Beispiel #1
0
void test_bsp__tree_can_produce_triangles_from_quads(void) {
	klist_t(poly) *quad = kl_init(poly);
	// I'll make a quad by making a triangle with a missing
	// vertex, then pushing the extra vertex after and recomputing
	float3 quad_verts[] = {{-1.0, 1.0, 0.0},
						  {-1.0, -1.0, 0.0},
						  {1.0, -1.0, 0.0},
						  {1.0, 1.0, 0.0}};
	poly_t *poly = poly_make_triangle(quad_verts[0], quad_verts[1], quad_verts[2]);
	cl_assert_(poly != NULL, "Can't make triangle for test");

	poly_push_vertex(poly, quad_verts[3]);

	cl_assert_(poly_vertex_count(poly) == 4, "Failed to add vertex into quad");
	poly_update(poly);

	// Build a tree of the quad
	klist_t(poly) *lpoly = kl_init(poly);
	*kl_pushp(poly, lpoly) = poly;
	bsp_node_t *quad_bsp = bsp_build(NULL, lpoly, 1);
	cl_assert(quad_bsp);

	klist_t(poly) *tris = bsp_to_polygons(quad_bsp, 1, NULL);
	cl_assert_equal_i(tris->size, 2);

	kl_destroy(poly, quad);
	kl_destroy(poly, lpoly);
	if(tris) kl_destroy(poly, tris);
}
Beispiel #2
0
void test_bsp__cube_bsp_can_return_poly_list_of_equal_length(void) {
	// We test that when we get a list of polygons from a BSP tree of a cube
	// and assert that we have the same number of polygons as when we started.
	//
	// A cube is nice here because no faces need to be split, so polygon
	// counts before and after remain the same.
	char cube_path[] = CLAR_FIXTURE_PATH "cube.stl";
	stl_object *stl_cube = stl_read_file(cube_path, 0);
	klist_t(poly) *cube_polys = kl_init(poly);
	cl_assert(stl_cube != NULL);
	cl_assert(stl_cube->facet_count > 0);

	for(int i = 0; i < stl_cube->facet_count; i++) {
		stl_facet *face = &stl_cube->facets[i];
		poly_t *poly = poly_make_triangle(face->vertices[0], face->vertices[1], face->vertices[2]);
		*kl_pushp(poly, cube_polys) = poly;
		cl_assert(poly);
	}

	bsp_node_t *cube_bsp = alloc_bsp_node();
	cl_assert(cube_bsp != NULL);
	cl_assert(bsp_build(cube_bsp, cube_polys, 1) == cube_bsp);
	klist_t(poly) *results = bsp_to_polygons(cube_bsp, 0, NULL);

	cl_assert_equal_i(results->size, stl_cube->facet_count);

	if(stl_cube) stl_free(stl_cube);
	if(results) kl_destroy(poly, results);
	kl_destroy(poly, cube_polys);
}
Beispiel #3
0
void test_bsp__tree_can_clip_tree(void) {
	klist_t(poly) *polys = kl_init(poly);
	float3 tr1[] = {{-0.2, 0.0, 0.0},
					{0.2, 0.0, 0.0},
					{0.0, 0.2, 0.0}};
	float3 tr2[] = {{-0.2, 0.0, 100.0},
					{0.2, 0.0, 100.0},
					{0.0, 0.2, 1000.0}};

	*kl_pushp(poly, polys) = poly_make_triangle(tr1[0], tr1[1], tr1[2]);
	*kl_pushp(poly, polys) = poly_make_triangle(tr2[0], tr2[1], tr2[2]);
	cl_assert_equal_i(polys->size, 2);

	bsp_node_t *tr_bsp = bsp_build(NULL, polys, 1);
	cl_assert(tr_bsp != NULL);

	cl_assert(bsp_clip(tr_bsp, cube_bsp) != NULL);

	klist_t(poly) *clipped = bsp_to_polygons(tr_bsp, 0, NULL);

	cl_assert_equal_i(clipped->size, 1);

	// Make sure we clipped the poly inside the cube, and kept
	// the poly outside
	float3 *v = &kl_val(kl_begin(clipped))->vertices[0];
	cl_assert_((*v)[2] >= 99.0, "Should have kept the vertex outside the cube, not inside.");

	kl_destroy(poly, polys);
}
Beispiel #4
0
// This is called when the headers are received so we can look for a message waiting for
// this person, or leave them connected until one comes, or time them out after 50s maybe?
void receivedHeaders(clientStatus *thisClient) {
	printf ("Connected by >%s<\r\n", thisClient->clientId);

	// Check to see if there's a message queued for this person
	// if so, send it and drop the connection
	khiter_t q = kh_get(queue, queue, (char*)thisClient->clientId);
	if (q != kh_end(queue)) {
		char *queuedMessage;
		kl_shift(messages, kh_value(queue,q), &queuedMessage);
		// Now send the message to the person and close
		snprintf(httpResponse, HTTP_RESPONSE_SIZE, HTTP_TEMPLATE, (int)strlen(queuedMessage), queuedMessage); // Compose the response message
		free(queuedMessage);
		write(thisClient->io.fd, httpResponse, strlen(httpResponse)); // Send it
		closeConnectionSkipHash((ev_io*)thisClient);
		// If that was the last one, free the list and remove it from the hash
		if (!kh_value(queue, q)->head->next) {
			kl_destroy(messages, kh_value(queue, q)); // Free the list
			free((void*)kh_key(queue, q)); // Free the key (the client id)
			kh_del(queue, queue, q); // Remove this client id from the hash
		}
	} else {
		// If there's no message, then add their client id to the hash for later
		int ret;
		khiter_t k = kh_put(clientStatuses, clientStatuses, thisClient->clientId, &ret);
		kh_value(clientStatuses, k) = thisClient;
	}

}
Beispiel #5
0
void test_bsp__tree_can_clone(void) {
	bsp_node_t *cube_clone = clone_bsp_tree(cube_bsp);

	cl_assert(cube_clone != NULL);

	klist_t(poly) *clone_polys = bsp_to_polygons(cube_clone, 0, NULL);
	klist_t(poly) *orig_polys  = bsp_to_polygons(cube_bsp, 0, NULL);

	cl_assert_equal_i(clone_polys->size, orig_polys->size);

	kl_destroy(poly, clone_polys);
	kl_destroy(poly, orig_polys);

	cl_assert(clone_polys != orig_polys);

	free_bsp_tree(cube_clone);
}
Beispiel #6
0
void test_bsp__cube_can_invert(void) {
	float3 point = {0.0, 0.0, 0.5};
	kliter_t(poly) *iter = NULL;

	// Make sure that all polygons consider the point in the center
	// behind them.
	klist_t(poly) *polys = bsp_to_polygons(cube_bsp, 0, NULL);
	for(iter = kl_begin(polys); iter < kl_end(polys); iter = kl_next(iter)) {
		cl_assert_equal_i(poly_classify_vertex(kl_val(iter), point), BACK);
	}
	kl_destroy(poly, polys);

	// INVERT
	cl_assert(bsp_invert(cube_bsp) == cube_bsp);

	// Repeat the test and expect the center to now be FRONT
	polys = bsp_to_polygons(cube_bsp, 0, NULL);
	for(iter = kl_begin(polys); iter < kl_end(polys); iter = kl_next(iter)) {
		cl_assert_equal_i(poly_classify_vertex(kl_val(iter), point), FRONT);
	}
	kl_destroy(poly, polys);
}
Beispiel #7
0
void test_bsp__initialize(void) {
	bsp = alloc_bsp_node();
	poly_t *poly = NULL;
	polygons = kl_init(poly);

	float3 fs[] = {{-0.5, 0.0, 0.0},
				   {0.5, 0.0, 0.0},
				   {0.0, 0.5, 0.0}};
	poly = poly_make_triangle(fs[0], fs[1], fs[2]);
	cl_assert_(poly != NULL, "Out of memory");
	*kl_pushp(poly, polygons) = poly;

	float3 fs2[] = {{-0.5, 0.0, -0.5},
				   {0.5, 0.0, -0.5},
				   {0.0, 0.5, -0.5}};
	poly = poly_make_triangle(fs2[0], fs2[1], fs2[2]);
	cl_assert_(poly != NULL, "Out of memory");
	*kl_pushp(poly, polygons) = poly;

	float3 fs3[] = {{-0.5, 0.0, 0.5},
				   {0.5, 0.0, 0.5},
				   {0.0, 0.5, 0.5}};
	poly = poly_make_triangle(fs3[0], fs3[1], fs3[2]);
	cl_assert_(poly != NULL, "Out of memory");
	*kl_pushp(poly, polygons) = poly;

 	float3 fs4[] = {{0.0, 0.0, -1.0},
					{0.0, 0.0, 1.0},
					{0.0, 1.0, 0.0}};
	poly = poly_make_triangle(fs4[0], fs4[1], fs4[2]);
	cl_assert_(poly != NULL, "Out of memory");
	*kl_pushp(poly, polygons) = poly;

	cl_assert_(bsp != NULL, "Out of memory");
	cl_assert_(bsp_build(bsp, polygons, 1) != NULL, "Failed to build bsp tree");

	stl_object *stl_cube = stl_read_file(cube_stl_file, 1);
	cl_assert(stl_cube != NULL);
	klist_t(poly) *cube_polys = kl_init(poly);
	for(int i = 0; i < stl_cube->facet_count; i++) {
		poly_t *p = poly_make_triangle(stl_cube->facets[i].vertices[0],
									   stl_cube->facets[i].vertices[1],
									   stl_cube->facets[i].vertices[2]);
		cl_assert(p != NULL);
		*kl_pushp(poly, cube_polys) = p;
	}
	cube_bsp = bsp_build(NULL, cube_polys, 1);
	kl_destroy(poly, cube_polys);
	cl_assert(cube_bsp != NULL);
}
Beispiel #8
0
static char *kl_test_update(void) {
    int v1 = 5;
    int v2 = 6;
    int *v;
    kl *klist = kl_create();

    kl_insert(klist, 9, &v1);
    kl_insert(klist, 9, &v2);

    v = kl_find(klist, 9);
    mu_assert("updating list with one element fails", *v == v2);
    kl_destroy(klist);
    return 0;
}
Beispiel #9
0
void loop_close(Loop *loop, bool wait)
{
  uv_mutex_destroy(&loop->mutex);
  uv_close((uv_handle_t *)&loop->children_watcher, NULL);
  uv_close((uv_handle_t *)&loop->children_kill_timer, NULL);
  uv_close((uv_handle_t *)&loop->poll_timer, NULL);
  uv_close((uv_handle_t *)&loop->async, NULL);
  do {
    uv_run(&loop->uv, wait ? UV_RUN_DEFAULT : UV_RUN_NOWAIT);
  } while (uv_loop_close(&loop->uv) && wait);
  multiqueue_free(loop->fast_events);
  multiqueue_free(loop->thread_events);
  multiqueue_free(loop->events);
  kl_destroy(WatcherPtr, loop->children);
}
Beispiel #10
0
int main(int argc, const char* argv[])
{
   if(kl_initialize(KL_FALSE, KL_TRUE, "example/main.lua", argc, argv) == KL_SUCCESS)
   {
      // Send the script a test event
      kl_script_event_t fooevt;
      fooevt.event.id = kl_register_script_event("TestEvent");
      fooevt.event.context.as_ptr = NULL;
      fooevt.event.arg.as_uint32 = 42;
      
      kl_script_event_enqueue(KL_DEFAULT_SCRIPT_CONTEXT, &fooevt);
      
      while(kl_mainloop_iteration() == KL_SUCCESS)
         ;
      
      kl_destroy();
   }
#ifdef WIN32
   printf("Press any key to continue...");
   getchar();
#endif
   
   return 0;
}
Beispiel #11
0
void test_polygon__cleanup(void) {
	if(faces) kl_destroy(poly, faces);
}
Beispiel #12
0
static void trans_tbl_init(bam_hdr_t* out, bam_hdr_t* translate, trans_tbl_t* tbl, bool merge_rg, bool merge_pg)
{
    tbl->n_targets = translate->n_targets;
    tbl->tid_trans = (int*)calloc(translate->n_targets, sizeof(int));
    tbl->rg_trans = kh_init(c2c);
    tbl->pg_trans = kh_init(c2c);
    if (!tbl->tid_trans || !tbl->rg_trans || !tbl->pg_trans) { perror("out of memory"); exit(-1); }

    int32_t out_len = out->l_text;
    while (out_len > 0 && out->text[out_len-1] == '\n') {--out_len; } // strip trailing \n's
    kstring_t out_text = { 0, 0, NULL };
    kputsn(out->text, out_len, &out_text);

    int i, min_tid = -1;
    tbl->lost_coord_sort = false;

    khash_t(c2i) *out_tid = kh_init(c2i);
    for (i = 0; i < out->n_targets; ++i) {
        int ret;
        khiter_t iter = kh_put(c2i, out_tid, out->target_name[i], &ret);
        if (ret <= 0) abort();
        kh_value(out_tid, iter) = i;
    }

    for (i = 0; i < translate->n_targets; ++i) {
        khiter_t iter = kh_get(c2i, out_tid, translate->target_name[i]);

        if (iter == kh_end(out_tid)) { // Append missing entries to out
            tbl->tid_trans[i] = out->n_targets++;
            out->target_name = (char**)realloc(out->target_name, sizeof(char*)*out->n_targets);
            out->target_name[out->n_targets-1] = strdup(translate->target_name[i]);
            out->target_len = (uint32_t*)realloc(out->target_len, sizeof(uint32_t)*out->n_targets);
            out->target_len[out->n_targets-1] = translate->target_len[i];
            // grep line with regex '^@SQ.*\tSN:%s(\t.*$|$)', translate->target_name[i]
            // from translate->text
            regex_t sq_id;
            regmatch_t* matches = (regmatch_t*)calloc(2, sizeof(regmatch_t));
            if (matches == NULL) { perror("out of memory"); exit(-1); }
            kstring_t seq_regex = { 0, 0, NULL };
            ksprintf(&seq_regex, "^@SQ.*\tSN:%s(\t.*$|$)", translate->target_name[i]);
            regcomp(&sq_id, seq_regex.s, REG_EXTENDED|REG_NEWLINE);
            free(seq_regex.s);
            if (regexec(&sq_id, translate->text, 1, matches, 0) != 0)
            {
                fprintf(pysamerr, "[trans_tbl_init] @SQ SN (%s) found in binary header but not text header.\n",translate->target_name[i]);
                exit(1);
            }
            regfree(&sq_id);

            // Produce our output line and append it to out_text
            kputc('\n', &out_text);
            kputsn(translate->text+matches[0].rm_so, matches[0].rm_eo-matches[0].rm_so, &out_text);

            free(matches);
        } else {
            tbl->tid_trans[i] = kh_value(out_tid, iter);
        }
        if (tbl->tid_trans[i] > min_tid) {
            min_tid = tbl->tid_trans[i];
        } else {
            tbl->lost_coord_sort = true;
        }
    }
    kh_destroy(c2i, out_tid);

    // grep @RG id's
    regex_t rg_id;
    regmatch_t* matches = (regmatch_t*)calloc(2, sizeof(regmatch_t));
    if (matches == NULL) { perror("out of memory"); exit(-1); }
    regcomp(&rg_id, "^@RG.*\tID:([!-)+-<>-~][ !-~]*)(\t.*$|$)", REG_EXTENDED|REG_NEWLINE);
    char* text = translate->text;
    klist_t(hdrln) *rg_list = kl_init(hdrln);
    while(1) { //   foreach rg id in translate's header
        if (regexec(&rg_id, text, 2, matches, 0) != 0) break;
        // matches[0] is the whole @RG line; matches[1] is the ID field value
        kstring_t match_id = { 0, 0, NULL };
        kputsn(text+matches[1].rm_so, matches[1].rm_eo-matches[1].rm_so, &match_id);

        // is our matched ID in our output list already
        regex_t rg_id_search;
        kstring_t rg_regex = { 0, 0, NULL };
        ksprintf(&rg_regex, "^@RG.*\tID:%s(\t.*$|$)", match_id.s);
        regcomp(&rg_id_search, rg_regex.s, REG_EXTENDED|REG_NEWLINE|REG_NOSUB);
        free(rg_regex.s);
        kstring_t transformed_id = { 0, 0, NULL };
        bool transformed_equals_match;
        if (regexec(&rg_id_search, out->text, 0, NULL, 0) != 0  || merge_rg) {
            // Not in there so can add it as 1-1 mapping
            kputs(match_id.s, &transformed_id);
            transformed_equals_match = true;
        } else {
            // It's in there so we need to transform it by appending random number to id
            ksprintf(&transformed_id, "%s-%0lX", match_id.s, lrand48());
            transformed_equals_match = false;
        }
        regfree(&rg_id_search);

        // Insert it into our translation map
        int in_there = 0;
        khiter_t iter = kh_put(c2c, tbl->rg_trans, ks_release(&match_id), &in_there);
        char *transformed_id_s = ks_release(&transformed_id);
        kh_value(tbl->rg_trans,iter) = transformed_id_s;
        // take matched line and replace ID with transformed_id
        kstring_t transformed_line = { 0, 0, NULL };
        if (transformed_equals_match) {
            kputsn(text+matches[0].rm_so, matches[0].rm_eo-matches[0].rm_so, &transformed_line);
        } else {
            kputsn(text+matches[0].rm_so, matches[1].rm_so-matches[0].rm_so, &transformed_line);
            kputs(transformed_id_s, &transformed_line);
            kputsn(text+matches[1].rm_eo, matches[0].rm_eo-matches[1].rm_eo, &transformed_line);
        }

        if (!(transformed_equals_match && merge_rg)) {
            // append line to linked list for PG processing
            char** ln = kl_pushp(hdrln, rg_list);
            *ln = ks_release(&transformed_line);  // Give away to linked list
        }
        else free(transformed_line.s);

        text += matches[0].rm_eo; // next!
    }
    regfree(&rg_id);

    // Do same for PG id's
    regex_t pg_id;
    regcomp(&pg_id, "^@PG.*\tID:([!-)+-<>-~][ !-~]*)(\t.*$|$)", REG_EXTENDED|REG_NEWLINE);
    text = translate->text;
    klist_t(hdrln) *pg_list = kl_init(hdrln);
    while(1) { //   foreach pg id in translate's header
        if (regexec(&pg_id, text, 2, matches, 0) != 0) break;
        kstring_t match_id = { 0, 0, NULL };
        kputsn(text+matches[1].rm_so, matches[1].rm_eo-matches[1].rm_so, &match_id);

        // is our matched ID in our output list already
        regex_t pg_id_search;
        kstring_t pg_regex = { 0, 0, NULL };
        ksprintf(&pg_regex, "^@PG.*\tID:%s(\t.*$|$)", match_id.s);
        regcomp(&pg_id_search, pg_regex.s, REG_EXTENDED|REG_NEWLINE|REG_NOSUB);
        free(pg_regex.s);
        kstring_t transformed_id = { 0, 0, NULL };
        bool transformed_equals_match;
        if (regexec(&pg_id_search, out->text, 0, NULL, 0) != 0 || merge_pg) {
            // Not in there so can add it as 1-1 mapping
            kputs(match_id.s, &transformed_id);
            transformed_equals_match = true;
        } else {
            // It's in there so we need to transform it by appending random number to id
            ksprintf(&transformed_id, "%s-%0lX", match_id.s, lrand48());
            transformed_equals_match = false;
        }
        regfree(&pg_id_search);

        // Insert it into our translation map
        int in_there = 0;
        khiter_t iter = kh_put(c2c, tbl->pg_trans, ks_release(&match_id), &in_there);
        char *transformed_id_s = ks_release(&transformed_id);
        kh_value(tbl->pg_trans,iter) = transformed_id_s;
        // take matched line and replace ID with transformed_id
        kstring_t transformed_line = { 0, 0, NULL };
        if (transformed_equals_match) {
            kputsn(text+matches[0].rm_so, matches[0].rm_eo-matches[0].rm_so, &transformed_line);
        } else {
            kputsn(text+matches[0].rm_so, matches[1].rm_so-matches[0].rm_so, &transformed_line);
            kputs(transformed_id_s, &transformed_line);
            kputsn(text+matches[1].rm_eo, matches[0].rm_eo-matches[1].rm_eo, &transformed_line);
        }

        if (!(transformed_equals_match && merge_pg)) {
            // append line to linked list for PP processing
            char** ln = kl_pushp(hdrln, pg_list);
            *ln = ks_release(&transformed_line);  // Give away to linked list
        }
        else free(transformed_line.s);
        text += matches[0].rm_eo; // next!
    }
    regfree(&pg_id);
    // need to translate PP's on the fly in second pass because they may not be in correct order and need complete tbl->pg_trans to do this
    // for each line {
    // with ID replaced with tranformed_id and PP's transformed using the translation table
    // }
    regex_t pg_pp;
    regcomp(&pg_pp, "^@PG.*\tPP:([!-)+-<>-~][!-~]*)(\t.*$|$)", REG_EXTENDED|REG_NEWLINE);
    kliter_t(hdrln) *iter = kl_begin(pg_list);
    while (iter != kl_end(pg_list)) {
        char* data = kl_val(iter);

        kstring_t transformed_line = { 0, 0, NULL };
        // Find PP tag
        if (regexec(&pg_pp, data, 2, matches, 0) == 0) {
            // Lookup in hash table
            kstring_t pp_id = { 0, 0, NULL };
            kputsn(data+matches[1].rm_so, matches[1].rm_eo-matches[1].rm_so, &pp_id);

            khiter_t k = kh_get(c2c, tbl->pg_trans, pp_id.s);
            free(pp_id.s);
            char* transformed_id = kh_value(tbl->pg_trans,k);
            // Replace
            kputsn(data, matches[1].rm_so-matches[0].rm_so, &transformed_line);
            kputs(transformed_id, &transformed_line);
            kputsn(data+matches[1].rm_eo, matches[0].rm_eo-matches[1].rm_eo, &transformed_line);
        } else { kputs(data, &transformed_line); }
        // Produce our output line and append it to out_text
        kputc('\n', &out_text);
        kputsn(transformed_line.s, transformed_line.l, &out_text);

        free(transformed_line.s);
        free(data);
        iter = kl_next(iter);
    }
    regfree(&pg_pp);

    // Need to also translate @RG PG's on the fly too
    regex_t rg_pg;
    regcomp(&rg_pg, "^@RG.*\tPG:([!-)+-<>-~][!-~]*)(\t.*$|$)", REG_EXTENDED|REG_NEWLINE);
    kliter_t(hdrln) *rg_iter = kl_begin(rg_list);
    while (rg_iter != kl_end(rg_list)) {
        char* data = kl_val(rg_iter);

        kstring_t transformed_line = { 0, 0, NULL };
        // Find PG tag
        if (regexec(&rg_pg, data, 2, matches, 0) == 0) {
            // Lookup in hash table
            kstring_t pg_id = { 0, 0, NULL };
            kputsn(data+matches[1].rm_so, matches[1].rm_eo-matches[1].rm_so, &pg_id);

            khiter_t k = kh_get(c2c, tbl->pg_trans, pg_id.s);
            free(pg_id.s);
            char* transformed_id = kh_value(tbl->pg_trans,k);
            // Replace
            kputsn(data, matches[1].rm_so-matches[0].rm_so, &transformed_line);
            kputs(transformed_id, &transformed_line);
            kputsn(data+matches[1].rm_eo, matches[0].rm_eo-matches[1].rm_eo, &transformed_line);
        } else { kputs(data, &transformed_line); }
        // Produce our output line and append it to out_text
        kputc('\n', &out_text);
        kputsn(transformed_line.s, transformed_line.l, &out_text);

        free(transformed_line.s);
        free(data);
        rg_iter = kl_next(rg_iter);
    }

    regfree(&rg_pg);
    kl_destroy(hdrln,pg_list);
    kl_destroy(hdrln,rg_list);
    free(matches);

    // Add trailing \n and write back to header
    free(out->text);
    kputc('\n', &out_text);
    out->l_text = out_text.l;
    out->text = ks_release(&out_text);
}
Beispiel #13
0
void test_teardown(void) {
    sl_destroy(slist);
    kl_destroy(klist);
}
Beispiel #14
0
static char *test_speed_compare(void) {
    struct _timeb start;
    struct _timeb finish;
    unsigned long sl_time_taken;
    unsigned long kl_time_taken;
    int keys[10000];
    int vals[10000];
    int test_keys[100];
    sl *slist = sl_create();
    kl *klist = kl_create();
    int *v;

    _ftime(&start);
    /* generate long list (same for both) */
    for(int i = 0; i < 10000; i++) {
        keys[i] = rand();
        vals[i] = rand();
    }
    for(int i = 0; i < 100; i++) {
        test_keys[i] = rand() % 10000;
    }

    /* fill lists with it (time this) */
    _ftime(&start);
    for(int i = 0; i < 10000; i++) {
        kl_insert(klist, keys[i], &vals[i]);
    }
    _ftime(&finish);
    printf("kl: inserted 10,000 keys in %lums\n", ftime_diff(&start, &finish));

    _ftime(&start);
    for(int i = 0; i < 10000; i++) {
        sl_insert(slist, keys[i], &vals[i]);
    }
    _ftime(&finish);
    printf("sl: inserted 10,000 keys in %lums\n", ftime_diff(&start, &finish));

    /* find random values in it (same for both) n times, average time taken */
    _ftime(&start);
    for(int i = 0; i < 1000; i++) {
        for(int j = 0; j < 100; j++) {
            v = sl_find(slist, keys[test_keys[j]]);
        }
    }
    _ftime(&finish);
    sl_time_taken = ftime_diff(&start, &finish);

    _ftime(&start);
    for(int i = 0; i < 1000; i++) {
        for(int j = 0; j < 100; j++) {
            v = kl_find(klist, keys[test_keys[j]]);
        }
    }
    _ftime(&finish);
    kl_time_taken = ftime_diff(&start, &finish);

    printf("sl: found 100,000 keys in %fs, %.2fkeys/s\n", sl_time_taken/1000.0, 100.0*100000/sl_time_taken);
    printf("kl: found 100,000 keys in %fs, %.2fkeys/s\n\n", kl_time_taken/1000.0, 100.0*100000/kl_time_taken);

    mu_assert("average sl find speed is slower than kl", sl_time_taken < kl_time_taken);

    sl_destroy(slist);
    kl_destroy(klist);

    return 0;
}
Beispiel #15
0
void free_bsp_node(bsp_node_t *node) {
	if(node == NULL) return;
	kl_destroy(poly, node->polygons);
	free_poly(node->divider, 1);
	free(node);
}