Beispiel #1
0
/*
 * kobj_affix:
 *
 *	Set an object's name and perform global relocs.  May only be
 *	called after the module and any requisite modules are loaded.
 */
int
kobj_affix(kobj_t ko, const char *name)
{
	int error;

	KASSERT(ko->ko_ksyms == false);
	KASSERT(ko->ko_loaded == false);

	kobj_setname(ko, name);

	/* Cache addresses of undefined symbols. */
	error = kobj_checksyms(ko, true);

	/* Now do global relocations. */
	if (error == 0)
		error = kobj_relocate(ko, false);

	/*
	 * Now that we know the name, register the symbol table.
	 * Do after global relocations because ksyms will pack
	 * the table.
	 */
	if (error == 0) {
		ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
		    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
		ko->ko_ksyms = true;
	}

	/* Jettison unneeded memory post-link. */
	kobj_jettison(ko);

	/*
	 * Notify MD code that a module has been loaded.
	 *
	 * Most architectures use this opportunity to flush their caches.
	 */
	if (error == 0) {
		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
		    true);
		if (error != 0)
			kobj_error(__func__, __LINE__, ko,
			    "machine dependent init failed %d", error);
		ko->ko_loaded = true;
	}

	/* If there was an error, destroy the whole object. */
	if (error != 0) {
		kobj_unload(ko);
	}

	return error;
}
Beispiel #2
0
/*
 * kobj_affix:
 *
 *	Set an object's name and perform global relocs.  May only be
 *	called after the module and any requisite modules are loaded.
 */
int
kobj_affix(kobj_t ko, const char *name)
{
	int error;

	KASSERT(ko->ko_ksyms == false);
	KASSERT(ko->ko_loaded == false);

	strlcpy(ko->ko_name, name, sizeof(ko->ko_name));

	/* Now do global relocations. */
	error = kobj_relocate(ko, false);

	/*
	 * Now that we know the name, register the symbol table.
	 * Do after global relocations because ksyms will pack it.
	 */
	ksyms_modload(ko->ko_name, ko->ko_symtab, ko->ko_symcnt *
	    sizeof(Elf_Sym), ko->ko_strtab, ko->ko_strtabsz);
	ko->ko_ksyms = true;

	/* Jettison unneeded memory post-link. */
	kobj_jettison(ko);

	/* Notify MD code that a module has been loaded. */
	if (error == 0) {
		error = kobj_machdep(ko, (void *)ko->ko_address, ko->ko_size,
		    true);
		if (error != 0) {
			kobj_error("machine dependent init failed");
		}
		ko->ko_loaded = true;
	}

	/* If there was an error, destroy the whole object. */
	if (error != 0) {
		kobj_unload(ko);
	}

	return error;
}
Beispiel #3
0
/*
 * kobj_load:
 *
 *	Load an ELF object and prepare to link into the running kernel
 *	image.
 */
int
kobj_load(kobj_t ko)
{
	Elf_Ehdr *hdr;
	Elf_Shdr *shdr;
	Elf_Sym *es;
	vaddr_t mapbase;
	size_t mapsize;
	int error;
	int symtabindex;
	int symstrindex;
	int nsym;
	int pb, rl, ra;
	int alignmask;
	int i, j;
	void *addr;

	KASSERT(ko->ko_type != KT_UNSET);
	KASSERT(ko->ko_source != NULL);

	shdr = NULL;
	mapsize = 0;
	error = 0;
	hdr = NULL;

	/*
	 * Read the elf header from the file.
	 */
	error = ko->ko_read(ko, (void **)&hdr, sizeof(*hdr), 0, true);
	if (error != 0) {
		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
		goto out;
	}
	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0) {
		kobj_error(__func__, __LINE__, ko, "not an ELF object");
		error = ENOEXEC;
		goto out;
	}

	if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
	    hdr->e_version != EV_CURRENT) {
		kobj_error(__func__, __LINE__, ko,
		    "unsupported file version %d", hdr->e_ident[EI_VERSION]);
		error = ENOEXEC;
		goto out;
	}
	if (hdr->e_type != ET_REL) {
		kobj_error(__func__, __LINE__, ko, "unsupported file type %d",
		    hdr->e_type);
		error = ENOEXEC;
		goto out;
	}
	switch (hdr->e_machine) {
#if ELFSIZE == 32
	ELF32_MACHDEP_ID_CASES
#elif ELFSIZE == 64
	ELF64_MACHDEP_ID_CASES
#else
#error not defined
#endif
	default:
		kobj_error(__func__, __LINE__, ko, "unsupported machine %d",
		    hdr->e_machine);
		error = ENOEXEC;
		goto out;
	}

	ko->ko_nprogtab = 0;
	ko->ko_shdr = 0;
	ko->ko_nrel = 0;
	ko->ko_nrela = 0;

	/*
	 * Allocate and read in the section header.
	 */
	ko->ko_shdrsz = hdr->e_shnum * hdr->e_shentsize;
	if (ko->ko_shdrsz == 0 || hdr->e_shoff == 0 ||
	    hdr->e_shentsize != sizeof(Elf_Shdr)) {
		kobj_error(__func__, __LINE__, ko, "bad sizes");
		error = ENOEXEC;
		goto out;
	}
	error = ko->ko_read(ko, (void **)&shdr, ko->ko_shdrsz, hdr->e_shoff,
	    true);
	if (error != 0) {
		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
		goto out;
	}
	ko->ko_shdr = shdr;

	/*
	 * Scan the section header for information and table sizing.
	 */
	nsym = 0;
	symtabindex = -1;
	symstrindex = -1;
	for (i = 0; i < hdr->e_shnum; i++) {
		switch (shdr[i].sh_type) {
		case SHT_PROGBITS:
		case SHT_NOBITS:
			ko->ko_nprogtab++;
			break;
		case SHT_SYMTAB:
			nsym++;
			symtabindex = i;
			symstrindex = shdr[i].sh_link;
			break;
		case SHT_REL:
			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
				continue;
			ko->ko_nrel++;
			break;
		case SHT_RELA:
			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
				continue;
			ko->ko_nrela++;
			break;
		case SHT_STRTAB:
			break;
		}
	}
	if (ko->ko_nprogtab == 0) {
		kobj_error(__func__, __LINE__, ko, "file has no contents");
		error = ENOEXEC;
		goto out;
	}
	if (nsym != 1) {
		/* Only allow one symbol table for now */
		kobj_error(__func__, __LINE__, ko,
		    "file has no valid symbol table");
		error = ENOEXEC;
		goto out;
	}
	if (symstrindex < 0 || symstrindex > hdr->e_shnum ||
	    shdr[symstrindex].sh_type != SHT_STRTAB) {
		kobj_error(__func__, __LINE__, ko,
		    "file has invalid symbol strings");
		error = ENOEXEC;
		goto out;
	}

	/*
	 * Allocate space for tracking the load chunks.
	 */
	if (ko->ko_nprogtab != 0) {
		ko->ko_progtab = kmem_zalloc(ko->ko_nprogtab *
		    sizeof(*ko->ko_progtab), KM_SLEEP);
		if (ko->ko_progtab == NULL) {
			error = ENOMEM;
			kobj_error(__func__, __LINE__, ko, "out of memory");
			goto out;
		}
	}
	if (ko->ko_nrel != 0) {
		ko->ko_reltab = kmem_zalloc(ko->ko_nrel *
		    sizeof(*ko->ko_reltab), KM_SLEEP);
		if (ko->ko_reltab == NULL) {
			error = ENOMEM;
			kobj_error(__func__, __LINE__, ko, "out of memory");
			goto out;
		}
	}
	if (ko->ko_nrela != 0) {
		ko->ko_relatab = kmem_zalloc(ko->ko_nrela *
		    sizeof(*ko->ko_relatab), KM_SLEEP);
		if (ko->ko_relatab == NULL) {
			error = ENOMEM;
			kobj_error(__func__, __LINE__, ko, "out of memory");
			goto out;
		}
	}
	if (symtabindex == -1) {
		kobj_error(__func__, __LINE__, ko, "lost symbol table index");
		goto out;
	}

	/*
	 * Allocate space for and load the symbol table.
	 */
	ko->ko_symcnt = shdr[symtabindex].sh_size / sizeof(Elf_Sym);
	if (ko->ko_symcnt == 0) {
		kobj_error(__func__, __LINE__, ko, "no symbol table");
		goto out;
	}
	error = ko->ko_read(ko, (void **)&ko->ko_symtab,
	    ko->ko_symcnt * sizeof(Elf_Sym),
	    shdr[symtabindex].sh_offset, true);
	if (error != 0) {
		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
		goto out;
	}

	/*
	 * Allocate space for and load the symbol strings.
	 */
	ko->ko_strtabsz = shdr[symstrindex].sh_size;
	if (ko->ko_strtabsz == 0) {
		kobj_error(__func__, __LINE__, ko, "no symbol strings");
		goto out;
	}
	error = ko->ko_read(ko, (void *)&ko->ko_strtab, ko->ko_strtabsz,
	    shdr[symstrindex].sh_offset, true);
	if (error != 0) {
		kobj_error(__func__, __LINE__, ko, "read failed %d", error);
		goto out;
	}

	/*
	 * Adjust module symbol namespace, if necessary (e.g. with rump)
	 */
	error = kobj_renamespace(ko->ko_symtab, ko->ko_symcnt,
	    &ko->ko_strtab, &ko->ko_strtabsz);
	if (error != 0) {
		kobj_error(__func__, __LINE__, ko, "renamespace failed %d",
		    error);
		goto out;
	}

	/*
	 * Do we have a string table for the section names?
	 */
	if (hdr->e_shstrndx != 0 && shdr[hdr->e_shstrndx].sh_size != 0 &&
	    shdr[hdr->e_shstrndx].sh_type == SHT_STRTAB) {
		ko->ko_shstrtabsz = shdr[hdr->e_shstrndx].sh_size;
		error = ko->ko_read(ko, (void **)&ko->ko_shstrtab,
		    shdr[hdr->e_shstrndx].sh_size,
		    shdr[hdr->e_shstrndx].sh_offset, true);
		if (error != 0) {
			kobj_error(__func__, __LINE__, ko, "read failed %d",
			    error);
			goto out;
		}
	}

	/*
	 * Size up code/data(progbits) and bss(nobits).
	 */
	alignmask = 0;
	mapbase = 0;
	for (i = 0; i < hdr->e_shnum; i++) {
		switch (shdr[i].sh_type) {
		case SHT_PROGBITS:
		case SHT_NOBITS:
			if (mapbase == 0)
				mapbase = shdr[i].sh_offset;
			alignmask = shdr[i].sh_addralign - 1;
			mapsize += alignmask;
			mapsize &= ~alignmask;
			mapsize += shdr[i].sh_size;
			break;
		}
	}

	/*
	 * We know how much space we need for the text/data/bss/etc.
	 * This stuff needs to be in a single chunk so that profiling etc
	 * can get the bounds and gdb can associate offsets with modules.
	 */
	if (mapsize == 0) {
		kobj_error(__func__, __LINE__, ko, "no text/data/bss");
		goto out;
	}
	if (ko->ko_type == KT_MEMORY) {
		mapbase += (vaddr_t)ko->ko_source;
	} else {
		mapbase = uvm_km_alloc(module_map, round_page(mapsize),
		    0, UVM_KMF_WIRED | UVM_KMF_EXEC);
		if (mapbase == 0) {
			kobj_error(__func__, __LINE__, ko, "out of memory");
			error = ENOMEM;
			goto out;
		}
	}
	ko->ko_address = mapbase;
	ko->ko_size = mapsize;

	/*
	 * Now load code/data(progbits), zero bss(nobits), allocate space
	 * for and load relocs
	 */
	pb = 0;
	rl = 0;
	ra = 0;
	alignmask = 0;
	for (i = 0; i < hdr->e_shnum; i++) {
		switch (shdr[i].sh_type) {
		case SHT_PROGBITS:
		case SHT_NOBITS:
			alignmask = shdr[i].sh_addralign - 1;
			if (ko->ko_type == KT_MEMORY) {
				addr = (void *)(shdr[i].sh_offset +
				    (vaddr_t)ko->ko_source);
				if (((vaddr_t)addr & alignmask) != 0) {
					kobj_error(__func__, __LINE__, ko,
					    "section %d not aligned",
					    i);
					goto out;
				}
			} else {
				mapbase += alignmask;
				mapbase &= ~alignmask;
				addr = (void *)mapbase;
				mapbase += shdr[i].sh_size;
			}
			ko->ko_progtab[pb].addr = addr;
			if (shdr[i].sh_type == SHT_PROGBITS) {
				ko->ko_progtab[pb].name = "<<PROGBITS>>";
				error = ko->ko_read(ko, &addr,
				    shdr[i].sh_size, shdr[i].sh_offset, false);
				if (error != 0) {
					kobj_error(__func__, __LINE__, ko,
					    "read failed %d", error);
					goto out;
				}
			} else if (ko->ko_type == KT_MEMORY &&
			    shdr[i].sh_size != 0) {
			    	kobj_error(__func__, __LINE__, ko,
				    "non-loadable BSS "
				    "section in pre-loaded module");
				error = EINVAL;
			    	goto out;
			} else {
				ko->ko_progtab[pb].name = "<<NOBITS>>";
				memset(addr, 0, shdr[i].sh_size);
			}
			ko->ko_progtab[pb].size = shdr[i].sh_size;
			ko->ko_progtab[pb].sec = i;
			if (ko->ko_shstrtab != NULL && shdr[i].sh_name != 0) {
				ko->ko_progtab[pb].name =
				    ko->ko_shstrtab + shdr[i].sh_name;
			}

			/* Update all symbol values with the offset. */
			for (j = 0; j < ko->ko_symcnt; j++) {
				es = &ko->ko_symtab[j];
				if (es->st_shndx != i) {
					continue;
				}
				es->st_value += (Elf_Addr)addr;
			}
			pb++;
			break;
		case SHT_REL:
			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
				break;
			ko->ko_reltab[rl].size = shdr[i].sh_size;
			ko->ko_reltab[rl].size -=
			    shdr[i].sh_size % sizeof(Elf_Rel);
			if (ko->ko_reltab[rl].size != 0) {
				ko->ko_reltab[rl].nrel =
				    shdr[i].sh_size / sizeof(Elf_Rel);
				ko->ko_reltab[rl].sec = shdr[i].sh_info;
				error = ko->ko_read(ko,
				    (void **)&ko->ko_reltab[rl].rel,
				    ko->ko_reltab[rl].size,
				    shdr[i].sh_offset, true);
				if (error != 0) {
					kobj_error(__func__, __LINE__, ko,
					    "read failed %d", error);
					goto out;
				}
			}
			rl++;
			break;
		case SHT_RELA:
			if (shdr[shdr[i].sh_info].sh_type != SHT_PROGBITS)
				break;
			ko->ko_relatab[ra].size = shdr[i].sh_size;
			ko->ko_relatab[ra].size -=
			    shdr[i].sh_size % sizeof(Elf_Rela);
			if (ko->ko_relatab[ra].size != 0) {
				ko->ko_relatab[ra].nrela =
				    shdr[i].sh_size / sizeof(Elf_Rela);
				ko->ko_relatab[ra].sec = shdr[i].sh_info;
				error = ko->ko_read(ko,
				    (void **)&ko->ko_relatab[ra].rela,
				    shdr[i].sh_size,
				    shdr[i].sh_offset, true);
				if (error != 0) {
					kobj_error(__func__, __LINE__, ko,
					    "read failed %d", error);
					goto out;
				}
			}
			ra++;
			break;
		default:
			break;
		}
	}
	if (pb != ko->ko_nprogtab) {
		panic("%s:%d: %s: lost progbits", __func__, __LINE__,
		   ko->ko_name);
	}
	if (rl != ko->ko_nrel) {
		panic("%s:%d: %s: lost rel", __func__, __LINE__,
		   ko->ko_name);
	}
	if (ra != ko->ko_nrela) {
		panic("%s:%d: %s: lost rela", __func__, __LINE__,
		   ko->ko_name);
	}
	if (ko->ko_type != KT_MEMORY && mapbase != ko->ko_address + mapsize) {
		panic("%s:%d: %s: "
		    "mapbase 0x%lx != address %lx + mapsize %ld (0x%lx)\n",
		    __func__, __LINE__, ko->ko_name,
		    (long)mapbase, (long)ko->ko_address, (long)mapsize,
		    (long)ko->ko_address + mapsize);
	}

	/*
	 * Perform local relocations only.  Relocations relating to global
	 * symbols will be done by kobj_affix().
	 */
	error = kobj_checksyms(ko, false);
	if (error == 0) {
		error = kobj_relocate(ko, true);
	}
 out:
	if (hdr != NULL) {
		kobj_free(ko, hdr, sizeof(*hdr));
	}
	kobj_close(ko);
	if (error != 0) {
		kobj_unload(ko);
	}

	return error;
}