Beispiel #1
0
int _main(unsigned zero, unsigned type, unsigned tags)
{    
    const char *cmdline = 0;
    int n;
    
    arm11_clock_init();

        /* must do this before board_init() so that we
        ** use the partition table in the tags if it 
        ** already exists 
        */
    if((zero == 0) && (type != 0) && tags_okay(tags)) {
        linux_type = type;
        linux_tags = tags;

        cmdline = tags_get_cmdline((void*) linux_tags);
        
        tags_import_partitions((void*) linux_tags);
        revision = tags_get_revision((void*) linux_tags);
        if(revision == 1) {
            console_set_colors(0x03E0, 0xFFFF);
        }
        if(revision == 2) {
            console_set_colors(0x49B2, 0xFFFF);
        }

            /* we're running as a second-stage, so wait for interrupt */
        boot_from_flash = 0;
    } else {
        linux_type = board_machtype();
        linux_tags = 0;
    }

    board_init();
    keypad_init();
    
    console_init();
    dprintf_set_putc(uart_putc);    

    if(linux_tags == 0) {
            /* generate atags containing partitions 
             * from the bootloader, etc 
             */
        linux_tags = ADDR_TAGS;
        create_atags(linux_tags, 0, 0, 0);
    }
    
    if (cmdline) {
        char *sn = strstr(cmdline, SERIALNO_STR);
        if (sn) {
            char *s = serialno;
            sn += SERIALNO_LEN;
            while (*sn && (*sn != ' ') && ((s - serialno) < 31)) {
                *s++ = *sn++;
            }
            *s++ = 0;
        }
    }

    cprintf("\n\nUSB FastBoot:  V%s\n", get_fastboot_version());
    cprintf("Machine ID:    %d v%d\n", linux_type, revision);
    cprintf("Build Date:    "__DATE__", "__TIME__"\n\n");

    cprintf("Serial Number: %s\n\n", serialno[0] ? serialno : "UNKNOWN");

    flash_dump_ptn();

    flash_init();

        /* scan the keyboard a bit */
    for(n = 0; n < 50; n++) {
        boot_poll();
    }

    if (boot_from_flash) {
        cprintf("\n ** BOOTING LINUX FROM FLASH **\n");
        boot_linux_from_flash();
    }

    usbloader_init();
    
    for(;;) {
        usb_poll();
    }
    return 0;
}
Beispiel #2
0
void target_init(void)
{
	unsigned offset;
	struct flash_info *flash_info;
	unsigned total_num_of_blocks;
	unsigned next_ptr_start_adr = 0;
	unsigned blocks_per_1MB = 8; /* Default value of 2k page size on 256MB flash drive*/
	unsigned char slot;
	unsigned int base_addr;
	int i;

	dprintf(INFO, "target_init()\n");

	/* Display splash screen if enabled */
#if DISPLAY_SPLASH_SCREEN
	display_init();
	dprintf(SPEW, "Diplay initialized\n");
	display_image_on_screen();
#endif

#if (!ENABLE_NANDWRITE)
	keys_init();
	keypad_init();
#endif

	if (target_is_emmc_boot())
	{
		/* Must wait for modem-up before we can intialize MMC.
		 */
		while (readl(MSM_SHARED_BASE + 0x14) != 1);

		/* Trying SDC3 first */
		slot = 3;
		base_addr = mmc_sdc_base[slot - 1];
		if(mmc_boot_main(slot, base_addr))
		{
			/* Trying SDC1 next */
			slot = 1;
			base_addr = mmc_sdc_base[slot - 1];
			if(mmc_boot_main(slot, base_addr))
			{
				dprintf(CRITICAL, "mmc init failed!");
				ASSERT(0);
			}
		}
		return;
	}

	ptable_init(&flash_ptable);
	smem_ptable_init();

	flash_init();
	flash_info = flash_get_info();
	ASSERT(flash_info);

	offset = smem_get_apps_flash_start();
	if (offset == 0xffffffff)
	        while(1);

	total_num_of_blocks = flash_info->num_blocks;
	blocks_per_1MB = (1 << 20) / (flash_info->block_size);

	for (i = 0; i < num_parts; i++) {
		struct ptentry *ptn = &board_part_list[i];
		unsigned len = ((ptn->length) * blocks_per_1MB);

		if(ptn->start != 0)
		        ASSERT(ptn->start == DIFF_START_ADDR);

		ptn->start = next_ptr_start_adr;

		if(ptn->length == VARIABLE_LENGTH)
		{
			unsigned length_for_prt = 0;
			unsigned j;
			for (j = i+1; j < num_parts; j++)
			{
			        struct ptentry *temp_ptn = &board_part_list[j];
			        ASSERT(temp_ptn->length != VARIABLE_LENGTH);
			        length_for_prt += ((temp_ptn->length) * blocks_per_1MB);
			}
		        len = total_num_of_blocks - (offset + ptn->start + length_for_prt);
			ASSERT(len >= 0);
		}
		next_ptr_start_adr = ptn->start + len;
		ptable_add(&flash_ptable, ptn->name, offset + ptn->start,
			   len, ptn->flags, TYPE_APPS_PARTITION, PERM_WRITEABLE);
	}

	smem_add_modem_partitions(&flash_ptable);

	ptable_dump(&flash_ptable);
	flash_set_ptable(&flash_ptable);
}
Beispiel #3
0
void target_init(void)
{
	struct flash_info *flash_info;
	unsigned start_block;
	unsigned blocks_per_plen = 1; //blocks per partition length
	unsigned nand_num_blocks;

	keys_init();
	keypad_init();

	uint16_t keys[] = {KEY_VOLUMEUP, KEY_VOLUMEDOWN, KEY_SOFT1, KEY_SEND, KEY_CLEAR, KEY_BACK, KEY_HOME};
	for(unsigned i=0; i< sizeof(keys)/sizeof(uint16_t); i++)
	if (keys_get_state(keys[i]) != 0)
	{
		display_init();
		display_lk_version();
		//dprintf(ALWAYS,"key %d pressed\n", i);
		break;
	}
	dprintf(INFO, "htcleo_init\n");

	if(get_boot_reason()==2) // booting for offmode charging, start recovery so kernel will charge phone
	{
		boot_into_recovery = 1;
		//dprintf(INFO, "reboot needed... \n");
		//reboot(0);
	}
	dprintf(ALWAYS, "load address %x\n", load_address);

	dprintf(INFO, "flash init\n");
	flash_init();
	flash_info = flash_get_info();
	ASSERT(flash_info);
	ASSERT(flash_info->num_blocks);
	nand_num_blocks = flash_info->num_blocks;

	ptable_init(&flash_ptable);

	if( strcmp(board_part_list[0].name,"PTABLE-BLK")==0 ) blocks_per_plen =1 ;
	else if( strcmp(board_part_list[0].name,"PTABLE-MB")==0 ) blocks_per_plen = (1024*1024)/flash_info->block_size;
	else panic("Invalid partition table\n");

	start_block = HTCLEO_FLASH_OFFSET;
	for (unsigned i = 1; i < num_parts; i++)
	{
		struct ptentry *ptn = &board_part_list[i];
		if( IS_PART_EMPTY(ptn) ) break;
		int len = ((ptn->length) * blocks_per_plen);

		if( ptn->start == 0 ) ptn->start = start_block;
		else if( ptn->start < start_block) panic("Partition %s start %x < %x\n", ptn->name, ptn->start, start_block);

		if(ptn->length == 0)
		{
			unsigned length_for_prt = 0;
			if( i<num_parts && !IS_PART_EMPTY((&board_part_list[i+1])) && board_part_list[i+1].start!=0)
			{
				length_for_prt =  board_part_list[i+1].start - ptn->start;
			}
			else
			{
				for (unsigned j = i+1; j < num_parts; j++)
				{
						struct ptentry *temp_ptn = &board_part_list[j];
						if( IS_PART_EMPTY(temp_ptn) ) break;
						if( temp_ptn->length==0 ) panic("partition %s and %s have variable length\n", ptn->name, temp_ptn->name);
						length_for_prt += ((temp_ptn->length) * blocks_per_plen);
				}
			}
			len = (nand_num_blocks - 1 - 186 - 4) - (ptn->start + length_for_prt);
			ASSERT(len >= 0);
		}

		start_block = ptn->start + len;
		ptable_add(&flash_ptable, ptn->name, ptn->start, len, ptn->flags, TYPE_APPS_PARTITION, PERM_WRITEABLE);
	}

	htcleo_ptable_dump(&flash_ptable);
	flash_set_ptable(&flash_ptable);
}
Beispiel #4
0
void target_init(void)
{
	unsigned offset;
	struct flash_info *flash_info;
	unsigned total_num_of_blocks;
	unsigned next_ptr_start_adr = 0;
	unsigned blocks_per_1MB = 8; /* Default value of 2k page size on 256MB flash drive*/
	int i;

	dprintf(INFO, "target_init()\n");

#if (!ENABLE_NANDWRITE)
	keys_init();
	keypad_init();
#endif

	if (target_is_emmc_boot())
		return;

	ptable_init(&flash_ptable);
	smem_ptable_init();

	flash_init();
	flash_info = flash_get_info();
	ASSERT(flash_info);

	offset = smem_get_apps_flash_start();
	if (offset == 0xffffffff)
	        while(1);

	total_num_of_blocks = flash_info->num_blocks;
	blocks_per_1MB = (1 << 20) / (flash_info->block_size);

	for (i = 0; i < num_parts; i++) {
		struct ptentry *ptn = &board_part_list[i];
		unsigned len = ((ptn->length) * blocks_per_1MB);

		if(ptn->start != 0)
		        ASSERT(ptn->start == DIFF_START_ADDR);

		ptn->start = next_ptr_start_adr;

		if(ptn->length == VARIABLE_LENGTH)
		{
			unsigned length_for_prt = 0;
			unsigned j;
			for (j = i+1; j < num_parts; j++)
			{
			        struct ptentry *temp_ptn = &board_part_list[j];
			        ASSERT(temp_ptn->length != VARIABLE_LENGTH);
			        length_for_prt += ((temp_ptn->length) * blocks_per_1MB);
			}
		        len = (total_num_of_blocks - 1) - (offset + ptn->start + length_for_prt);
			ASSERT(len >= 0);
		}
		next_ptr_start_adr = ptn->start + len;
		ptable_add(&flash_ptable, ptn->name, offset + ptn->start,
			   len, ptn->flags, TYPE_APPS_PARTITION, PERM_WRITEABLE);
	}

	smem_add_modem_partitions(&flash_ptable);

	ptable_dump(&flash_ptable);
	flash_set_ptable(&flash_ptable);
}
Beispiel #5
0
void board_init(int with_irq)
{
	/* Configure the memory interface */
	calypso_mem_cfg(CALYPSO_nCS0, 3, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_nCS1, 3, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_nCS2, 5, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_nCS3, 5, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_CS4, 0, CALYPSO_MEM_8bit, 1);
	calypso_mem_cfg(CALYPSO_nCS6, 0, CALYPSO_MEM_32bit, 1);
	calypso_mem_cfg(CALYPSO_nCS7, 0, CALYPSO_MEM_32bit, 0);

	/* Set VTCXO_DIV2 = 1, configure PLL for 104 MHz and give ARM half of that */
	calypso_clock_set(2, CALYPSO_PLL13_104_MHZ, ARM_MCLK_DIV_2);

	/* Configure the RHEA bridge with some sane default values */
	calypso_rhea_cfg(0, 0, 0xff, 0, 1, 0, 0);

	/* Initialize board-specific GPIO */
	board_io_init();

	/* Enable bootrom mapping to route exception vectors to RAM */
	calypso_bootrom(with_irq);
	calypso_exceptions_install();

	/* Initialize interrupt controller */
	if (with_irq)
		irq_init();

	sercomm_bind_uart(UART_MODEM);
	cons_bind_uart(UART_IRDA);

	/* initialize MODEM UART to be used for sercomm */
	uart_init(UART_MODEM, with_irq);
	uart_baudrate(UART_MODEM, UART_115200);

	/* Initialize IRDA UART to be used for old-school console code.
	 * note: IRDA uart only accessible on C115 and C117 PCB */
	uart_init(UART_IRDA, with_irq);
	uart_baudrate(UART_IRDA, UART_115200);

	/* Initialize hardware timers */
	hwtimer_init();

	/* Initialize DMA controller */
	dma_init();

	/* Initialize real time clock */
	rtc_init();

	/* Initialize system timers (uses hwtimer 2) */
	timer_init();

	/* Initialize LCD driver (uses I2C) and backlight */
	fb_init();

	bl_mode_pwl(1);
	bl_level(50);

	/* Initialize keypad driver */
	keypad_init(keymap, with_irq);

	/* Initialize ABB driver (uses SPI) */
	twl3025_init();

	/* Initialize the charging controller */
	battery_compal_e88_init();

	/* Initialize TIFFS reader (6 sectors of 8 KiB each) */
	tiffs_init(0x001f0000, 0x2000, 6);
}
Beispiel #6
0
void target_init(void)
{
	unsigned offset;
	struct flash_info *flash_info;
	struct ptentry *board_part_list;
	unsigned total_num_of_blocks;
	unsigned next_ptr_start_adr = 0;
	unsigned blocks_per_1MB = 8;	/* Default value of 2k page size on 256MB flash drive */
	int i;

	dprintf(INFO, "target_init()\n");

#if (!ENABLE_NANDWRITE)
	keys_init();
	keypad_init();
#endif

	if (target_is_emmc_boot()) {
		/* Must wait for modem-up before we can intialize MMC.
		 */
		while (readl(MSM_SHARED_BASE + 0x14) != 1) ;

		if (!(dev = mmc_boot_main(MMC_SLOT, MSM_SDC3_BASE))) {
			dprintf(CRITICAL, "mmc init failed!");
			ASSERT(0);
		}
		return;
	}

	ptable_init(&flash_ptable);
	smem_ptable_init();

	flash_init();
	flash_info = flash_get_info();
	ASSERT(flash_info);

	offset = smem_get_apps_flash_start();
	if (offset == 0xffffffff)
		while (1) ;

	total_num_of_blocks = flash_info->num_blocks;
	blocks_per_1MB = (1 << 20) / (flash_info->block_size);

	if (target_is_sku3())
		board_part_list = board_part_list_sku3;
	else
		board_part_list = board_part_list_default;

	for (i = 0; i < num_parts; i++) {
		struct ptentry *ptn = &board_part_list[i];
		unsigned len = ((ptn->length) * blocks_per_1MB);

		if (ptn->start != 0)
			ASSERT(ptn->start == DIFF_START_ADDR);

		ptn->start = next_ptr_start_adr;

		if (ptn->length == VARIABLE_LENGTH) {
			unsigned length_for_prt = 0;
			unsigned j;
			for (j = i + 1; j < num_parts; j++) {
				struct ptentry *temp_ptn = &board_part_list[j];
				ASSERT(temp_ptn->length != VARIABLE_LENGTH);
				length_for_prt +=
				    ((temp_ptn->length) * blocks_per_1MB);
			}
			len =
			    (total_num_of_blocks - 1) - (offset + ptn->start +
							 length_for_prt);
			ASSERT(len >= 0);
		}
		next_ptr_start_adr = ptn->start + len;
		ptable_add(&flash_ptable, ptn->name, offset + ptn->start,
			   len, ptn->flags, TYPE_APPS_PARTITION,
			   PERM_WRITEABLE);
	}

	smem_add_modem_partitions(&flash_ptable);

	ptable_dump(&flash_ptable);
	flash_set_ptable(&flash_ptable);
}
Beispiel #7
0
void target_init(void)
{

	ASSERT(NAND_MTD_PARTITION_NUM == num_parts);

		
	unsigned	offset;	
	unsigned	total_num_of_blocks;
	unsigned	blocks_per_megabytes;
	unsigned	next_ptr_start_adr = 0;
	int		 	ret, i;

	struct 		flash_info *flash_info;
	bool  		start_addr_changed = false;
	
	unsigned int				nMTDReserved_Num=0;			// total number of MTD Reserved Area
	TNFTL_MTDBadBlkInfo			MTDBadBlkInfo[num_parts];

	/////////////////////////////////////////////////////////////////////////////////////////////	
	unsigned int  		nROAreaSize, nPartitionSize = 0;
	unsigned int		nBlockSize, nBlockSize_MB;
	unsigned int		nDevPBpV, nDevBBpZ, nDevBBpV, nRervRate;
	unsigned int		j, nUserDataArea = 0;
	struct ptable 		sPartition_List;
			

	memset( MTDBadBlkInfo, 0, sizeof(TNFTL_MTDBadBlkInfo) * num_parts );
	dprintf(ALWAYS, "target_init()\n");
	
#if _EMMC_BOOT_TCC	
	PARTITION PartitionArr[50]; 	 
	unsigned int nPartitionCnt = 0; 
#endif		

#ifdef TRIFLASH_INCLUDE
		ioctl_diskinfo_t	disk_info;
#endif	


#if (!ENABLE_NANDWRITE)
#ifdef BOARD_TCC930X_STB_DEMO

#else
	keys_init();
	keypad_init();
#endif
#endif

	if (target_is_emmc_boot())
	{
#if _EMMC_BOOT_TCC	
		dprintf(INFO, "target_init() emmc_boot\n");
 
		ptable_init(&flash_ptable);

		//SDMMC init  //MCC
		DISK_Ioctl(DISK_DEVICE_TRIFLASH, DEV_INITIALIZE, NULL );

		//get flash info?   //MCC
		DISK_Ioctl(DISK_DEVICE_TRIFLASH, DEV_GET_DISKINFO, (void *)&disk_info);

		dprintf(INFO, "disk info: head: %d cylinder: %d sector : %d  sector size: %d Total_sectors: %d \n",disk_info.head,disk_info.cylinder,disk_info.sector,disk_info.sector_size,disk_info.Total_sectors);

		//ptabel init			//MCC
//		offset = flash_info->offset;	
		offset = 0;     //fixme

//		total_num_of_blocks = flash_info->num_blocks;
		total_num_of_blocks=10000000;    // fixme
																					 
		memset(&PartitionArr, 0, sizeof(PARTITION) * 50);												 
		nPartitionCnt = GetLocalPartition(0, PartitionArr); 											 
																								   
		for(i=0; i<nPartitionCnt; i++)																	 
			PrintPartitionInfo(&PartitionArr[i], i);		


		/* convert partition size to block unit */  //512byte ?
		blocks_per_megabytes = 1024*1024 / (disk_info.sector_size);		
		ASSERT(blocks_per_megabytes);
		
		for (i = 0; i < num_parts; i++) {
			struct ptentry *ptn = &board_part_list[i];
			if (ptn->length != VARIABLE_LENGTH)
				ptn->length *= blocks_per_megabytes;
		}
		
		for (i = 0; i < num_parts; i++) {
			struct ptentry *ptn = &board_part_list[i];
			unsigned len = ptn->length;
	
			if (ptn->start != DIFF_START_ADDR)
			{			
				if(i==2)
				{
					ptn->start = PartitionArr[1].start;
				}
				else
				{
					ptn->start *= blocks_per_megabytes;
				}
			}	
			
			if (len == VARIABLE_LENGTH) {
				start_addr_changed = true;
				unsigned length_for_prt = ptn->start;
				unsigned j;
				for (j = i+1; j < num_parts; j++)
				{
						struct ptentry *temp_ptn = &board_part_list[j];
						ASSERT(temp_ptn->length != VARIABLE_LENGTH);
						length_for_prt += temp_ptn->length;
				}
				len = total_num_of_blocks - length_for_prt;
				ASSERT(len >= 0);
				next_ptr_start_adr = ptn->start + len;
			}
			if((ptn->start == DIFF_START_ADDR) && (start_addr_changed)) {
				ASSERT(next_ptr_start_adr);
				ptn->start = next_ptr_start_adr;
				next_ptr_start_adr = ptn->start + ptn->length;
			}
			ptable_add(&flash_ptable, ptn->name, offset + ptn->start,
				   len, ptn->flags);
		}
		ptable_dump(&flash_ptable);
		flash_set_ptable(&flash_ptable);		
#endif
		return;
	}

	if (flash_get_ptable() == NULL) {

		ptable_init(&flash_ptable);
		
		flash_set_partnum( num_parts );
		flash_init();
		flash_info = flash_get_info();
		ASSERT(flash_info);

		if ( (flash_info->num_blocks) && (!flash_check_table()) ) 
		{
			

			memcpy( sPartition_List.parts, board_part_list, sizeof( struct ptentry ) * num_parts );

			nBlockSize		=	flash_info->page_size << flash_info->ShiftPpB;			// Set Block Size ( Byte Size ) 
			nROAreaSize		=	flash_info->num_blocks * nBlockSize;					// Set Total ROArea Size ( Byte Size )
			nBlockSize_MB	=	nBlockSize / ( 1 << 20 );								
			
			if( nBlockSize_MB > 1 )					// If Block is over the 1MB. Block must aligned. 
			{										// ex) Block Size 2MB, If Partition Size is 3MB. Partition Block Number must be 2. not 1.
			
				if( nBlockSize_MB == 2 )			// If Block Size 2MB.
				{
					for( i = 0; i < num_parts; i++ )
					{
						if( sPartition_List.parts[i].length & 0x01 )
							sPartition_List.parts[i].length++;
					}
				}
				else if ( nBlockSize_MB == 4 )		// If Block Size 4MB 
				{
					unsigned int nDiff_Val;
						
					for( i = 0; i < num_parts; i++ )
					{
						nDiff_Val = sPartition_List.parts[i].length & 0x03;
						if( nDiff_Val )
							sPartition_List.parts[i].length += ( 4 - nDiff_Val );
					}
				}
				
			}
				
			flash_get_DevPBpV( &nDevPBpV, &nDevBBpZ, &nMTDReserved_Num );

			nMTDReserved_Num 	= 	( nMTDReserved_Num << 20 ) / nBlockSize;

			nDevBBpV			=	( nDevPBpV / 1024 ) * nDevBBpZ;
			nRervRate			=	( nMTDReserved_Num * 100 ) / nDevPBpV;
			nDevBBpV			=	( nDevBBpV * nRervRate ) / 100;
			nRervRate			= 	( 100 / nRervRate );

			nMTDReserved_Num	=	nRervRate + nDevBBpV;								// Setup ROArea Reserved Block 

			if( nMTDReserved_Num & 0x01 )
				nMTDReserved_Num++;

			if( flash_info->ExtInterrupt == TRUE )
				nMTDReserved_Num = nMTDReserved_Num << 1;

			for( i = 0; i < num_parts; i++ )
			{
				if( sPartition_List.parts[i].length != VARIABLE_LENGTH )
				{
					sPartition_List.parts[i].length  = sPartition_List.parts[i].length << 20; 	// Convert Length Unit. MByte -> Byte	
					nPartitionSize					+= sPartition_List.parts[i].length;
				}
				else
				{
					nUserDataArea	=	i;
				}
			}
		
			sPartition_List.parts[nUserDataArea].length	= nROAreaSize - nPartitionSize;			// Calculate UserDataArea Size ( include Rerv Block )
			sPartition_List.parts[nUserDataArea].length	-= (nMTDReserved_Num * nBlockSize ); 	// UserDataArea Size. Reverved Block Removed

			i = 1;
			sPartition_List.parts[0].length		/= nBlockSize;									// Partition 0 Length ( Block Unit )
			MTDBadBlkInfo[0].PartBlkNum			 =	sPartition_List.parts[0].length;			// Set Block Number Each Partition
			
			do
			{
				sPartition_List.parts[i].length /= nBlockSize;									// Partition i Length ( Block Unit )
				sPartition_List.parts[i].start	 = sPartition_List.parts[i-1].start + sPartition_List.parts[i-1].length;

				MTDBadBlkInfo[i].PartBlkNum		 = sPartition_List.parts[i].length;				// Set Block Number Each Partition

				++i;
				
			} while( i < num_parts );

			flash_set_rervnum( nMTDReserved_Num );				// Set Reserved Block Number
			flash_set_badblkinfo( MTDBadBlkInfo );				// Set Bad Block Table Info. About Block Number Each Partition
			

			for( i = 0; i < num_parts; i++ )
			{
				ptable_add(&flash_ptable, sPartition_List.parts[i].name, flash_info->offset + sPartition_List.parts[i].start,
						   				  sPartition_List.parts[i].length, sPartition_List.parts[i].flags);
			}

			ND_TRACE("\n-------------- [ Partition Table ] --------------\n");		          
			for( i = 0; i < num_parts; i++ )
			{
			ND_TRACE(" [Part %2d.%9s] [Start:%4d] [Length:%4d]\n", i, sPartition_List.parts[i].name ,sPartition_List.parts[i].start + flash_info->offset, sPartition_List.parts[i].length );	
			}
			ND_TRACE("-------------------------------------------------\n");
			
			dprintf(INFO, "[NAND        ] [Maker:0x%02x ][Device:0x%02x][Page_size:%d]\n",
				flash_info->vendor, flash_info->device, flash_info->page_size);
			dprintf(INFO, "               [Spare_Size:%d][Block_Size:%d][MTD_Block:%d][Rerv_Block:%d]\n",
				flash_info->spare_size, flash_info->block_size, flash_info->num_blocks - (U32)nMTDReserved_Num, (U32)nMTDReserved_Num);
		
			//ptable_dump(&flash_ptable);
			flash_set_ptable(&flash_ptable);

			ret = flash_set_badblktable();

			if( ret != SUCCESS )
			{
				dprintf(INFO, " !!! Fail Create Bad Block Table. [func:%s] [line:%d] !!! \n", __func__, __LINE__ );
				ASSERT(-1);
			}
			
			flash_set_tablestatus(TRUE);
			
		}
	}

}
Beispiel #8
0
void board_init(void)
{
	/* Configure the memory interface */
	calypso_mem_cfg(CALYPSO_nCS0, 3, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_nCS1, 3, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_nCS2, 5, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_nCS3, 5, CALYPSO_MEM_16bit, 1);
	calypso_mem_cfg(CALYPSO_CS4, 0, CALYPSO_MEM_8bit, 1);
	calypso_mem_cfg(CALYPSO_nCS6, 0, CALYPSO_MEM_32bit, 1);
	calypso_mem_cfg(CALYPSO_nCS7, 0, CALYPSO_MEM_32bit, 0);

	/* Set VTCXO_DIV2 = 1, configure PLL for 104 MHz and give ARM half of that */
	calypso_clock_set(2, CALYPSO_PLL13_104_MHZ, ARM_MCLK_DIV_2);

	/* Configure the RHEA bridge with some sane default values */
	calypso_rhea_cfg(0, 0, 0xff, 0, 1, 0, 0);

	/* Initialize board-specific GPIO */
	board_io_init();

	/* Enable bootrom mapping to route exception vectors to RAM */
	calypso_bootrom(1);
	calypso_exceptions_install();

	/* Initialize interrupt controller */
	irq_init();

	/* initialize MODEM UART to be used for sercomm*/
	uart_init(SERCOMM_UART_NR, 1);
	uart_baudrate(SERCOMM_UART_NR, UART_115200);

	/* Initialize IRDA UART to be used for old-school console code.
	 * note: IRDA uart only accessible on C115 and C117 PCB */
	uart_init(CONS_UART_NR, 1);
	uart_baudrate(CONS_UART_NR, UART_115200);

	/* Initialize hardware timers */
	hwtimer_init();

	/* Initialize DMA controller */
	dma_init();

	/* Initialize real time clock */
	rtc_init();

	/* Initialize system timers (uses hwtimer 2) */
	timer_init();

	/* Initialize LCD driver (uses I2C) and backlight */
	display = &st7558_display;
	display_init();
	bl_mode_pwl(1);
	bl_level(0);

	/* Initialize keypad driver */
	keypad_init(1);

	/* Initialize ABB driver (uses SPI) */
	twl3025_init();

	/* enable LEDB driver of Iota for keypad backlight */
	twl3025_reg_write(AUXLED, 0x02);
}
Beispiel #9
0
void target_init(void)
{
	unsigned offset;
	struct flash_info *flash_info;
	unsigned total_num_of_blocks;
	bool  start_addr_changed = false;
	unsigned next_ptr_start_adr = 0;
	int i;

	dprintf(INFO, "target_init()\n");

#if (!ENABLE_NANDWRITE)
	keys_init();
	keypad_init();
#endif
	ptable_init(&flash_ptable);
	smem_ptable_init();

	flash_init();
	flash_info = flash_get_info();
	ASSERT(flash_info);

	offset = smem_get_apps_flash_start();
	if (offset == 0xffffffff)
	        while(1);

	total_num_of_blocks = flash_info->num_blocks;

	for (i = 0; i < num_parts; i++) {
		struct ptentry *ptn = &board_part_list[i];
		unsigned len = ptn->length;

		if(len == VARIABLE_LENGTH)
		{
		        start_addr_changed = true;
			unsigned length_for_prt = 0;
			unsigned j;
			for (j = i+1; j < num_parts; j++)
			{
			        struct ptentry *temp_ptn = &board_part_list[j];
			        ASSERT(temp_ptn->length != VARIABLE_LENGTH);
			        length_for_prt += temp_ptn->length;
			}
		        len = (total_num_of_blocks - 1) - (offset + ptn->start + length_for_prt);
			ASSERT(len >= 0);
		        next_ptr_start_adr = ptn->start + len;
		}
		if((ptn->start == DIFF_START_ADDR) && (start_addr_changed))
		{
		        ASSERT(next_ptr_start_adr);
			ptn->start = next_ptr_start_adr;
			next_ptr_start_adr = ptn->start + ptn->length;
		}
		ptable_add(&flash_ptable, ptn->name, offset + ptn->start,
			   len, ptn->flags, TYPE_APPS_PARTITION, PERM_WRITEABLE);
	}

	smem_add_modem_partitions(&flash_ptable);

	ptable_dump(&flash_ptable);
	flash_set_ptable(&flash_ptable);
}