extern "C" magma_int_t
magma_sgeev(magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
            float *a, magma_int_t lda,
            float *WR, float *WI,
            float *vl, magma_int_t ldvl,
            float *vr, magma_int_t ldvr,
            float *work, magma_int_t lwork,
            magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       September 2012

    Purpose   
    =======   
    SGEEV computes for an N-by-N real nonsymmetric matrix A, the   
    eigenvalues and, optionally, the left and/or right eigenvectors.   

    The right eigenvector v(j) of A satisfies   
                     A * v(j) = lambda(j) * v(j)   
    where lambda(j) is its eigenvalue.   
    The left eigenvector u(j) of A satisfies   
                  u(j)**T * A = lambda(j) * u(j)**T   
    where u(j)**T denotes the transpose of u(j).   

    The computed eigenvectors are normalized to have Euclidean norm   
    equal to 1 and largest component real.   

    Arguments   
    =========   
    JOBVL   (input) CHARACTER*1   
            = 'N': left eigenvectors of A are not computed;   
            = 'V': left eigenvectors of are computed.   

    JOBVR   (input) CHARACTER*1   
            = 'N': right eigenvectors of A are not computed;   
            = 'V': right eigenvectors of A are computed.   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the N-by-N matrix A.   
            On exit, A has been overwritten.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order   
            as their eigenvalues.   
            If JOBVL = 'N', VL is not referenced.   
            u(j) = VL(:,j), the j-th column of VL.   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.  LDVL >= 1; if   
            JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order   
            as their eigenvalues.   
            If JOBVR = 'N', VR is not referenced.   
            v(j) = VR(:,j), the j-th column of VR.   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.  LDVR >= 1; if   
            JOBVR = 'V', LDVR >= N.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= (1+nb)*N.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the QR algorithm failed to compute all the   
                  eigenvalues, and no eigenvectors have been computed;   
                  elements and i+1:N of W contain eigenvalues which have   
                  converged.   
    =====================================================================    */

    magma_int_t c__1 = 1;
    magma_int_t c__0 = 0;
    magma_int_t c_n1 = -1;
    
    magma_int_t a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
            i__2, i__3;
    float d__1, d__2;

    magma_int_t i__, k, ihi, ilo;
    float      r__, cs, sn, scl;
    float dum[1], eps;
    magma_int_t ibal;
    float anrm;
    magma_int_t ierr, itau, iwrk, nout;
    magma_int_t scalea;
    float cscale;
    float bignum;
    magma_int_t minwrk;
    magma_int_t wantvl;
    float smlnum;
    magma_int_t lquery, wantvr, select[1];

    magma_int_t nb = 0;
    magmaFloat_ptr dT;
    //magma_timestr_t start, end;

    char side[2] = {0, 0};
    magma_vec_t jobvl_ = jobvl;
    magma_vec_t jobvr_ = jobvr;

    *info = 0;
    lquery = lwork == -1;
    wantvl = lapackf77_lsame(lapack_const(jobvl_), "V");
    wantvr = lapackf77_lsame(lapack_const(jobvr_), "V");
    if (! wantvl && ! lapackf77_lsame(lapack_const(jobvl_), "N")) {
        *info = -1;
    } else if (! wantvr && ! lapackf77_lsame(lapack_const(jobvr_), "N")) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /*  Compute workspace   */
    if (*info == 0) {

        nb = magma_get_sgehrd_nb(n);
        minwrk = (2+nb)*n;
        work[0] = (float) minwrk;
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }

    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    // if eigenvectors are needed
#if defined(VERSION3)
    if (MAGMA_SUCCESS != magma_malloc( &dT, nb*n*sizeof(float) )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
#endif

    // subtract row and col for 1-based indexing
    a_dim1   = lda;
    a_offset = 1 + a_dim1;
    a       -= a_offset;
    vl_dim1   = ldvl;
    vl_offset = 1 + vl_dim1;
    vl       -= vl_offset;
    vr_dim1   = ldvr;
    vr_offset = 1 + vr_dim1;
    vr       -= vr_offset;
    --work;

    /* Get machine constants */
    eps    = lapackf77_slamch("P");
    smlnum = lapackf77_slamch("S");
    bignum = 1. / smlnum;
    lapackf77_slabad(&smlnum, &bignum);
    smlnum = magma_ssqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_slange("M", &n, &n, &a[a_offset], &lda, dum);
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_slascl("G", &c__0, &c__0, &anrm, &cscale, &n, &n, 
                &a[a_offset], &lda, &ierr);
    }

    /* Balance the matrix   
       (Workspace: need N) */
    ibal = 1;
    lapackf77_sgebal("B", &n, &a[a_offset], &lda, &ilo, &ihi, &work[ibal], &ierr);

    /* Reduce to upper Hessenberg form   
       (Workspace: need 3*N, prefer 2*N+N*NB) */
    itau = ibal + n;
    iwrk = itau + n;
    i__1 = lwork - iwrk + 1;

    //start = get_current_time();
#if defined(VERSION1)
    /*
     * Version 1 - LAPACK
     */
    lapackf77_sgehrd(&n, &ilo, &ihi, &a[a_offset], &lda,
                     &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION2)
    /*
     *  Version 2 - LAPACK consistent HRD
     */
    magma_sgehrd2(n, ilo, ihi, &a[a_offset], lda,
                  &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
    /*  
     * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored, 
     */
    magma_sgehrd(n, ilo, ihi, &a[a_offset], lda,
                 &work[itau], &work[iwrk], i__1, dT, 0, &ierr, queue);
#endif
    //end = get_current_time();
    //printf("    Time for sgehrd = %5.2f sec\n", GetTimerValue(start,end)/1000.);

    if (wantvl) {
      /*        Want left eigenvectors   
                Copy Householder vectors to VL */
        side[0] = 'L';
        lapackf77_slacpy(MagmaLowerStr, &n, &n, 
                         &a[a_offset], &lda, &vl[vl_offset], &ldvl);

        /* 
         * Generate orthogonal matrix in VL 
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
         */
        i__1 = lwork - iwrk + 1;

        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_sorghr(&n, &ilo, &ihi, &vl[vl_offset], &ldvl, 
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_sorghr(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], 
                     dT, 0, nb, &ierr, queue);
#endif
        //end = get_current_time();
        //printf("    Time for sorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /*
         * Perform QR iteration, accumulating Schur vectors in VL
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) )
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI, 
                         &vl[vl_offset], &ldvl, &work[iwrk], &i__1, info);

        if (wantvr) {
          /* Want left and right eigenvectors   
             Copy Schur vectors to VR */
            side[0] = 'B';
            lapackf77_slacpy("F", &n, &n, &vl[vl_offset], &ldvl, &vr[vr_offset], &ldvr);
        }

    } else if (wantvr) {
        /*  Want right eigenvectors   
            Copy Householder vectors to VR */
        side[0] = 'R';
        lapackf77_slacpy("L", &n, &n, &a[a_offset], &lda, &vr[vr_offset], &ldvr);

        /*
         * Generate orthogonal matrix in VR
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
         */
        i__1 = lwork - iwrk + 1;
        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_sorghr(&n, &ilo, &ihi, &vr[vr_offset], &ldvr, 
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_sorghr(n, ilo, ihi, &vr[vr_offset], ldvr, 
                     &work[itau], dT, 0, nb, &ierr, queue);
#endif
        //end = get_current_time();
        //printf("    Time for sorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /* 
         * Perform QR iteration, accumulating Schur vectors in VR   
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) ) 
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    } else {
        /*  
         * Compute eigenvalues only   
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) ) 
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_shseqr("E", "N", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    }

    /* If INFO > 0 from SHSEQR, then quit */
    if (*info > 0) {
        fprintf(stderr, "SHSEQR returned with info = %d\n", (int) *info);
        goto L50;
    }

    if (wantvl || wantvr) {
        /*  
         * Compute left and/or right eigenvectors   
         *   (Workspace: need 4*N) 
         */
        lapackf77_strevc(side, "B", select, &n, &a[a_offset], &lda, &vl[vl_offset], &ldvl,
                &vr[vr_offset], &ldvr, &n, &nout, &work[iwrk], &ierr);
    }

    if (wantvl) {
        /*  
         * Undo balancing of left eigenvectors   
         *   (Workspace: need N) 
         */
        lapackf77_sgebak("B", "L", &n, &ilo, &ihi, 
                         &work[ibal], &n, &vl[vl_offset], &ldvl, &ierr);

        /* Normalize left eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if ( WI[i__-1] == 0.) {
                scl = cblas_snrm2(n, &vl[i__ * vl_dim1 + 1], 1);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vl[i__ * vl_dim1 + 1], 1);
            } else if (WI[i__-1] > 0.) {
                d__1 = cblas_snrm2(n, &vl[ i__      * vl_dim1 + 1], 1);
                d__2 = cblas_snrm2(n, &vl[(i__ + 1) * vl_dim1 + 1], 1);
                scl = lapackf77_slapy2(&d__1, &d__2);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vl[ i__      * vl_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vl[(i__ + 1) * vl_dim1 + 1], 1);
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vl[k + i__ * vl_dim1];
                    /* Computing 2nd power */
                    d__2 = vl[k + (i__ + 1) * vl_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_isamax */ 
                k = cblas_isamax(n, &work[iwrk], 1)+1;
                lapackf77_slartg(&vl[k +  i__      * vl_dim1], 
                                 &vl[k + (i__ + 1) * vl_dim1], &cs, &sn, &r__);
                cblas_srot(n, &vl[ i__      * vl_dim1 + 1], 1, 
                           &vl[(i__ + 1) * vl_dim1 + 1], 1, cs, (sn));
                vl[k + (i__ + 1) * vl_dim1] = 0.;
            }
        }
    }

    if (wantvr) {
        /*  
         * Undo balancing of right eigenvectors   
         *   (Workspace: need N) 
         */
        lapackf77_sgebak("B", "R", &n, &ilo, &ihi, &work[ibal], &n, 
                         &vr[vr_offset], &ldvr, &ierr);

        /* Normalize right eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if (WI[i__-1] == 0.) {
                scl = 1. / cblas_snrm2(n, &vr[i__ * vr_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vr[i__ * vr_dim1 + 1], 1);
            } else if (WI[i__-1] > 0.) {
                d__1 = cblas_snrm2(n, &vr[ i__      * vr_dim1 + 1], 1);
                d__2 = cblas_snrm2(n, &vr[(i__ + 1) * vr_dim1 + 1], 1);
                scl = lapackf77_slapy2(&d__1, &d__2);
                scl = 1. / scl;
                cblas_sscal(n, (scl), &vr[ i__      * vr_dim1 + 1], 1);
                cblas_sscal(n, (scl), &vr[(i__ + 1) * vr_dim1 + 1], 1);
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vr[k + i__ * vr_dim1];
                    /* Computing 2nd power */
                    d__2 = vr[k + (i__ + 1) * vr_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_isamax */
                k = cblas_isamax(n, &work[iwrk], 1)+1;
                lapackf77_slartg(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
                        &cs, &sn, &r__);
                cblas_srot(n, &vr[ i__      * vr_dim1 + 1], 1, 
                              &vr[(i__ + 1) * vr_dim1 + 1], 1, cs, (sn));
                vr[k + (i__ + 1) * vr_dim1] = 0.;
            }
        }
    }

    /*  Undo scaling if necessary */
L50:
    if (scalea) {
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                         WR + (*info), &i__2, &ierr);
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                WI + (*info), &i__2, &ierr);
        if (*info > 0) {
            i__1 = ilo - 1;
            lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, 
                    WR, &n, &ierr);
            i__1 = ilo - 1;
            lapackf77_slascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                    WI, &n, &ierr);
        }
    }

#if defined(VERSION3)
    magma_free( dT );
#endif
    return *info;
} /* magma_sgeev */
Beispiel #2
0
/**
    Purpose
    -------
    SSYEVD computes all eigenvalues and, optionally, eigenvectors of
    a real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    w       REAL array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_ssytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_ssyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_ssyevd(magma_vec_t jobz, magma_uplo_t uplo,
             magma_int_t n,
             float *A, magma_int_t lda,
             float *w,
             float *work, magma_int_t lwork,
             magma_int_t *iwork, magma_int_t liwork,
             magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    float smlnum;
    magma_int_t lquery;

    float* dwork;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;

    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    float one_eps = 1. + lapackf77_slamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = A[0];
        if (wantz) {
            A[0] = 1.;
        }
        return *info;
    }
    
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_ssyevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps    = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_slansy("M", uplo_, &n, A, &lda, work );
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_slascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                &lda, info);
    }

    /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
    // ssytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;



    magma_ssytrd(uplo, n, A, lda, w, &work[inde],
                 &work[indtau], &work[indwrk], llwork, &iinfo);


    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call SORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &work[inde], info);
    }
    else {


        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        // TTT Possible bug for n < 128
        magma_sstedx(311, n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );


        magma_sormtr(MagmaLeft, uplo, MagmaNoTrans, n, n, A, lda, &work[indtau],
                     &work[indwrk], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_slacpy("A", &n, &n, &work[indwrk], &n, A, &lda);

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_sscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_ssyevd */
Beispiel #3
0
extern "C" magma_int_t
magma_ssyevdx_2stage(char jobz, char range, char uplo,
                     magma_int_t n,
                     float *a, magma_int_t lda,
                     float vl, float vu, magma_int_t il, magma_int_t iu,
                     magma_int_t *m, float *w,
                     float *work, magma_int_t lwork,
                     magma_int_t *iwork, magma_int_t liwork,
                     magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A. It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    VL      (input) REAL
    VU      (input) REAL
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) REAL array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= LQ2 + N * (NB + 2).
            If JOBZ  = 'V' and N > 1, LWORK >= LQ2 + 1 + 6*N + 2*N**2.
                                      where LQ2 is the size needed to store
                                      the Q2 matrix and is returned by
                                      MAGMA_BULGE_GET_LQ2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    float d_one  = 1.;
    magma_int_t ione = 1;
    magma_int_t izero = 0;

    float d__1;

    float eps;
    float anrm;
    magma_int_t imax;
    float rmin, rmax;
    float sigma;
    magma_int_t lwmin, liwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t iscale;
    float safmin;
    float bignum;
    float smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    float* dwork;

    /* determine the number of threads */
    magma_int_t threads = magma_get_numthreads();
    magma_setlapack_numthreads(threads);

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);

    alleig = lapackf77_lsame( range_, "A" );
    valeig = lapackf77_lsame( range_, "V" );
    indeig = lapackf77_lsame( range_, "I" );

    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_sbulge_nb(n, threads);
    magma_int_t Vblksiz = magma_sbulge_get_Vblksiz(n, nb, threads);

    magma_int_t ldt = Vblksiz;
    magma_int_t ldv = nb + Vblksiz;
    magma_int_t blkcnt = magma_bulge_get_blkcnt(n, nb, Vblksiz);
    magma_int_t lq2 = magma_sbulge_get_lq2(n, threads);

    if (wantz) {
        lwmin = lq2 + 1 + 6 * n + 2 * n * n;
        liwmin = 5 * n + 3;
    } else {
        lwmin = lq2 + n * (nb + 1);
        liwmin = 1;
    }

    work[0] = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -16;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = a[0];
        if (wantz) {
            a[0] = MAGMA_S_ONE;
        }
        return *info;
    }

#ifdef ENABLE_TIMER
    printf("using %d threads\n", threads);
#endif
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    magma_int_t ntiles = n/nb;
    if( ( ntiles < 2 ) || ( n <= 128 ) ){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int ) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_ssyevd(jobz_, uplo_, &n, 
                        a, &lda, w, 
                        work, &lwork, 
                        iwork, &liwork, 
                        info);
        *m = n; 
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_slansy("M", uplo_, &n, a, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_slascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                         &lda, info);
    }

    magma_int_t inde    = 0;
    magma_int_t indT2   = inde + n;
    magma_int_t indTAU2 = indT2  + blkcnt*ldt*Vblksiz;
    magma_int_t indV2   = indTAU2+ blkcnt*Vblksiz;
    magma_int_t indtau1 = indV2  + blkcnt*ldv*Vblksiz;
    magma_int_t indwrk  = indtau1+ n;
    magma_int_t indwk2  = indwrk + n * n;

    magma_int_t llwork = lwork - indwrk;
    magma_int_t llwrk2 = lwork - indwk2;

#ifdef ENABLE_TIMER
    magma_timestr_t start, st1, st2, end;
    start = get_current_time();
#endif

    float *dT1;

    if (MAGMA_SUCCESS != magma_smalloc( &dT1, n*nb)) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_ssytrd_sy2sb(uplo, n, nb, a, lda, &work[indtau1], &work[indwrk], llwork, dT1, threads, info);

#ifdef ENABLE_TIMER
    st1 = get_current_time();
    printf("  time ssytrd_sy2sb = %6.2f\n" , GetTimerValue(start,st1)/1000.);
#endif

    /* copy the input matrix into WORK(INDWRK) with band storage */
    /* PAY ATTENTION THAT work[indwrk] should be able to be of size lda2*n which it should be checked in any future modification of lwork.*/
    magma_int_t lda2 = 2*nb; //nb+1+(nb-1);
    float* A2 = &work[indwrk];
    memset(A2 , 0, n*lda2*sizeof(float));

    for (magma_int_t j = 0; j < n-nb; j++)
    {
        cblas_scopy(nb+1, &a[j*(lda+1)], 1, &A2[j*lda2], 1);
        memset(&a[j*(lda+1)], 0, (nb+1)*sizeof(float));
        a[nb + j*(lda+1)] = d_one;
    }
    for (magma_int_t j = 0; j < nb; j++)
    {
        cblas_scopy(nb-j, &a[(j+n-nb)*(lda+1)], 1, &A2[(j+n-nb)*lda2], 1);
        memset(&a[(j+n-nb)*(lda+1)], 0, (nb-j)*sizeof(float));
    }

#ifdef ENABLE_TIMER
    st2 = get_current_time();
    printf("  time ssytrd_convert = %6.2f\n" , GetTimerValue(st1,st2)/1000.);
#endif

    magma_ssytrd_sb2st(threads, uplo, n, nb, Vblksiz, A2, lda2, w, &work[inde], &work[indV2], ldv, &work[indTAU2], wantz, &work[indT2], ldt);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("  time ssytrd_sy2st = %6.2f\n" , GetTimerValue(st2,end)/1000.);
    printf("  time ssytrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        lapackf77_ssterf(&n, w, &work[inde], info);
        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time sstedc = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif
    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_sstedx(range, n, vl, vu, il, iu, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time sstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif
        float *dZ;
        magma_int_t lddz = n;

        float *da;
        magma_int_t ldda = n;

        magma_smove_eig(range, n, w, &il, &iu, vl, vu, m);

        if (MAGMA_SUCCESS != magma_smalloc( &dZ, *m*lddz)) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        if (MAGMA_SUCCESS != magma_smalloc( &da, n*ldda )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_sbulge_back(threads, uplo, n, nb, *m, Vblksiz, &work[indwrk + n * (il-1)], n, dZ, lddz,
                          &work[indV2], ldv, &work[indTAU2], &work[indT2], ldt, info);

#ifdef ENABLE_TIMER
        st1 = get_current_time();

        printf("  time sbulge_back = %6.2f\n" , GetTimerValue(start,st1)/1000.);
#endif

        magma_ssetmatrix( n, n, a, lda, da, ldda );

        magma_sormqr_gpu_2stages(MagmaLeft, MagmaNoTrans, n-nb, *m, n-nb, da+nb, ldda,
                                 dZ+nb, n, dT1, nb, info);

        magma_sgetmatrix( n, *m, dZ, lddz, a, lda );
        magma_free(dT1);
        magma_free(dZ);
        magma_free(da);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time sormqr + copy = %6.2f\n", GetTimerValue(st1,end)/1000.);

        printf("  time eigenvectors backtransf. = %6.2f\n" , GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_sscal(&imax, &d__1, w, &ione);
    }

    work[0] = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* magma_zheevdx_2stage */
Beispiel #4
0
/**
    Purpose
    -------
    SSTEDX computes some eigenvalues and, optionally, eigenvectors of a
    symmetric tridiagonal matrix using the divide and conquer method.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.  See SLAEX3 for details.

    Arguments
    ---------
    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    n       INTEGER
            The dimension of the symmetric tridiagonal matrix.  N >= 0.

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[in,out]
    d       REAL array, dimension (N)
            On entry, the diagonal elements of the tridiagonal matrix.
            On exit, if INFO = 0, the eigenvalues in ascending order.

    @param[in,out]
    e       REAL array, dimension (N-1)
            On entry, the subdiagonal elements of the tridiagonal matrix.
            On exit, E has been destroyed.

    @param[in,out]
    Z       REAL array, dimension (LDZ,N)
            On exit, if INFO = 0, Z contains the orthonormal eigenvectors
            of the symmetric tridiagonal matrix.

    @param[in]
    ldz     INTEGER
            The leading dimension of the array Z. LDZ >= max(1,N).

    @param[out]
    work    (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.
            If N > 1 then LWORK >= ( 1 + 4*N + N**2 ).
            Note that  if N is less than or
            equal to the minimum divide size, usually 25, then LWORK need
            only be max(1,2*(N-1)).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            LIWORK >= ( 3 + 5*N ).
            Note that if N is less than or
            equal to the minimum divide size, usually 25, then LIWORK
            need only be 1.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal size of the IWORK array,
            returns this value as the first entry of the IWORK array, and
            no error message related to LIWORK is issued by XERBLA.

    @param
    dwork  (workspace) REAL array, dimension (3*N*N/2+3*N)

    @param[out]
    info    INTEGER
      -     = 0:  successful exit.
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  The algorithm failed to compute an eigenvalue while
                  working on the submatrix lying in rows and columns
                  INFO/(N+1) through mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sstedx(
    magma_range_t range, magma_int_t n, float vl, float vu,
    magma_int_t il, magma_int_t iu, float *d, float *e,
    float *Z, magma_int_t ldz,
    float *work, magma_int_t lwork,
    magma_int_t *iwork, magma_int_t liwork,
    magmaFloat_ptr dwork,
    magma_int_t *info)
{
#define Z(i_,j_) (Z + (i_) + (j_)*ldz)

    float d_zero = 0.;
    float d_one  = 1.;
    magma_int_t izero = 0;
    magma_int_t ione = 1;


    magma_int_t alleig, indeig, valeig, lquery;
    magma_int_t i, j, k, m;
    magma_int_t liwmin, lwmin;
    magma_int_t start, end, smlsiz;
    float eps, orgnrm, p, tiny;

    // Test the input parameters.

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;

    if (! (alleig || valeig || indeig)) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldz < max(1,n)) {
        *info = -10;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -4;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -5;
            } else if (iu < min(n,il) || iu > n) {
                *info = -6;
            }
        }
    }

    if (*info == 0) {
        // Compute the workspace requirements

        smlsiz = magma_get_smlsize_divideconquer();
        if ( n <= 1 ) {
            lwmin = 1;
            liwmin = 1;
        } else {
            lwmin = 1 + 4*n + n*n;
            liwmin = 3 + 5*n;
        }

        work[0] = magma_smake_lwork( lwmin );
        iwork[0] = liwmin;

        if (lwork < lwmin && ! lquery) {
            *info = -12;
        } else if (liwork < liwmin && ! lquery) {
            *info = -14;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }

    // Quick return if possible
    if (n == 0)
        return *info;
    if (n == 1) {
        *Z = 1.;
        return *info;
    }

    /* determine the number of threads *///not needed here to be checked Azzam
    //magma_int_t threads = magma_get_parallel_numthreads();
    //magma_int_t mklth   = magma_get_lapack_numthreads();
    //magma_set_lapack_numthreads(mklth);

#ifdef ENABLE_DEBUG
    //printf("  D&C is using %d threads\n", threads);
#endif

    // If N is smaller than the minimum divide size (SMLSIZ+1), then
    // solve the problem with another solver.

    if (n < smlsiz) {
        lapackf77_ssteqr("I", &n, d, e, Z, &ldz, work, info);
    } else {
        lapackf77_slaset("F", &n, &n, &d_zero, &d_one, Z, &ldz);

        //Scale.
        orgnrm = lapackf77_slanst("M", &n, d, e);

        if (orgnrm == 0) {
            work[0]  = magma_smake_lwork( lwmin );
            iwork[0] = liwmin;
            return *info;
        }

        eps = lapackf77_slamch( "Epsilon" );

        if (alleig) {
            start = 0;
            while ( start < n ) {
                // Let FINISH be the position of the next subdiagonal entry
                // such that E( END ) <= TINY or FINISH = N if no such
                // subdiagonal exists.  The matrix identified by the elements
                // between START and END constitutes an independent
                // sub-problem.

                for (end = start+1; end < n; ++end) {
                    tiny = eps * sqrt( MAGMA_S_ABS(d[end-1]*d[end]));
                    if (MAGMA_S_ABS(e[end-1]) <= tiny)
                        break;
                }

                // (Sub) Problem determined.  Compute its size and solve it.

                m = end - start;
                if (m == 1) {
                    start = end;
                    continue;
                }
                if (m > smlsiz) {
                    // Scale
                    orgnrm = lapackf77_slanst("M", &m, &d[start], &e[start]);
                    lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &m, &ione, &d[start], &m, info);
                    magma_int_t mm = m-1;
                    lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &mm, &ione, &e[start], &mm, info);

                    magma_slaex0( m, &d[start], &e[start], Z(start, start), ldz, work, iwork, dwork, MagmaRangeAll, vl, vu, il, iu, info);

                    if ( *info != 0) {
                        return *info;
                    }

                    // Scale Back
                    lapackf77_slascl("G", &izero, &izero, &d_one, &orgnrm, &m, &ione, &d[start], &m, info);
                } else {
                    lapackf77_ssteqr( "I", &m, &d[start], &e[start], Z(start, start), &ldz, work, info);
                    if (*info != 0) {
                        *info = (start+1) *(n+1) + end;
                    }
                }

                start = end;
            }


            // If the problem split any number of times, then the eigenvalues
            // will not be properly ordered.  Here we permute the eigenvalues
            // (and the associated eigenvectors) into ascending order.

            if (m < n) {
                // Use Selection Sort to minimize swaps of eigenvectors
                for (i = 1; i < n; ++i) {
                    k = i-1;
                    p = d[i-1];
                    for (j = i; j < n; ++j) {
                        if (d[j] < p) {
                            k = j;
                            p = d[j];
                        }
                    }
                    if (k != i-1) {
                        d[k] = d[i-1];
                        d[i-1] = p;
                        blasf77_sswap(&n, Z(0,i-1), &ione, Z(0,k), &ione);
                    }
                }
            }
        } else {
            // Scale
            lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &n, &ione, d, &n, info);
            magma_int_t nm = n-1;
            lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &nm, &ione, e, &nm, info);

            magma_slaex0( n, d, e, Z, ldz, work, iwork, dwork, range, vl, vu, il, iu, info);

            if ( *info != 0) {
                return *info;
            }

            // Scale Back
            lapackf77_slascl("G", &izero, &izero, &d_one, &orgnrm, &n, &ione, d, &n, info);
        }
    }

    work[0]  = magma_smake_lwork( lwmin );
    iwork[0] = liwmin;

    return *info;
} /* magma_sstedx */
Beispiel #5
0
/**
    Purpose
    -------
    SGEEV computes for an N-by-N real nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**T * A = lambda(j) * u(j)**T
    where u(j)**T denotes the transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    ---------
    @param[in]
    jobvl   magma_vec_t
      -     = MagmaNoVec: left eigenvectors of A are not computed;
      -     = MagmaVec:   left eigenvectors of are computed.

    @param[in]
    jobvr   magma_vec_t
      -     = MagmaNoVec: right eigenvectors of A are not computed;
      -     = MagmaVec:   right eigenvectors of A are computed.

    @param[in]
    n       INTEGER
            The order of the matrix A. N >= 0.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    wr      REAL array, dimension (N)
    @param[out]
    wi      REAL array, dimension (N)
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    @param[out]
    VL      REAL array, dimension (LDVL,N)
            If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = MagmaNoVec, VL is not referenced.
            u(j) = VL(:,j), the j-th column of VL.

    @param[in]
    ldvl    INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = MagmaVec, LDVL >= N.

    @param[out]
    VR      REAL array, dimension (LDVR,N)
            If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = MagmaNoVec, VR is not referenced.
            v(j) = VR(:,j), the j-th column of VR.

    @param[in]
    ldvr    INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = MagmaVec, LDVR >= N.

    @param[out]
    work    (workspace) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= (2 +   nb + nb*ngpu)*N.
            For optimal performance,          LWORK >= (2 + 2*nb + nb*ngpu)*N.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements and i+1:N of W contain eigenvalues which have
                  converged.

    @ingroup magma_sgeev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_sgeev_m(
    magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
    float *A, magma_int_t lda,
    #ifdef COMPLEX
    float *w,
    #else
    float *wr, float *wi,
    #endif
    float *VL, magma_int_t ldvl,
    float *VR, magma_int_t ldvr,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork,
    #endif
    magma_int_t *info )
{
    #define VL(i,j)  (VL + (i) + (j)*ldvl)
    #define VR(i,j)  (VR + (i) + (j)*ldvr)
    
    const magma_int_t ione  = 1;
    const magma_int_t izero = 0;
    
    float d__1, d__2;
    float r, cs, sn, scl;
    float dum[1], eps;
    float anrm, cscale, bignum, smlnum;
    magma_int_t i, k, ilo, ihi;
    magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb;
    magma_int_t scalea, minwrk, optwrk, lquery, wantvl, wantvr, select[1];
    
    magma_side_t side = MagmaRight;
    magma_int_t ngpu = magma_num_gpus();
    
    magma_timer_t time_total=0, time_gehrd=0, time_unghr=0, time_hseqr=0, time_trevc=0, time_sum=0;
    magma_flops_t flop_total=0, flop_gehrd=0, flop_unghr=0, flop_hseqr=0, flop_trevc=0, flop_sum=0;
    timer_start( time_total );
    flops_start( flop_total );
    
    *info = 0;
    lquery = (lwork == -1);
    wantvl = (jobvl == MagmaVec);
    wantvr = (jobvr == MagmaVec);
    if (! wantvl && jobvl != MagmaNoVec) {
        *info = -1;
    } else if (! wantvr && jobvr != MagmaNoVec) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /* Compute workspace */
    nb = magma_get_sgehrd_nb( n );
    if (*info == 0) {
        minwrk = (2 +   nb + nb*ngpu)*n;
        optwrk = (2 + 2*nb + nb*ngpu)*n;
        work[0] = magma_smake_lwork( optwrk );
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    #if defined(Version3)
    float *dT;
    if (MAGMA_SUCCESS != magma_smalloc( &dT, nb*n )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    #endif
    #if defined(Version5)
    float *T;
    if (MAGMA_SUCCESS != magma_smalloc_cpu( &T, nb*n )) {
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    #endif

    /* Get machine constants */
    eps    = lapackf77_slamch( "P" );
    smlnum = lapackf77_slamch( "S" );
    bignum = 1. / smlnum;
    lapackf77_slabad( &smlnum, &bignum );
    smlnum = magma_ssqrt( smlnum ) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_slange( "M", &n, &n, A, &lda, dum );
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_slascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr );
    }

    /* Balance the matrix
     * (Workspace: need N)
     *  - this space is reserved until after gebak */
    ibal = 0;
    lapackf77_sgebal( "B", &n, A, &lda, &ilo, &ihi, &work[ibal], &ierr );

    /* Reduce to upper Hessenberg form
     * (Workspace: need 3*N, prefer 2*N + N*NB + NB*NGPU)
     *  - added NB*NGPU needed for multi-GPU magma_sgehrd_m
     *  - including N reserved for gebal/gebak, unused by sgehrd */
    itau = ibal + n;
    iwrk = itau + n;
    liwrk = lwork - iwrk;

    timer_start( time_gehrd );
    flops_start( flop_gehrd );
    #if defined(Version1)
        // Version 1 - LAPACK
        lapackf77_sgehrd( &n, &ilo, &ihi, A, &lda,
                          &work[itau], &work[iwrk], &liwrk, &ierr );
    #elif defined(Version2)
        // Version 2 - LAPACK consistent HRD
        magma_sgehrd2( n, ilo, ihi, A, lda,
                       &work[itau], &work[iwrk], liwrk, &ierr );
    #elif defined(Version3)
        // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored,
        magma_sgehrd( n, ilo, ihi, A, lda,
                      &work[itau], &work[iwrk], liwrk, dT, &ierr );
    #elif defined(Version5)
        // Version 4 - Multi-GPU, T on host
        magma_sgehrd_m( n, ilo, ihi, A, lda,
                        &work[itau], &work[iwrk], liwrk, T, &ierr );
    #endif
    time_sum += timer_stop( time_gehrd );
    flop_sum += flops_stop( flop_gehrd );

    if (wantvl) {
        /* Want left eigenvectors
         * Copy Householder vectors to VL */
        side = MagmaLeft;
        lapackf77_slacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl );

        /* Generate orthogonal matrix in VL
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by sorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_sorghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_sorghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_sorghr_m( n, ilo, ihi, VL, ldvl, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        /* Perform QR iteration, accumulating Schur vectors in VL
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VL, &ldvl, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );

        if (wantvr) {
            /* Want left and right eigenvectors
             * Copy Schur vectors to VR */
            side = MagmaBothSides;
            lapackf77_slacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr );
        }
    }
    else if (wantvr) {
        /* Want right eigenvectors
         * Copy Householder vectors to VR */
        side = MagmaRight;
        lapackf77_slacpy( "L", &n, &n, A, &lda, VR, &ldvr );

        /* Generate orthogonal matrix in VR
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by sorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_sorghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_sorghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_sorghr_m( n, ilo, ihi, VR, ldvr, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        /* Perform QR iteration, accumulating Schur vectors in VR
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }
    else {
        /* Compute eigenvalues only
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by shseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_shseqr( "E", "N", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }

    /* If INFO > 0 from SHSEQR, then quit */
    if (*info > 0) {
        goto CLEANUP;
    }

    timer_start( time_trevc );
    flops_start( flop_trevc );
    if (wantvl || wantvr) {
        /* Compute left and/or right eigenvectors
         * (Workspace: need 4*N, prefer (2 + 2*nb)*N)
         *  - including N reserved for gebal/gebak, unused by strevc */
        liwrk = lwork - iwrk;
        #if TREVC_VERSION == 1
        lapackf77_strevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                          VR, &ldvr, &n, &nout, &work[iwrk], &ierr );
        #elif TREVC_VERSION == 2
        lapackf77_strevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                           VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &ierr );
        #elif TREVC_VERSION == 3
        magma_strevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                       VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 4
        magma_strevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                          VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 5
        magma_strevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                              VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #else
        #error Unknown TREVC_VERSION
        #endif
    }
    time_sum += timer_stop( time_trevc );
    flop_sum += flops_stop( flop_trevc );

    if (wantvl) {
        /* Undo balancing of left eigenvectors
         * (Workspace: need N) */
        lapackf77_sgebak( "B", "L", &n, &ilo, &ihi, &work[ibal], &n,
                          VL, &ldvl, &ierr );

        /* Normalize left eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_snrm2( n, VL(0,i), 1 );
                blasf77_sscal( &n, &scl, VL(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_snrm2( n, VL(0,i), 1 );
                d__2 = magma_cblas_snrm2( n, VL(0,i+1), 1 );
                scl = 1. / lapackf77_slapy2( &d__1, &d__2 );
                blasf77_sscal( &n, &scl, VL(0,i), &ione );
                blasf77_sscal( &n, &scl, VL(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VL(k,i);
                    d__2 = *VL(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_slartg( VL(k,i), VL(k,i+1), &cs, &sn, &r );
                blasf77_srot( &n, VL(0,i), &ione, VL(0,i+1), &ione, &cs, &sn );
                *VL(k,i+1) = 0.;
            }
        }
    }

    if (wantvr) {
        /* Undo balancing of right eigenvectors
         * (Workspace: need N) */
        lapackf77_sgebak( "B", "R", &n, &ilo, &ihi, &work[ibal], &n,
                          VR, &ldvr, &ierr );

        /* Normalize right eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_snrm2( n, VR(0,i), 1 );
                blasf77_sscal( &n, &scl, VR(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_snrm2( n, VR(0,i), 1 );
                d__2 = magma_cblas_snrm2( n, VR(0,i+1), 1 );
                scl = 1. / lapackf77_slapy2( &d__1, &d__2 );
                blasf77_sscal( &n, &scl, VR(0,i), &ione );
                blasf77_sscal( &n, &scl, VR(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VR(k,i);
                    d__2 = *VR(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_isamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_slartg( VR(k,i), VR(k,i+1), &cs, &sn, &r );
                blasf77_srot( &n, VR(0,i), &ione, VR(0,i+1), &ione, &cs, &sn );
                *VR(k,i+1) = 0.;
            }
        }
    }

CLEANUP:
    /* Undo scaling if necessary */
    if (scalea) {
        // converged eigenvalues, stored in wr[i+1:n] and wi[i+1:n] for i = INFO
        magma_int_t nval = n - (*info);
        magma_int_t ld = max( nval, 1 );
        lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr + (*info), &ld, &ierr );
        lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi + (*info), &ld, &ierr );
        if (*info > 0) {
            // first ilo columns were already upper triangular,
            // so the corresponding eigenvalues are also valid.
            nval = ilo - 1;
            lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr, &n, &ierr );
            lapackf77_slascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi, &n, &ierr );
        }
    }

    #if defined(Version3)
    magma_free( dT );
    #endif
    #if defined(Version5)
    magma_free_cpu( T );
    #endif
    
    timer_stop( time_total );
    flops_stop( flop_total );
    timer_printf( "sgeev times n %5d, gehrd %7.3f, unghr %7.3f, hseqr %7.3f, trevc %7.3f, total %7.3f, sum %7.3f\n",
                  (int) n, time_gehrd, time_unghr, time_hseqr, time_trevc, time_total, time_sum );
    timer_printf( "sgeev flops n %5d, gehrd %7lld, unghr %7lld, hseqr %7lld, trevc %7lld, total %7lld, sum %7lld\n",
                  (int) n, flop_gehrd, flop_unghr, flop_hseqr, flop_trevc, flop_total, flop_sum );
    
    work[0] = magma_smake_lwork( optwrk );
    
    return *info;
} /* magma_sgeev */
Beispiel #6
0
extern "C" magma_int_t
magma_sstedx(magma_vec_t range, magma_int_t n, float vl, float vu,
             magma_int_t il, magma_int_t iu, float* d, float* e, float* z, magma_int_t ldz,
             float* work, magma_int_t lwork, magma_int_t* iwork, magma_int_t liwork,
             magmaFloat_ptr dwork, magma_int_t* info, magma_queue_t queue)
{
/*
    -- MAGMA (version 1.1.0) --
    Univ. of Tennessee, Knoxville
    Univ. of California, Berkeley
    Univ. of Colorado, Denver
    @date January 2014

       .. Scalar Arguments ..
      CHARACTER          RANGE
      INTEGER            IL, IU, INFO, LDZ, LIWORK, LWORK, N
      REAL   VL, VU
       ..
       .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL   D( * ), E( * ), WORK( * ), Z( LDZ, * ),
     $                   DWORK ( * )
       ..

    Purpose
    =======

    SSTEDX computes some eigenvalues and, optionally, eigenvectors of a
    symmetric tridiagonal matrix using the divide and conquer method.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.  See SLAEX3 for details.

    Arguments
    =========

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    N       (input) INTEGER
            The dimension of the symmetric tridiagonal matrix.  N >= 0.

    VL      (input) REAL
    VU      (input) REAL
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    D       (input/output) REAL array, dimension (N)
            On entry, the diagonal elements of the tridiagonal matrix.
            On exit, if INFO = 0, the eigenvalues in ascending order.

    E       (input/output) REAL array, dimension (N-1)
            On entry, the subdiagonal elements of the tridiagonal matrix.
            On exit, E has been destroyed.

    Z       (input/output) REAL array, dimension (LDZ,N)
            On exit, if INFO = 0, Z contains the orthonormal eigenvectors
            of the symmetric tridiagonal matrix.

    LDZ     (input) INTEGER
            The leading dimension of the array Z. LDZ >= max(1,N).

    WORK    (workspace/output) REAL array,
                                           dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK.
            If N > 1 then LWORK must be at least ( 1 + 4*N + N**2 ).
            Note that  if N is less than or
            equal to the minimum divide size, usually 25, then LWORK need
            only be max(1,2*(N-1)).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            LIWORK must be at least ( 3 + 5*N ).
            Note that if N is less than or
            equal to the minimum divide size, usually 25, then LIWORK
            need only be 1.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal size of the IWORK array,
            returns this value as the first entry of the IWORK array, and
            no error message related to LIWORK is issued by XERBLA.

    DWORK  (device workspace) REAL array, dimension (3*N*N/2+3*N)

    INFO    (output) INTEGER
            = 0:  successful exit.
            < 0:  if INFO = -i, the i-th argument had an illegal value.
            > 0:  The algorithm failed to compute an eigenvalue while
                  working on the submatrix lying in rows and columns
                  INFO/(N+1) through mod(INFO,N+1).

    Further Details
    ===============

    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    =====================================================================
*/
    magma_vec_t range_ = range;

    float d_zero = 0.;
    float d_one  = 1.;
    magma_int_t izero = 0;
    magma_int_t ione = 1;


    magma_int_t alleig, indeig, valeig, lquery;
    magma_int_t i, j, k, m;
    magma_int_t liwmin, lwmin;
    magma_int_t start, end, smlsiz;
    float eps, orgnrm, p, tiny;

    // Test the input parameters.

    alleig = lapackf77_lsame(lapack_const(range_), "A");
    valeig = lapackf77_lsame(lapack_const(range_), "V");
    indeig = lapackf77_lsame(lapack_const(range_), "I");
    lquery = lwork == -1 || liwork == -1;

    *info = 0;

    if (! (alleig || valeig || indeig)) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldz < max(1,n)) {
        *info = -10;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -4;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -5;
            } else if (iu < min(n,il) || iu > n) {
                *info = -6;
            }
        }
    }

    if (*info == 0) {
        // Compute the workspace requirements

        smlsiz = get_sstedx_smlsize();
        if( n <= 1 ){
            lwmin = 1;
            liwmin = 1;
        } else {
            lwmin = 1 + 4*n + n*n;
            liwmin = 3 + 5*n;
        }

        work[0] = lwmin;
        iwork[0] = liwmin;

        if (lwork < lwmin && ! lquery) {
            *info = -12;
        } else if (liwork < liwmin && ! lquery) {
            *info = -14;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return MAGMA_ERR_ILLEGAL_VALUE;
    } else if (lquery) {
        return MAGMA_SUCCESS;
    }

    // Quick return if possible

    if(n==0)
        return MAGMA_SUCCESS;
    if(n==1){
        *z = 1.;
        return MAGMA_SUCCESS;
    }

    // If N is smaller than the minimum divide size (SMLSIZ+1), then
    // solve the problem with another solver.

    if (n < smlsiz){
        char char_I[]= {'I', 0};
        lapackf77_ssteqr(char_I, &n, d, e, z, &ldz, work, info);
    } else {
        char char_F[]= {'F', 0};
        lapackf77_slaset(char_F, &n, &n, &d_zero, &d_one, z, &ldz);

        //Scale.
        char char_M[]= {'M', 0};

        orgnrm = lapackf77_slanst(char_M, &n, d, e);

        if (orgnrm == 0){
            work[0]  = lwmin;
            iwork[0] = liwmin;
            return MAGMA_SUCCESS;
        }

        eps = lapackf77_slamch( "Epsilon" );

        if (alleig){
            start = 0;
            while ( start < n ){

                // Let FINISH be the position of the next subdiagonal entry
                // such that E( END ) <= TINY or FINISH = N if no such
                // subdiagonal exists.  The matrix identified by the elements
                // between START and END constitutes an independent
                // sub-problem.

                for(end = start+1; end < n; ++end){
                    tiny = eps * sqrt( MAGMA_S_ABS(d[end-1]*d[end]));
                    if (MAGMA_S_ABS(e[end-1]) <= tiny)
                        break;
                }

                // (Sub) Problem determined.  Compute its size and solve it.

                m = end - start;
                if (m==1){
                    start = end;
                    continue;
                }
                if (m > smlsiz){

                    // Scale
                    char char_G[] = {'G', 0};
                    orgnrm = lapackf77_slanst(char_M, &m, &d[start], &e[start]);
                    lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &m, &ione, &d[start], &m, info);
                    magma_int_t mm = m-1;
                    lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &mm, &ione, &e[start], &mm, info);

                    magma_slaex0( m, &d[start], &e[start], Z(start, start), ldz, work, iwork, dwork, MagmaAllVec, vl, vu, il, iu, info, queue);

                    if( *info != 0) {
                        return MAGMA_SUCCESS;
                    }

                    // Scale Back
                    lapackf77_slascl(char_G, &izero, &izero, &d_one, &orgnrm, &m, &ione, &d[start], &m, info);

                } else {

                    char char_I[]= {'I', 0};
                    lapackf77_ssteqr( char_I, &m, &d[start], &e[start], Z(start, start), &ldz, work, info);
                    if (*info != 0){
                        *info = (start+1) *(n+1) + end;
                    }
                }

                start = end;
            }


            // If the problem split any number of times, then the eigenvalues
            // will not be properly ordered.  Here we permute the eigenvalues
            // (and the associated eigenvectors) into ascending order.

            if (m < n){

                // Use Selection Sort to minimize swaps of eigenvectors
                for (i = 1; i < n; ++i){
                    k = i-1;
                    p = d[i-1];
                    for (j = i; j < n; ++j){
                        if (d[j] < p){
                            k = j;
                            p = d[j];
                        }
                    }
                    if(k != i-1) {
                        d[k] = d[i-1];
                        d[i-1] = p;
                        blasf77_sswap(&n, Z(0,i-1), &ione, Z(0,k), &ione);
                    }
                }
            }

        } else {

            // Scale
            char char_G[] = {'G', 0};
            lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &n, &ione, d, &n, info);
            magma_int_t nm = n-1;
            lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &nm, &ione, e, &nm, info);

            magma_slaex0( n, d, e, z, ldz, work, iwork, dwork, range, vl, vu, il, iu, info, queue);

            if( *info != 0) {
                return MAGMA_SUCCESS;
            }

            // Scale Back
            lapackf77_slascl(char_G, &izero, &izero, &d_one, &orgnrm, &n, &ione, d, &n, info);

        }
    }

    work[0]  = lwmin;
    iwork[0] = liwmin;

    return MAGMA_SUCCESS;

} /* sstedx */
Beispiel #7
0
extern "C" magma_int_t
magma_ssyevd_m(magma_int_t nrgpu, char jobz, char uplo,
               magma_int_t n,
               float *a, magma_int_t lda,
               float *w,
               float *work, magma_int_t lwork,
               magma_int_t *iwork, magma_int_t liwork,
               magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
    real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) REAL array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= N * (NB + 1).
            If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK >= 1.
            If JOBZ  = 'N' and N > 1, LRWORK >= N.
            If JOBZ  = 'V' and N > 1, LRWORK >=
                           1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    float d_one = 1.;

    float d__1;

    float eps;
    magma_int_t inde;
    float anrm;
    float rmin, rmax;
    float sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    float safmin;
    float bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    float smlnum;
    magma_int_t lquery;

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    lquery = lwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_ssytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = 1 + 6*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    work[0]  = lwmin * (1. + lapackf77_slamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = a[0];
        if (wantz) {
            a[0] = 1.;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_ssyevd(jobz_, uplo_,
                         &n, a, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_slamch("Safe minimum");
    eps = lapackf77_slamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_ssqrt(smlnum);
    rmax = magma_ssqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_slansy("M", uplo_, &n, a, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_slascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                &lda, info);
    }

    /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
    // ssytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // sstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

//
#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    magma_ssytrd_mgpu(nrgpu, 1, uplo, n, a, lda, w, &work[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time ssytrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call SSTERF.  For eigenvectors, first call
       SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call SORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_ssterf(&n, w, &work[inde], info);
    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

#ifdef USE_SINGLE_GPU
        if (MAGMA_SUCCESS != magma_smalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_sstedx('A', n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );
#else
        magma_sstedx_m(nrgpu, 'A', n, 0., 0., 0, 0, w, &work[inde],
                       &work[indwrk], n, &work[indwk2],
                       llwrk2, iwork, liwork, info);
#endif

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time sstedc = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif

        magma_sormtr_m(nrgpu, MagmaLeft, uplo, MagmaNoTrans, n, n, a, lda, &work[indtau],
                       &work[indwrk], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_slacpy("A", &n, &n, &work[indwrk], &n, a, &lda);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time sormtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_sscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * (1. + lapackf77_slamch("Epsilon"));  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_ssyevd_m */