRACE_WAIT_P(td->td_proc, p))
				error = EBUSY;
		} else {
			while (error == 0 && P_SHOULDSTOP(p))
				error = msleep(p, &p->p_mtx,
						PWAIT|PCATCH, "procfs", 0);
		}
		PROC_UNLOCK(p);
		return (error);
	default:
		panic("procfs_control");
	}

	PROC_SLOCK(p);
	thread_unsuspend(p); /* If it can run, let it do so. */
	PROC_SUNLOCK(p);
	PROC_UNLOCK(p);
	return (0);
}
Beispiel #14
0
static void
do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
    struct vmspace *vm2, struct file *fp_procdesc)
{
	struct proc *p1, *pptr;
	int trypid;
	struct filedesc *fd;
	struct filedesc_to_leader *fdtol;
	struct sigacts *newsigacts;

	sx_assert(&proctree_lock, SX_SLOCKED);
	sx_assert(&allproc_lock, SX_XLOCKED);

	p1 = td->td_proc;

	trypid = fork_findpid(fr->fr_flags);

	sx_sunlock(&proctree_lock);

	p2->p_state = PRS_NEW;		/* protect against others */
	p2->p_pid = trypid;
	AUDIT_ARG_PID(p2->p_pid);
	LIST_INSERT_HEAD(&allproc, p2, p_list);
	allproc_gen++;
	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
	tidhash_add(td2);
	PROC_LOCK(p2);
	PROC_LOCK(p1);

	sx_xunlock(&allproc_lock);

	bcopy(&p1->p_startcopy, &p2->p_startcopy,
	    __rangeof(struct proc, p_startcopy, p_endcopy));
	pargs_hold(p2->p_args);

	PROC_UNLOCK(p1);

	bzero(&p2->p_startzero,
	    __rangeof(struct proc, p_startzero, p_endzero));

	/* Tell the prison that we exist. */
	prison_proc_hold(p2->p_ucred->cr_prison);

	PROC_UNLOCK(p2);

	/*
	 * Malloc things while we don't hold any locks.
	 */
	if (fr->fr_flags & RFSIGSHARE)
		newsigacts = NULL;
	else
		newsigacts = sigacts_alloc();

	/*
	 * Copy filedesc.
	 */
	if (fr->fr_flags & RFCFDG) {
		fd = fdinit(p1->p_fd, false);
		fdtol = NULL;
	} else if (fr->fr_flags & RFFDG) {
		fd = fdcopy(p1->p_fd);
		fdtol = NULL;
	} else {
		fd = fdshare(p1->p_fd);
		if (p1->p_fdtol == NULL)
			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
			    p1->p_leader);
		if ((fr->fr_flags & RFTHREAD) != 0) {
			/*
			 * Shared file descriptor table, and shared
			 * process leaders.
			 */
			fdtol = p1->p_fdtol;
			FILEDESC_XLOCK(p1->p_fd);
			fdtol->fdl_refcount++;
			FILEDESC_XUNLOCK(p1->p_fd);
		} else {
			/* 
			 * Shared file descriptor table, and different
			 * process leaders.
			 */
			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
			    p1->p_fd, p2);
		}
	}
	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */

	PROC_LOCK(p2);
	PROC_LOCK(p1);

	bzero(&td2->td_startzero,
	    __rangeof(struct thread, td_startzero, td_endzero));

	bcopy(&td->td_startcopy, &td2->td_startcopy,
	    __rangeof(struct thread, td_startcopy, td_endcopy));

	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
	td2->td_sigstk = td->td_sigstk;
	td2->td_flags = TDF_INMEM;
	td2->td_lend_user_pri = PRI_MAX;

#ifdef VIMAGE
	td2->td_vnet = NULL;
	td2->td_vnet_lpush = NULL;
#endif

	/*
	 * Allow the scheduler to initialize the child.
	 */
	thread_lock(td);
	sched_fork(td, td2);
	thread_unlock(td);

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 */
	p2->p_flag = P_INMEM;
	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
	p2->p_swtick = ticks;
	if (p1->p_flag & P_PROFIL)
		startprofclock(p2);

	/*
	 * Whilst the proc lock is held, copy the VM domain data out
	 * using the VM domain method.
	 */
	vm_domain_policy_init(&p2->p_vm_dom_policy);
	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
	    &p1->p_vm_dom_policy);

	if (fr->fr_flags & RFSIGSHARE) {
		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
	} else {
		sigacts_copy(newsigacts, p1->p_sigacts);
		p2->p_sigacts = newsigacts;
	}

	if (fr->fr_flags & RFTSIGZMB)
	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
	else if (fr->fr_flags & RFLINUXTHPN)
	        p2->p_sigparent = SIGUSR1;
	else
	        p2->p_sigparent = SIGCHLD;

	p2->p_textvp = p1->p_textvp;
	p2->p_fd = fd;
	p2->p_fdtol = fdtol;

	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
		p2->p_flag |= P_PROTECTED;
		p2->p_flag2 |= P2_INHERIT_PROTECTED;
	}

	/*
	 * p_limit is copy-on-write.  Bump its refcount.
	 */
	lim_fork(p1, p2);

	thread_cow_get_proc(td2, p2);

	pstats_fork(p1->p_stats, p2->p_stats);

	PROC_UNLOCK(p1);
	PROC_UNLOCK(p2);

	/* Bump references to the text vnode (for procfs). */
	if (p2->p_textvp)
		vrefact(p2->p_textvp);

	/*
	 * Set up linkage for kernel based threading.
	 */
	if ((fr->fr_flags & RFTHREAD) != 0) {
		mtx_lock(&ppeers_lock);
		p2->p_peers = p1->p_peers;
		p1->p_peers = p2;
		p2->p_leader = p1->p_leader;
		mtx_unlock(&ppeers_lock);
		PROC_LOCK(p1->p_leader);
		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
			PROC_UNLOCK(p1->p_leader);
			/*
			 * The task leader is exiting, so process p1 is
			 * going to be killed shortly.  Since p1 obviously
			 * isn't dead yet, we know that the leader is either
			 * sending SIGKILL's to all the processes in this
			 * task or is sleeping waiting for all the peers to
			 * exit.  We let p1 complete the fork, but we need
			 * to go ahead and kill the new process p2 since
			 * the task leader may not get a chance to send
			 * SIGKILL to it.  We leave it on the list so that
			 * the task leader will wait for this new process
			 * to commit suicide.
			 */
			PROC_LOCK(p2);
			kern_psignal(p2, SIGKILL);
			PROC_UNLOCK(p2);
		} else
			PROC_UNLOCK(p1->p_leader);
	} else {
		p2->p_peers = NULL;
		p2->p_leader = p2;
	}

	sx_xlock(&proctree_lock);
	PGRP_LOCK(p1->p_pgrp);
	PROC_LOCK(p2);
	PROC_LOCK(p1);

	/*
	 * Preserve some more flags in subprocess.  P_PROFIL has already
	 * been preserved.
	 */
	p2->p_flag |= p1->p_flag & P_SUGID;
	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
	SESS_LOCK(p1->p_session);
	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
		p2->p_flag |= P_CONTROLT;
	SESS_UNLOCK(p1->p_session);
	if (fr->fr_flags & RFPPWAIT)
		p2->p_flag |= P_PPWAIT;

	p2->p_pgrp = p1->p_pgrp;
	LIST_INSERT_AFTER(p1, p2, p_pglist);
	PGRP_UNLOCK(p1->p_pgrp);
	LIST_INIT(&p2->p_children);
	LIST_INIT(&p2->p_orphans);

	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);

	/*
	 * If PF_FORK is set, the child process inherits the
	 * procfs ioctl flags from its parent.
	 */
	if (p1->p_pfsflags & PF_FORK) {
		p2->p_stops = p1->p_stops;
		p2->p_pfsflags = p1->p_pfsflags;
	}

	/*
	 * This begins the section where we must prevent the parent
	 * from being swapped.
	 */
	_PHOLD(p1);
	PROC_UNLOCK(p1);

	/*
	 * Attach the new process to its parent.
	 *
	 * If RFNOWAIT is set, the newly created process becomes a child
	 * of init.  This effectively disassociates the child from the
	 * parent.
	 */
	if ((fr->fr_flags & RFNOWAIT) != 0) {
		pptr = p1->p_reaper;
		p2->p_reaper = pptr;
	} else {
		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
		    p1 : p1->p_reaper;
		pptr = p1;
	}
	p2->p_pptr = pptr;
	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
	LIST_INIT(&p2->p_reaplist);
	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
	if (p2->p_reaper == p1)
		p2->p_reapsubtree = p2->p_pid;
	sx_xunlock(&proctree_lock);

	/* Inform accounting that we have forked. */
	p2->p_acflag = AFORK;
	PROC_UNLOCK(p2);

#ifdef KTRACE
	ktrprocfork(p1, p2);
#endif

	/*
	 * Finish creating the child process.  It will return via a different
	 * execution path later.  (ie: directly into user mode)
	 */
	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);

	if (fr->fr_flags == (RFFDG | RFPROC)) {
		VM_CNT_INC(v_forks);
		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
		VM_CNT_INC(v_vforks);
		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else if (p1 == &proc0) {
		VM_CNT_INC(v_kthreads);
		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else {
		VM_CNT_INC(v_rforks);
		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	}

	/*
	 * Associate the process descriptor with the process before anything
	 * can happen that might cause that process to need the descriptor.
	 * However, don't do this until after fork(2) can no longer fail.
	 */
	if (fr->fr_flags & RFPROCDESC)
		procdesc_new(p2, fr->fr_pd_flags);

	/*
	 * Both processes are set up, now check if any loadable modules want
	 * to adjust anything.
	 */
	EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags);

	/*
	 * Set the child start time and mark the process as being complete.
	 */
	PROC_LOCK(p2);
	PROC_LOCK(p1);
	microuptime(&p2->p_stats->p_start);
	PROC_SLOCK(p2);
	p2->p_state = PRS_NORMAL;
	PROC_SUNLOCK(p2);

#ifdef KDTRACE_HOOKS
	/*
	 * Tell the DTrace fasttrap provider about the new process so that any
	 * tracepoints inherited from the parent can be removed. We have to do
	 * this only after p_state is PRS_NORMAL since the fasttrap module will
	 * use pfind() later on.
	 */
	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
		dtrace_fasttrap_fork(p1, p2);
#endif
	/*
	 * Hold the process so that it cannot exit after we make it runnable,
	 * but before we wait for the debugger.
	 */
	_PHOLD(p2);
	if (p1->p_ptevents & PTRACE_FORK) {
		/*
		 * Arrange for debugger to receive the fork event.
		 *
		 * We can report PL_FLAG_FORKED regardless of
		 * P_FOLLOWFORK settings, but it does not make a sense
		 * for runaway child.
		 */
		td->td_dbgflags |= TDB_FORK;
		td->td_dbg_forked = p2->p_pid;
		td2->td_dbgflags |= TDB_STOPATFORK;
	}
	if (fr->fr_flags & RFPPWAIT) {
		td->td_pflags |= TDP_RFPPWAIT;
		td->td_rfppwait_p = p2;
		td->td_dbgflags |= TDB_VFORK;
	}
	PROC_UNLOCK(p2);

	/*
	 * Now can be swapped.
	 */
	_PRELE(p1);
	PROC_UNLOCK(p1);

	/*
	 * Tell any interested parties about the new process.
	 */
	knote_fork(p1->p_klist, p2->p_pid);
	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);

	if (fr->fr_flags & RFPROCDESC) {
		procdesc_finit(p2->p_procdesc, fp_procdesc);
		fdrop(fp_procdesc, td);
	}

	if ((fr->fr_flags & RFSTOPPED) == 0) {
		/*
		 * If RFSTOPPED not requested, make child runnable and
		 * add to run queue.
		 */
		thread_lock(td2);
		TD_SET_CAN_RUN(td2);
		sched_add(td2, SRQ_BORING);
		thread_unlock(td2);
		if (fr->fr_pidp != NULL)
			*fr->fr_pidp = p2->p_pid;
	} else {
		*fr->fr_procp = p2;
	}

	PROC_LOCK(p2);
	/*
	 * Wait until debugger is attached to child.
	 */
	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
	_PRELE(p2);
	racct_proc_fork_done(p2);
	PROC_UNLOCK(p2);
}
Beispiel #15
0
/*
 * Process ioctls
 */
int
procfs_ioctl(PFS_IOCTL_ARGS)
{
	struct procfs_status *ps;
#ifdef COMPAT_FREEBSD32
	struct procfs_status32 *ps32;
#endif
	int error, flags, sig;
#ifdef COMPAT_FREEBSD6
	int ival;
#endif

	KASSERT(p != NULL,
	    ("%s() called without a process", __func__));
	PROC_LOCK_ASSERT(p, MA_OWNED);

	error = 0;
	switch (cmd) {
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 1, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 1):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCBIS:
		p->p_stops |= *(unsigned int *)data;
		break;
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 2, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 2):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCBIC:
		p->p_stops &= ~*(unsigned int *)data;
		break;
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 3, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 3):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCSFL:
		flags = *(unsigned int *)data;
		if (flags & PF_ISUGID) {
			/*
			 * XXXRW: Is this specific check required here, as
			 * p_candebug() should implement it, or other checks
			 * are missing.
			 */
			error = priv_check(td, PRIV_DEBUG_SUGID);
			if (error)
				break;
		}
		p->p_pfsflags = flags;
		break;
	case PIOCGFL:
		*(unsigned int *)data = p->p_pfsflags;
		break;
	case PIOCWAIT:
		while (p->p_step == 0 && (p->p_flag & P_WEXIT) == 0) {
			/* sleep until p stops */
			_PHOLD(p);
			error = msleep(&p->p_stype, &p->p_mtx,
			    PWAIT|PCATCH, "pioctl", 0);
			_PRELE(p);
			if (error != 0)
				break;
		}
		/* fall through to PIOCSTATUS */
	case PIOCSTATUS:
		ps = (struct procfs_status *)data;
		ps->state = (p->p_step == 0);
		ps->flags = 0; /* nope */
		ps->events = p->p_stops;
		ps->why = p->p_step ? p->p_stype : 0;
		ps->val = p->p_step ? p->p_xstat : 0;
		break;
#ifdef COMPAT_FREEBSD32
	case PIOCWAIT32:
		while (p->p_step == 0 && (p->p_flag & P_WEXIT) == 0) {
			/* sleep until p stops */
			_PHOLD(p);
			error = msleep(&p->p_stype, &p->p_mtx,
			    PWAIT|PCATCH, "pioctl", 0);
			_PRELE(p);
			if (error != 0)
				break;
		}
		/* fall through to PIOCSTATUS32 */
	case PIOCSTATUS32:
		ps32 = (struct procfs_status32 *)data;
		ps32->state = (p->p_step == 0);
		ps32->flags = 0; /* nope */
		ps32->events = p->p_stops;
		ps32->why = p->p_step ? p->p_stype : 0;
		ps32->val = p->p_step ? p->p_xstat : 0;
		break;
#endif
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 5, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 5):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCCONT:
		if (p->p_step == 0)
			break;
		sig = *(unsigned int *)data;
		if (sig != 0 && !_SIG_VALID(sig)) {
			error = EINVAL;
			break;
		}
#if 0
		p->p_step = 0;
		if (P_SHOULDSTOP(p)) {
			p->p_xstat = sig;
			p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG);
			PROC_SLOCK(p);
			thread_unsuspend(p);
			PROC_SUNLOCK(p);
		} else if (sig)
			kern_psignal(p, sig);
#else
		if (sig)
			kern_psignal(p, sig);
		p->p_step = 0;
		wakeup(&p->p_step);
#endif
		break;
	default:
		error = (ENOTTY);
	}

	return (error);
}
Beispiel #16
0
static void
soaio_process_job(struct socket *so, struct sockbuf *sb, struct kaiocb *job)
{
	struct ucred *td_savedcred;
	struct thread *td;
	struct file *fp;
	struct uio uio;
	struct iovec iov;
	size_t cnt, done;
	long ru_before;
	int error, flags;

	SOCKBUF_UNLOCK(sb);
	aio_switch_vmspace(job);
	td = curthread;
	fp = job->fd_file;
retry:
	td_savedcred = td->td_ucred;
	td->td_ucred = job->cred;

	done = job->aio_done;
	cnt = job->uaiocb.aio_nbytes - done;
	iov.iov_base = (void *)((uintptr_t)job->uaiocb.aio_buf + done);
	iov.iov_len = cnt;
	uio.uio_iov = &iov;
	uio.uio_iovcnt = 1;
	uio.uio_offset = 0;
	uio.uio_resid = cnt;
	uio.uio_segflg = UIO_USERSPACE;
	uio.uio_td = td;
	flags = MSG_NBIO;

	/*
	 * For resource usage accounting, only count a completed request
	 * as a single message to avoid counting multiple calls to
	 * sosend/soreceive on a blocking socket.
	 */

	if (sb == &so->so_rcv) {
		uio.uio_rw = UIO_READ;
		ru_before = td->td_ru.ru_msgrcv;
#ifdef MAC
		error = mac_socket_check_receive(fp->f_cred, so);
		if (error == 0)

#endif
			error = soreceive(so, NULL, &uio, NULL, NULL, &flags);
		if (td->td_ru.ru_msgrcv != ru_before)
			job->msgrcv = 1;
	} else {
		uio.uio_rw = UIO_WRITE;
		ru_before = td->td_ru.ru_msgsnd;
#ifdef MAC
		error = mac_socket_check_send(fp->f_cred, so);
		if (error == 0)
#endif
			error = sosend(so, NULL, &uio, NULL, NULL, flags, td);
		if (td->td_ru.ru_msgsnd != ru_before)
			job->msgsnd = 1;
		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0) {
			PROC_LOCK(job->userproc);
			kern_psignal(job->userproc, SIGPIPE);
			PROC_UNLOCK(job->userproc);
		}
	}

	done += cnt - uio.uio_resid;
	job->aio_done = done;
	td->td_ucred = td_savedcred;

	if (error == EWOULDBLOCK) {
		/*
		 * The request was either partially completed or not
		 * completed at all due to racing with a read() or
		 * write() on the socket.  If the socket is
		 * non-blocking, return with any partial completion.
		 * If the socket is blocking or if no progress has
		 * been made, requeue this request at the head of the
		 * queue to try again when the socket is ready.
		 */
		MPASS(done != job->uaiocb.aio_nbytes);
		SOCKBUF_LOCK(sb);
		if (done == 0 || !(so->so_state & SS_NBIO)) {
			empty_results++;
			if (soaio_ready(so, sb)) {
				empty_retries++;
				SOCKBUF_UNLOCK(sb);
				goto retry;
			}
			
			if (!aio_set_cancel_function(job, soo_aio_cancel)) {
				SOCKBUF_UNLOCK(sb);
				if (done != 0)
					aio_complete(job, done, 0);
				else
					aio_cancel(job);
				SOCKBUF_LOCK(sb);
			} else {
				TAILQ_INSERT_HEAD(&sb->sb_aiojobq, job, list);
			}
			return;
		}
		SOCKBUF_UNLOCK(sb);
	}		
	if (done != 0 && (error == ERESTART || error == EINTR ||
	    error == EWOULDBLOCK))
		error = 0;
	if (error)
		aio_complete(job, -1, error);
	else
		aio_complete(job, done, 0);
	SOCKBUF_LOCK(sb);
}