/* ////////////////////////////////////////////////////////////////////////////
   -- Testing zhegvdx
*/
int main( int argc, char** argv)
{

    TESTING_INIT();

    real_Double_t gpu_time;

    magmaDoubleComplex *h_A, *h_R, *h_B, *h_S, *h_work;

    #if defined(PRECISION_z) || defined(PRECISION_c)
    double *rwork;
    magma_int_t lrwork;
    #endif

    /* Matrix size */
    double *w1, *w2, result[2]={0,0};
    magma_int_t *iwork;
    magma_int_t N, n2, info, lwork, liwork;
    magmaDoubleComplex c_zero    = MAGMA_Z_ZERO;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    double tol    = opts.tolerance * lapackf77_dlamch("E");
    double tolulp = opts.tolerance * lapackf77_dlamch("P");

    magma_range_t range = MagmaRangeAll;
    if (opts.fraction != 1)
        range = MagmaRangeI;

    if ( opts.check && opts.jobz == MagmaNoVec ) {
        fprintf( stderr, "checking results requires vectors; setting jobz=V (option -JV)\n" );
        opts.jobz = MagmaVec;
    }

    printf("using: itype = %d, jobz = %s, range = %s, uplo = %s, opts.check = %d, fraction = %6.4f\n",
           (int) opts.itype, lapack_vec_const(opts.jobz), lapack_range_const(range), lapack_uplo_const(opts.uplo),
           (int) opts.check, opts.fraction);

    printf("    N     M   GPU Time (sec)\n");
    printf("============================\n");
    magma_int_t threads = magma_get_parallel_numthreads();
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            n2     = N*N;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lwork  = magma_zbulge_get_lq2(N, threads) + 2*N + N*N;
            lrwork = 1 + 5*N +2*N*N;
            #else
            lwork  = magma_zbulge_get_lq2(N, threads) + 1 + 6*N + 2*N*N;
            #endif
            liwork = 3 + 5*N;

            /* Allocate host memory for the matrix */
            TESTING_MALLOC_CPU( h_A,    magmaDoubleComplex, n2 );
            TESTING_MALLOC_CPU( h_B,    magmaDoubleComplex, n2 );
            TESTING_MALLOC_CPU( w1,     double, N );
            TESTING_MALLOC_CPU( w2,     double, N );
            TESTING_MALLOC_CPU( iwork,  magma_int_t, liwork );
            
            TESTING_MALLOC_PIN( h_R,    magmaDoubleComplex, n2 );
            TESTING_MALLOC_PIN( h_S,    magmaDoubleComplex, n2 );
            TESTING_MALLOC_PIN( h_work, magmaDoubleComplex, lwork );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_MALLOC_PIN( rwork,  double, lrwork);
            #endif

            /* Initialize the matrix */
            lapackf77_zlarnv( &ione, ISEED, &n2, h_A );
            lapackf77_zlarnv( &ione, ISEED, &n2, h_B );
            magma_zmake_hpd( N, h_B, N );
            magma_zmake_hermitian( N, h_A, N );

            magma_int_t m1 = 0;
            double vl = 0;
            double vu = 0;
            magma_int_t il = 0;
            magma_int_t iu = 0;

            if (range == MagmaRangeI) {
                il = 1;
                iu = (int) (opts.fraction*N);
            }

            // ==================================================================
            // Warmup using MAGMA
            // ==================================================================
            if (opts.warmup) {
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

                magma_zhegvdx_2stage(opts.itype, opts.jobz, range, opts.uplo,
                                     N, h_R, N, h_S, N, vl, vu, il, iu, &m1, w1,
                                     h_work, lwork,
                                     #if defined(PRECISION_z) || defined(PRECISION_c)
                                     rwork, lrwork,
                                     #endif
                                     iwork, liwork,
                                     &info);
            }
            // ===================================================================
            // Performs operation using MAGMA
            // ===================================================================
            lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
            lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

            gpu_time = magma_wtime();
            magma_zhegvdx_2stage(opts.itype, opts.jobz, range, opts.uplo,
                                 N, h_R, N, h_S, N, vl, vu, il, iu, &m1, w1,
                                 h_work, lwork,
                                 #if defined(PRECISION_z) || defined(PRECISION_c)
                                 rwork, lrwork,
                                 #endif
                                 iwork, liwork,
                                 &info);
            gpu_time = magma_wtime() - gpu_time;


            if ( opts.check && opts.jobz != MagmaNoVec ) {
                /* =====================================================================
                   Check the results following the LAPACK's [zc]hegvdx routine.
                   A x = lambda B x is solved
                   and the following 3 tests computed:
                   (1)    | A Z - B Z D | / ( |A||Z| N )  (itype = 1)
                          | A B Z - Z D | / ( |A||Z| N )  (itype = 2)
                          | B A Z - Z D | / ( |A||Z| N )  (itype = 3)
                   (2)    | S(with V) - S(w/o V) | / | S |
                   =================================================================== */
                #if defined(PRECISION_d) || defined(PRECISION_s)
                double *rwork = h_work + N*N;
                #endif

                result[0] = 1.;
                result[0] /= lapackf77_zlanhe("1", lapack_uplo_const(opts.uplo), &N, h_A, &N, rwork);
                result[0] /= lapackf77_zlange("1", &N, &m1, h_R, &N, rwork);

                if (opts.itype == 1) {
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_A, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i<m1; ++i)
                        blasf77_zdscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_neg_one, h_B, &N, h_R, &N, &c_one, h_work, &N);
                    result[0] *= lapackf77_zlange("1", &N, &m1, h_work, &N, rwork)/N;
                }
                else if (opts.itype == 2) {
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_B, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i<m1; ++i)
                        blasf77_zdscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_A, &N, h_work, &N, &c_neg_one, h_R, &N);
                    result[0] *= lapackf77_zlange("1", &N, &m1, h_R, &N, rwork)/N;
                }
                else if (opts.itype == 3) {
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_A, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i<m1; ++i)
                        blasf77_zdscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_B, &N, h_work, &N, &c_neg_one, h_R, &N);
                    result[0] *= lapackf77_zlange("1", &N, &m1, h_R, &N, rwork)/N;
                }

                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

                magma_int_t m2 = m1;
                lapackf77_zhegvd(&opts.itype, "N", lapack_uplo_const(opts.uplo), &N,
                              h_R, &N, h_S, &N, w2,
                              h_work, &lwork,
                              #if defined(PRECISION_z) || defined(PRECISION_c)
                              rwork, &lrwork,
                              #endif
                              iwork, &liwork,
                              &info);

                double maxw=0, diff=0;
                for(int j=0; j<m2; j++) {
                    maxw = max(maxw, fabs(w1[j]));
                    maxw = max(maxw, fabs(w2[j]));
                    diff = max(diff, fabs(w1[j] - w2[j]));
                }
                result[1] = diff / (m2*maxw);
            }


            /* =====================================================================
               Print execution time
               =================================================================== */
            printf("%5d %5d   %7.2f\n",
                   (int) N, (int) m1, gpu_time);
            if ( opts.check && opts.jobz != MagmaNoVec ) {
                printf("Testing the eigenvalues and eigenvectors for correctness:\n");
                if (opts.itype==1) {
                    printf("    | A Z - B Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed"));
                }
                else if (opts.itype==2) {
                    printf("    | A B Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed"));
                }
                else if (opts.itype==3) {
                    printf("    | B A Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed"));
                }
                printf(    "    | D(w/ Z) - D(w/o Z) | / |D|  = %8.2e   %s\n\n", result[1], (result[1] < tolulp ? "ok" : "failed"));
                status += ! (result[0] < tol && result[1] < tolulp);
            }

            TESTING_FREE_CPU( h_A   );
            TESTING_FREE_CPU( h_B   );
            TESTING_FREE_CPU( w1    );
            TESTING_FREE_CPU( w2    );
            TESTING_FREE_CPU( iwork );
            
            TESTING_FREE_PIN( h_R );
            TESTING_FREE_PIN( h_S );
            TESTING_FREE_PIN( h_work );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_FREE_PIN( rwork );
            #endif
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    /* Shutdown */
    TESTING_FINALIZE();
    return status;
}
Beispiel #2
0
extern "C" magma_int_t
magma_zlobpcg(
    magma_z_matrix A,
    magma_z_solver_par *solver_par,
    magma_z_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
#define  residualNorms(i,iter)  ( residualNorms + (i) + (iter)*n )
#define SWAP(x, y)    { pointer = x; x = y; y = pointer; }
#define hresidualNorms(i,iter)  (hresidualNorms + (i) + (iter)*n )

#define gramA(    m, n)   (gramA     + (m) + (n)*ldgram)
#define gramB(    m, n)   (gramB     + (m) + (n)*ldgram)
#define gevectors(m, n)   (gevectors + (m) + (n)*ldgram)
#define h_gramB(  m, n)   (h_gramB   + (m) + (n)*ldgram)



#define magma_z_bspmv_tuned(m, n, alpha, A, X, beta, AX, queue)       {        \
            magma_z_matrix x={Magma_CSR}, ax={Magma_CSR};                                       \
            x.memory_location = Magma_DEV;  x.num_rows = m;  x.num_cols = n;  x.major = MagmaColMajor;   x.nnz = m*n;  x.dval = X;    x.storage_type = Magma_DENSE; \
            ax.memory_location= Magma_DEV; ax.num_rows = m; ax.num_cols = n; ax.major = MagmaColMajor;  ax.nnz = m*n; ax.dval = AX;  ax.storage_type = Magma_DENSE; \
            CHECK( magma_z_spmv(alpha, A, x, beta, ax, queue ));                   \
}



//**************************************************************

    // Memory allocation for the eigenvectors, eigenvalues, and workspace
    solver_par->solver = Magma_LOBPCG;
    magma_int_t m = A.num_rows;
    magma_int_t n = (solver_par->num_eigenvalues);
    magmaDoubleComplex *blockX = solver_par->eigenvectors;
    double *evalues = solver_par->eigenvalues;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;


    magmaDoubleComplex *dwork=NULL, *hwork=NULL;
    magmaDoubleComplex *blockP=NULL, *blockAP=NULL, *blockR=NULL, *blockAR=NULL, *blockAX=NULL, *blockW=NULL;
    magmaDoubleComplex *gramA=NULL, *gramB=NULL, *gramM=NULL;
    magmaDoubleComplex *gevectors=NULL, *h_gramB=NULL;
    
    dwork = NULL;
    hwork = NULL;
    blockP = NULL;
    blockR = NULL;
    blockAP = NULL;
    blockAR = NULL;
    blockAX = NULL;
    blockW = NULL;
    gramA = NULL;
    gramB = NULL;
    gramM = NULL;
    gevectors = NULL;
    h_gramB = NULL;

    magmaDoubleComplex *pointer, *origX = blockX;
    double *eval_gpu=NULL;
    
    magma_int_t iterationNumber, cBlockSize, restart = 1, iter;

    //Chronometry
    real_Double_t tempo1, tempo2, tempop1, tempop2;
    
    magma_int_t lwork = max( 2*n+n*magma_get_dsytrd_nb(n),
                                            1 + 6*3*n + 2* 3*n* 3*n);
    
    magma_int_t *iwork={0}, liwork = 15*n+9;
    magma_int_t gramDim, ldgram  = 3*n, ikind = 3;
    
    magmaDoubleComplex *hW={0};

    // === Set solver parameters ===
    double residualTolerance  = solver_par->rtol;
    magma_int_t maxIterations = solver_par->maxiter;
    double tmp;
    double r0=0;  // set in 1st iteration

    // === Set some constants & defaults ===
    magmaDoubleComplex c_zero = MAGMA_Z_ZERO;
    magmaDoubleComplex c_one  = MAGMA_Z_ONE;
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    
    double *residualNorms={0}, *condestGhistory={0}, condestG={0};
    double *gevalues={0};
    magma_int_t *activeMask={0};
    double *hresidualNorms={0};
    
#ifdef COMPLEX
    double *rwork={0};
    magma_int_t lrwork = 1 + 5*(3*n) + 2*(3*n)*(3*n);

    CHECK( magma_dmalloc_cpu(&rwork, lrwork));
#endif

    CHECK( magma_zmalloc_pinned( &hwork   ,        lwork ));
    CHECK( magma_zmalloc(        &blockAX   ,        m*n ));
    CHECK( magma_zmalloc(        &blockAR   ,        m*n ));
    CHECK( magma_zmalloc(        &blockAP   ,        m*n ));
    CHECK( magma_zmalloc(        &blockR    ,        m*n ));
    CHECK( magma_zmalloc(        &blockP    ,        m*n ));
    CHECK( magma_zmalloc(        &blockW    ,        m*n ));
    CHECK( magma_zmalloc(        &dwork     ,        m*n ));
    CHECK( magma_dmalloc(        &eval_gpu  ,        3*n ));




//**********************************************************+



    // === Check some parameters for possible quick exit ===
    solver_par->info = MAGMA_SUCCESS;
    if (m < 2)
        info = MAGMA_DIVERGENCE;
    else if (n > m)
        info = MAGMA_SLOW_CONVERGENCE;

    if (solver_par->info != 0) {
        magma_xerbla( __func__, -(info) );
        goto cleanup;
    }
    solver_par->info = info; // local info variable;

    // === Allocate GPU memory for the residual norms' history ===
    CHECK( magma_dmalloc(&residualNorms, (maxIterations+1) * n));
    CHECK( magma_malloc( (void **)&activeMask, (n+1) * sizeof(magma_int_t) ));

    // === Allocate CPU work space ===
    CHECK( magma_dmalloc_cpu(&condestGhistory, maxIterations+1));
    CHECK( magma_dmalloc_cpu(&gevalues, 3 * n));
    CHECK( magma_malloc_cpu((void **)&iwork, liwork * sizeof(magma_int_t)));


    CHECK( magma_zmalloc_pinned(&hW, n*n));
    CHECK( magma_zmalloc_pinned(&gevectors, 9*n*n));
    CHECK( magma_zmalloc_pinned(&h_gramB  , 9*n*n));

    // === Allocate GPU workspace ===
    CHECK( magma_zmalloc(&gramM, n * n));
    CHECK( magma_zmalloc(&gramA, 9 * n * n));
    CHECK( magma_zmalloc(&gramB, 9 * n * n));



    // === Set activemask to one ===
    for(magma_int_t k =0; k<n; k++){
        iwork[k]=1;
    }
    magma_setmatrix(n, 1, sizeof(magma_int_t), iwork, n , activeMask, n, queue);

    #if defined(PRECISION_s)
    ikind = 3;
    #endif
    
    // === Make the initial vectors orthonormal ===
    magma_zgegqr_gpu(ikind, m, n, blockX, m, dwork, hwork, &info );

    //magma_zorthomgs( m, n, blockX, queue );
    
    magma_z_bspmv_tuned(m, n, c_one, A, blockX, c_zero, blockAX, queue );
    solver_par->spmv_count++;
    // === Compute the Gram matrix = (X, AX) & its eigenstates ===
    magma_zgemm( MagmaConjTrans, MagmaNoTrans, n, n, m,
                c_one,  blockX, m, blockAX, m, c_zero, gramM, n, queue );

    magma_zheevd_gpu( MagmaVec, MagmaUpper,
                      n, gramM, n, evalues, hW, n, hwork, lwork,
                      #ifdef COMPLEX
                      rwork, lrwork,
                      #endif
                      iwork, liwork, &info );

    // === Update  X =  X * evectors ===
    magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, n,
                c_one,  blockX, m, gramM, n, c_zero, blockW, m, queue );
    SWAP(blockW, blockX);

    // === Update AX = AX * evectors ===
    magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, n,
                c_one,  blockAX, m, gramM, n, c_zero, blockW, m, queue );
    SWAP(blockW, blockAX);

    condestGhistory[1] = 7.82;


    tempo1 = magma_sync_wtime( queue );
    // === Main LOBPCG loop ============================================================
    for(iterationNumber = 1; iterationNumber < maxIterations; iterationNumber++)
        {
            // === compute the residuals (R = Ax - x evalues )
            magmablas_zlacpy( MagmaFull, m, n, blockAX, m, blockR, m, queue );

/*
            for(magma_int_t i=0; i<n; i++) {
               magma_zaxpy( m, MAGMA_Z_MAKE(-evalues[i],0), blockX+i*m, 1, blockR+i*m, 1, queue );
            }
  */
            magma_dsetmatrix( 3*n, 1, evalues, 3*n, eval_gpu, 3*n, queue );

            CHECK( magma_zlobpcg_res( m, n, eval_gpu, blockX, blockR, eval_gpu, queue ));

            magmablas_dznrm2_cols( m, n, blockR, m, residualNorms(0, iterationNumber), queue );

            // === remove the residuals corresponding to already converged evectors
            CHECK( magma_zcompact(m, n, blockR, m,
                           residualNorms(0, iterationNumber), residualTolerance,
                           activeMask, &cBlockSize, queue ));
        
            if (cBlockSize == 0)
               break;

            // === apply a preconditioner P to the active residulas: R_new = P R_old
            // === for now set P to be identity (no preconditioner => nothing to be done )
            //magmablas_zlacpy( MagmaFull, m, cBlockSize, blockR, m, blockW, m, queue );
            //SWAP(blockW, blockR);
            
                // preconditioner
            magma_z_matrix bWv={Magma_CSR}, bRv={Magma_CSR};
            bWv.memory_location = Magma_DEV;  bWv.num_rows = m; bWv.num_cols = cBlockSize; bWv.major = MagmaColMajor;  bWv.nnz = m*cBlockSize;  bWv.dval = blockW;
            bRv.memory_location = Magma_DEV;  bRv.num_rows = m; bRv.num_cols = cBlockSize; bRv.major = MagmaColMajor;  bRv.nnz = m*cBlockSize;  bRv.dval = blockR;
            tempop1 = magma_sync_wtime( queue );
            CHECK( magma_z_applyprecond_left( MagmaNoTrans, A, bRv, &bWv, precond_par, queue ));
            CHECK( magma_z_applyprecond_right( MagmaNoTrans, A, bWv, &bRv, precond_par, queue ));
            tempop2 = magma_sync_wtime( queue );
            precond_par->runtime += tempop2-tempop1;
        
            // === make the preconditioned residuals orthogonal to X
            if( precond_par->solver != Magma_NONE){
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, n, cBlockSize, m,
                            c_one, blockX, m, blockR, m, c_zero, gramB(0,0), ldgram, queue );
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, cBlockSize, n,
                            c_neg_one, blockX, m, gramB(0,0), ldgram, c_one, blockR, m, queue );
            }

            // === make the active preconditioned residuals orthonormal

            magma_zgegqr_gpu(ikind, m, cBlockSize, blockR, m, dwork, hwork, &info );
            #if defined(PRECISION_s)
            // re-orthogonalization
            SWAP(blockX, dwork);
            magma_zgegqr_gpu(ikind, m, cBlockSize, blockR, m, dwork, hwork, &info );
            #endif
            //magma_zorthomgs( m, cBlockSize, blockR, queue );

            // === compute AR
            magma_z_bspmv_tuned(m, cBlockSize, c_one, A, blockR, c_zero, blockAR, queue );
            solver_par->spmv_count++;
            if (!restart) {
                // === compact P & AP as well
                CHECK( magma_zcompactActive(m, n, blockP,  m, activeMask, queue ));
                CHECK( magma_zcompactActive(m, n, blockAP, m, activeMask, queue ));
          
                /*
                // === make P orthogonal to X ?
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, n, cBlockSize, m,
                            c_one, blockX, m, blockP, m, c_zero, gramB(0,0), ldgram, queue );
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, cBlockSize, n,
                            c_neg_one, blockX, m, gramB(0,0), ldgram, c_one, blockP, m, queue );

                // === make P orthogonal to R ?
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, cBlockSize, m,
                            c_one, blockR, m, blockP, m, c_zero, gramB(0,0), ldgram, queue );
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, cBlockSize, cBlockSize,
                            c_neg_one, blockR, m, gramB(0,0), ldgram, c_one, blockP, m, queue );
                */

                // === Make P orthonormal & properly change AP (without multiplication by A)
                magma_zgegqr_gpu(ikind, m, cBlockSize, blockP, m, dwork, hwork, &info );
                #if defined(PRECISION_s)
                // re-orthogonalization
                SWAP(blockX, dwork);
                magma_zgegqr_gpu(ikind, m, cBlockSize, blockP, m, dwork, hwork, &info );
                #endif
                //magma_zorthomgs( m, cBlockSize, blockP, queue );

                //magma_z_bspmv_tuned(m, cBlockSize, c_one, A, blockP, c_zero, blockAP, queue );
                magma_zsetmatrix( cBlockSize, cBlockSize, hwork, cBlockSize, dwork, cBlockSize, queue );

                // replacement according to Stan
                #if defined(PRECISION_s) || defined(PRECISION_d)
                magmablas_ztrsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit,
                                 m, cBlockSize, c_one, dwork, cBlockSize, blockAP, m, queue );
                #else
                magma_ztrsm(     MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit,
                                 m, cBlockSize, c_one, dwork, cBlockSize, blockAP, m, queue );
                #endif
            }

            iter = max( 1, iterationNumber - 10 - int(log(1.*cBlockSize)) );
            double condestGmean = 0.;
            for(magma_int_t i = 0; i<iterationNumber-iter+1; i++){
                condestGmean += condestGhistory[i];
            }
            condestGmean = condestGmean / (iterationNumber-iter+1);

            if (restart)
                gramDim = n+cBlockSize;
            else
                gramDim = n+2*cBlockSize;

            /* --- The Raileight-Ritz method for [X R P] -----------------------
               [ X R P ]'  [AX  AR  AP] y = evalues [ X R P ]' [ X R P ], i.e.,
       
                      GramA                                 GramB
                / X'AX  X'AR  X'AP \                 / X'X  X'R  X'P \
               |  R'AX  R'AR  R'AP  | y   = evalues |  R'X  R'R  R'P  |
                \ P'AX  P'AR  P'AP /                 \ P'X  P'R  P'P /
               -----------------------------------------------------------------   */

            // === assemble GramB; first, set it to I
            magmablas_zlaset( MagmaFull, ldgram, ldgram, c_zero, c_one, gramB, ldgram, queue );  // identity

            if (!restart) {
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, n, m,
                            c_one, blockP, m, blockX, m, c_zero, gramB(n+cBlockSize,0), ldgram, queue );
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, cBlockSize, m,
                            c_one, blockP, m, blockR, m, c_zero, gramB(n+cBlockSize,n), ldgram, queue );
            }
            magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, n, m,
                        c_one, blockR, m, blockX, m, c_zero, gramB(n,0), ldgram, queue );

            // === get GramB from the GPU to the CPU and compute its eigenvalues only
            magma_zgetmatrix( gramDim, gramDim, gramB, ldgram, h_gramB, ldgram, queue );
            lapackf77_zheev("N", "L", &gramDim, h_gramB, &ldgram, gevalues,
                            hwork, &lwork,
                            #ifdef COMPLEX
                            rwork,
                            #endif
                            &info);

            // === check stability criteria if we need to restart
            condestG = log10( gevalues[gramDim-1]/gevalues[0] ) + 1.;
            if ((condestG/condestGmean>2 && condestG>2) || condestG>8) {
                // Steepest descent restart for stability
                restart=1;
                printf("restart at step #%d\n", int(iterationNumber));
            }

            // === assemble GramA; first, set it to I
            magmablas_zlaset( MagmaFull, ldgram, ldgram, c_zero, c_one, gramA, ldgram, queue );  // identity

            magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, n, m,
                        c_one, blockR, m, blockAX, m, c_zero, gramA(n,0), ldgram, queue );
            magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, cBlockSize, m,
                        c_one, blockR, m, blockAR, m, c_zero, gramA(n,n), ldgram, queue );

            if (!restart) {
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, n, m,
                            c_one, blockP, m, blockAX, m, c_zero,
                            gramA(n+cBlockSize,0), ldgram, queue );
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, cBlockSize, m,
                            c_one, blockP, m, blockAR, m, c_zero,
                            gramA(n+cBlockSize,n), ldgram, queue );
                magma_zgemm( MagmaConjTrans, MagmaNoTrans, cBlockSize, cBlockSize, m,
                            c_one, blockP, m, blockAP, m, c_zero,
                            gramA(n+cBlockSize,n+cBlockSize), ldgram, queue );
            }

            /*
            // === Compute X' AX or just use the eigenvalues below ?
            magma_zgemm( MagmaConjTrans, MagmaNoTrans, n, n, m,
                        c_one, blockX, m, blockAX, m, c_zero,
                        gramA(0,0), ldgram, queue );
            */

            if (restart==0) {
                magma_zgetmatrix( gramDim, gramDim, gramA, ldgram, gevectors, ldgram, queue );
            }
            else {
                gramDim = n+cBlockSize;
                magma_zgetmatrix( gramDim, gramDim, gramA, ldgram, gevectors, ldgram, queue );
            }

            for(magma_int_t k=0; k<n; k++)
                *gevectors(k,k) = MAGMA_Z_MAKE(evalues[k], 0);

            // === the previous eigensolver destroyed what is in h_gramB => must copy it again
            magma_zgetmatrix( gramDim, gramDim, gramB, ldgram, h_gramB, ldgram, queue );

            magma_int_t itype = 1;
            lapackf77_zhegvd(&itype, "V", "L", &gramDim,
                             gevectors, &ldgram, h_gramB, &ldgram,
                             gevalues, hwork, &lwork,
                             #ifdef COMPLEX
                             rwork, &lrwork,
                             #endif
                             iwork, &liwork, &info);
 
            for(magma_int_t k =0; k<n; k++)
                evalues[k] = gevalues[k];
            
            // === copy back the result to gramA on the GPU and use it for the updates
            magma_zsetmatrix( gramDim, gramDim, gevectors, ldgram, gramA, ldgram, queue );

            if (restart == 0) {
                // === contribution from P to the new X (in new search direction P)
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize,
                            c_one, blockP, m, gramA(n+cBlockSize,0), ldgram, c_zero, dwork, m, queue );
                SWAP(dwork, blockP);
 
                // === contribution from R to the new X (in new search direction P)
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize,
                            c_one, blockR, m, gramA(n,0), ldgram, c_one, blockP, m, queue );

                // === corresponding contribution from AP to the new AX (in AP)
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize,
                            c_one, blockAP, m, gramA(n+cBlockSize,0), ldgram, c_zero, dwork, m, queue );
                SWAP(dwork, blockAP);

                // === corresponding contribution from AR to the new AX (in AP)
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize,
                            c_one, blockAR, m, gramA(n,0), ldgram, c_one, blockAP, m, queue );
            }
            else {
                // === contribution from R (only) to the new X
                magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, cBlockSize,
                            c_one, blockR, m, gramA(n,0), ldgram, c_zero, blockP, m, queue );

                // === corresponding contribution from AR (only) to the new AX
                magma_zgemm( MagmaNoTrans, MagmaNoTrans,m, n, cBlockSize,
                            c_one, blockAR, m, gramA(n,0), ldgram, c_zero, blockAP, m, queue );
            }
            
            // === contribution from old X to the new X + the new search direction P
            magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, n,
                        c_one, blockX, m, gramA, ldgram, c_zero, dwork, m, queue );
            SWAP(dwork, blockX);
            //magma_zaxpy( m*n, c_one, blockP, 1, blockX, 1, queue );
            CHECK( magma_zlobpcg_maxpy( m, n, blockP, blockX, queue ));

            
            // === corresponding contribution from old AX to new AX + AP
            magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, n,
                        c_one, blockAX, m, gramA, ldgram, c_zero, dwork, m, queue );
            SWAP(dwork, blockAX);
            //magma_zaxpy( m*n, c_one, blockAP, 1, blockAX, 1, queue );
            CHECK( magma_zlobpcg_maxpy( m, n, blockAP, blockAX, queue ));

            condestGhistory[iterationNumber+1]=condestG;

            magma_dgetmatrix( 1, 1, residualNorms(0, iterationNumber), 1,  &tmp, 1, queue );
            if ( iterationNumber == 1 ) {
                solver_par->init_res = tmp;
                r0 = tmp * solver_par->rtol;
                if ( r0 < ATOLERANCE )
                    r0 = ATOLERANCE;
            }
            solver_par->final_res = tmp;
            if ( tmp < r0 ) {
                break;
            }
            if (cBlockSize == 0) {
                break;
            }

            if ( solver_par->verbose!=0 ) {
                if ( iterationNumber%solver_par->verbose == 0 ) {
                    // double res;
                    // magma_zgetmatrix( 1, 1,
                    //                  (magmaDoubleComplex*)residualNorms(0, iterationNumber), 1,
                    //                  (magmaDoubleComplex*)&res, 1, queue );
                    //
                    //  printf("Iteration %4d, CBS %4d, Residual: %10.7f\n",
                    //         iterationNumber, cBlockSize, res);
                    printf("%4d-%2d ", int(iterationNumber), int(cBlockSize));
                    magma_dprint_gpu(1, n, residualNorms(0, iterationNumber), 1);
                }
            }

            restart = 0;
        }   // === end for iterationNumber = 1,maxIterations =======================


    // fill solver info
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    solver_par->numiter = iterationNumber;
    if ( solver_par->numiter < solver_par->maxiter) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res )
        info = MAGMA_SLOW_CONVERGENCE;
    else
        info = MAGMA_DIVERGENCE;
    
    // =============================================================================
    // === postprocessing;
    // =============================================================================

    // === compute the real AX and corresponding eigenvalues
    magma_z_bspmv_tuned(m, n, c_one, A, blockX, c_zero, blockAX, queue );
    magma_zgemm( MagmaConjTrans, MagmaNoTrans, n, n, m,
                c_one,  blockX, m, blockAX, m, c_zero, gramM, n, queue );

    magma_zheevd_gpu( MagmaVec, MagmaUpper,
                      n, gramM, n, gevalues, dwork, n, hwork, lwork,
                      #ifdef COMPLEX
                      rwork, lrwork,
                      #endif
                      iwork, liwork, &info );
   
    for(magma_int_t k =0; k<n; k++)
        evalues[k] = gevalues[k];

    // === update X = X * evectors
    SWAP(blockX, dwork);
    magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, n,
                c_one, dwork, m, gramM, n, c_zero, blockX, m, queue );

    // === update AX = AX * evectors to compute the final residual
    SWAP(blockAX, dwork);
    magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, n, n,
                c_one, dwork, m, gramM, n, c_zero, blockAX, m, queue );

    // === compute R = AX - evalues X
    magmablas_zlacpy( MagmaFull, m, n, blockAX, m, blockR, m, queue );
    for(magma_int_t i=0; i<n; i++)
        magma_zaxpy( m, MAGMA_Z_MAKE(-evalues[i], 0), blockX+i*m, 1, blockR+i*m, 1, queue );

    // === residualNorms[iterationNumber] = || R ||
    magmablas_dznrm2_cols( m, n, blockR, m, residualNorms(0, iterationNumber), queue );

    // === restore blockX if needed
    if (blockX != origX)
        magmablas_zlacpy( MagmaFull, m, n, blockX, m, origX, m, queue );

    printf("Eigenvalues:\n");
    for(magma_int_t i =0; i<n; i++)
        printf("%e  ", evalues[i]);
    printf("\n\n");

    printf("Final residuals:\n");
    magma_dprint_gpu(1, n, residualNorms(0, iterationNumber), 1);
    printf("\n\n");

    //=== Prmagma_int_t residual history in a file for plotting ====
    CHECK( magma_dmalloc_cpu(&hresidualNorms, (iterationNumber+1) * n));
    magma_dgetmatrix( n, iterationNumber,
                                        residualNorms, n,
                                        hresidualNorms, n, queue );
    solver_par->iter_res = *hresidualNorms(0, iterationNumber-1);

    printf("Residuals are stored in file residualNorms\n");
    printf("Plot the residuals using: myplot \n");
    
    FILE *residuals_file;
    residuals_file = fopen("residualNorms", "w");
    for(magma_int_t i =1; i<iterationNumber; i++) {
        for(magma_int_t j = 0; j<n; j++)
            fprintf(residuals_file, "%f ", *hresidualNorms(j,i));
        fprintf(residuals_file, "\n");
    }
    fclose(residuals_file);
    
cleanup:
    magma_free_cpu(hresidualNorms);

    // === free work space
    magma_free(     residualNorms   );
    magma_free_cpu( condestGhistory );
    magma_free_cpu( gevalues        );
    magma_free_cpu( iwork           );

    magma_free_pinned( hW           );
    magma_free_pinned( gevectors    );
    magma_free_pinned( h_gramB      );

    magma_free(     gramM           );
    magma_free(     gramA           );
    magma_free(     gramB           );
    magma_free(  activeMask         );

    if (blockX != (solver_par->eigenvectors))
        magma_free(     blockX    );
    if (blockAX != (solver_par->eigenvectors))
        magma_free(     blockAX    );
    if (blockAR != (solver_par->eigenvectors))
        magma_free(     blockAR    );
    if (blockAP != (solver_par->eigenvectors))
        magma_free(     blockAP    );
    if (blockR != (solver_par->eigenvectors))
        magma_free(     blockR    );
    if (blockP != (solver_par->eigenvectors))
        magma_free(     blockP    );
    if (blockW != (solver_par->eigenvectors))
        magma_free(     blockW    );
    if (dwork != (solver_par->eigenvectors))
        magma_free(     dwork    );
    magma_free(     eval_gpu    );

    magma_free_pinned( hwork    );


    #ifdef COMPLEX
    magma_free_cpu( rwork           );
    rwork = NULL;
    #endif

    return info; 
}
Beispiel #3
0
/**
    Purpose
    -------
    ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
    of a complex generalized Hermitian-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be Hermitian and B is also positive definite.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    nrgpu   INTEGER
            Number of GPUs to use.

    @param[in]
    itype   INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangles of A and B are stored;
      -     = MagmaLower:  Lower triangles of A and B are stored.

    @param[in]
    n       INTEGER
            The order of the matrices A and B.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
    \n
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**H*B*Z = I;
            if ITYPE = 3, Z**H*inv(B)*Z = I.
            If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper)
            or the lower triangle (if UPLO=MagmaLower) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in,out]
    B       COMPLEX_16 array, dimension (LDB, N)
            On entry, the Hermitian matrix B.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.
    \n
            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**H*U or B = L*L**H.

    @param[in]
    ldb     INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + 1.
            If JOBZ = MagmaVec   and N > 1, LWORK >= 2*N*nb + N**2.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
            On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  ZPOTRF or ZHEEVD returned an error code:
               <= N:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = MagmaVec, then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ---------------
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if ZHEEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.

    @ingroup magma_zhegv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zhegvdx_m(magma_int_t nrgpu, magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n,
                magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *B, magma_int_t ldb,
                double vl, double vu, magma_int_t il, magma_int_t iu,
                magma_int_t *m, double *w, magmaDoubleComplex *work, magma_int_t lwork,
                double *rwork, magma_int_t lrwork,
                magma_int_t *iwork, magma_int_t liwork, magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    
    magmaDoubleComplex c_one = MAGMA_Z_ONE;
    
    magma_int_t lower;
    magma_trans_t trans;
    magma_int_t wantz;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;
    
    magma_int_t lwmin;
    magma_int_t liwmin;
    magma_int_t lrwmin;
    
    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);
    
    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -3;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,n)) {
        *info = -7;
    } else if (ldb < max(1,n)) {
        *info = -9;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -11;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -12;
            } else if (iu < min(n,il) || iu > n) {
                *info = -13;
            }
        }
    }
    
    magma_int_t nb = magma_get_zhetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = 2*n + n*n;
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;
    
    if (lwork < lwmin && ! lquery) {
        *info = -17;
    } else if (lrwork < lrwmin && ! lquery) {
        *info = -19;
    } else if (liwork < liwmin && ! lquery) {
        *info = -21;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    
    /*  Quick return if possible */
    if (n == 0) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zhegvd(&itype, jobz_, uplo_,
                         &n, A, &lda, B, &ldb,
                         w, work, &lwork,
                         #if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork,
                         #endif
                         iwork, &liwork, info);
        *m = n;
        return *info;
    }

    magma_timer_t time=0;
    timer_start( time );

    magma_zpotrf_m(nrgpu, uplo, n, B, ldb, info);
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }

    timer_stop( time );
    timer_printf("time zpotrf = %6.2f\n", time );
    timer_start( time );

    /* Transform problem to standard eigenvalue problem and solve. */
    magma_zhegst_m(nrgpu, itype, uplo, n, A, lda, B, ldb, info);

    timer_stop( time );
    timer_printf( "time zhegst = %6.2f\n", time );
    timer_start( time );

    magma_zheevdx_m(nrgpu, jobz, range, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, rwork, lrwork, iwork, liwork, info);

    timer_stop( time );
    timer_printf( "time zheevd = %6.2f\n", time );

    if (wantz && *info == 0) {
        timer_start( time );

        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                trans = MagmaConjTrans;
            } else {
                trans = MagmaNoTrans;
            }

            magma_ztrsm_m(nrgpu, MagmaLeft, uplo, trans, MagmaNonUnit,
                          n, *m, c_one, B, ldb, A, lda);
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                trans = MagmaNoTrans;
            } else {
                trans = MagmaConjTrans;
            }

            //magma_ztrmm(MagmaLeft, uplo, trans, MagmaNonUnit,
            //            n, n, c_one, db, lddb, da, ldda);
        }

        timer_stop( time );
        timer_printf( "time setmatrices trsm/mm + getmatrices = %6.2f\n", time );
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    return *info;
} /* magma_zhegvd_m */
Beispiel #4
0
/**
    Purpose
    -------
    ZHEGVDX_2STAGE computes all the eigenvalues, and optionally, the eigenvectors
    of a complex generalized Hermitian-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be Hermitian and B is also positive definite.
    It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    itype   INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangles of A and B are stored;
      -     = MagmaLower:  Lower triangles of A and B are stored.

    @param[in]
    n       INTEGER
            The order of the matrices A and B.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
    \n
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**H*B*Z = I;
            if ITYPE = 3, Z**H*inv(B)*Z = I.
            If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper)
            or the lower triangle (if UPLO=MagmaLower) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in,out]
    B       COMPLEX_16 array, dimension (LDB, N)
            On entry, the Hermitian matrix B.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.
    \n
            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**H*U or B = L*L**H.

    @param[in]
    ldb     INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= LQ2 + N * (NB + 1).
            If JOBZ = MagmaVec   and N > 1, LWORK >= LQ2 + 2*N + N**2.
            where LQ2 is the size needed to store the Q2 matrix
            and is returned by magma_bulge_get_lq2.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
            On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  ZPOTRF or ZHEEVD returned an error code:
               <= N:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = MagmaVec, then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ---------------
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if ZHEEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.

    @ingroup magma_zhegv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zhegvdx_2stage(magma_int_t itype, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n,
                     magmaDoubleComplex *A, magma_int_t lda,
                     magmaDoubleComplex *B, magma_int_t ldb,
                     double vl, double vu, magma_int_t il, magma_int_t iu,
                     magma_int_t *m, double *w,
                     magmaDoubleComplex *work, magma_int_t lwork,
                     double *rwork, magma_int_t lrwork,
                     magma_int_t *iwork, magma_int_t liwork,
                     magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );

    magmaDoubleComplex c_one = MAGMA_Z_ONE;

    magmaDoubleComplex *dA;
    magmaDoubleComplex *dB;
    magma_int_t ldda = n;
    magma_int_t lddb = n;

    magma_int_t lower;
    magma_trans_t trans;
    magma_int_t wantz;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    magma_int_t lwmin;
    magma_int_t liwmin;
    magma_int_t lrwmin;

    magma_queue_t stream;
    magma_queue_create( &stream );

    /* determine the number of threads */
    magma_int_t parallel_threads = magma_get_parallel_numthreads();

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -3;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,n)) {
        *info = -7;
    } else if (ldb < max(1,n)) {
        *info = -9;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -11;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -12;
            } else if (iu < min(n,il) || iu > n) {
                *info = -13;
            }
        }
    }

    magma_int_t nb = magma_get_zbulge_nb(n, parallel_threads);
    magma_int_t lq2 = magma_zbulge_get_lq2(n, parallel_threads);

    if (wantz) {
        lwmin = lq2 + 2 * n + n * n;
        lrwmin = 1 + 5 * n + 2 * n * n;
        liwmin = 5 * n + 3;
    } else {
        lwmin = lq2 + n * (nb + 1);
        lrwmin = n;
        liwmin = 1;
    }

    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -17;
    } else if (lrwork < lrwmin && ! lquery) {
        *info = -19;
    } else if (liwork < liwmin && ! lquery) {
        *info = -21;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zhegvd(&itype, jobz_, uplo_,
                         &n, A, &lda, B, &ldb,
                         w, work, &lwork,
                         #if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork,
                         #endif
                         iwork, &liwork, info);
        *m = n;
        return *info;
    }

    // TODO: fix memory leak
    if (MAGMA_SUCCESS != magma_zmalloc( &dA, n*ldda ) ||
        MAGMA_SUCCESS != magma_zmalloc( &dB, n*lddb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    /* Form a Cholesky factorization of B. */
    magma_zsetmatrix( n, n, B, ldb, dB, lddb );

    magma_zsetmatrix_async( n, n,
                           A,  lda,
                           dA, ldda, stream );

    magma_timer_t time=0;
    timer_start( time );

    magma_zpotrf_gpu(uplo, n, dB, lddb, info);
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }

    timer_stop( time );
    timer_printf( "time zpotrf_gpu = %6.2f\n", time );

    magma_queue_sync( stream );
    magma_zgetmatrix_async( n, n,
                           dB, lddb,
                           B,  ldb, stream );

    /* Transform problem to standard eigenvalue problem and solve. */
    timer_start( time );
    magma_zhegst_gpu(itype, uplo, n, dA, ldda, dB, lddb, info);
    timer_stop( time );
    timer_printf( "time zhegst_gpu = %6.2f\n", time );

    magma_zgetmatrix( n, n, dA, ldda, A, lda );
    magma_queue_sync( stream );
    magma_free( dA );
    magma_free( dB );

    timer_start( time );
    magma_zheevdx_2stage(jobz, range, uplo, n, A, lda, vl, vu, il, iu, m, w, work, lwork, rwork, lrwork, iwork, liwork, info);
    timer_stop( time );
    timer_printf( "time zheevdx_2stage = %6.2f\n", time );

    if (wantz && *info == 0) {
        // TODO fix memory leak
        if (MAGMA_SUCCESS != magma_zmalloc( &dA, n*ldda ) ||
            MAGMA_SUCCESS != magma_zmalloc( &dB, n*lddb )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        timer_start( time );

        magma_zsetmatrix( n, *m, A, lda, dA, ldda );
        magma_zsetmatrix( n,  n, B, ldb, dB, lddb );

        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                trans = MagmaConjTrans;
            } else {
                trans = MagmaNoTrans;
            }

            magma_ztrsm(MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, c_one, dB, lddb, dA, ldda);
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                trans = MagmaNoTrans;
            } else {
                trans = MagmaConjTrans;
            }

            magma_ztrmm(MagmaLeft, uplo, trans, MagmaNonUnit, n, *m, c_one, dB, lddb, dA, ldda);
        }

        magma_zgetmatrix( n, *m, dA, ldda, A, lda );

        timer_stop( time );
        timer_printf( "time trsm/mm + getmatrix = %6.2f\n", time );

        magma_free( dA );
        magma_free( dB );
    }

    magma_queue_destroy( stream );

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    return *info;
} /* magma_zhegvdx_2stage */
Beispiel #5
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing zhegvd
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gpu_time, cpu_time;
    magmaDoubleComplex *h_A, *h_R, *h_B, *h_S, *h_work;
    double *rwork, *w1, *w2;
    double result[4] = {0};
    magma_int_t *iwork;
    magma_int_t N, n2, info, nb, lwork, liwork, lda, lrwork;
    magmaDoubleComplex c_zero    = MAGMA_Z_ZERO;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    double d_one         =  1.;
    double d_neg_one     = -1.;
    //double d_ten         = 10.;
    //magma_int_t izero    = 0;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;

    magma_opts opts;
    parse_opts( argc, argv, &opts );

    double tol    = opts.tolerance * lapackf77_dlamch("E");
    double tolulp = opts.tolerance * lapackf77_dlamch("P");
    
    if ( opts.check && opts.jobz == MagmaNoVec ) {
        fprintf( stderr, "checking results requires vectors; setting jobz=V (option -JV)\n" );
        opts.jobz = MagmaVec;
    }
    
    printf("using: itype = %d, jobz = %s, uplo = %s\n",
           (int) opts.itype, lapack_vec_const(opts.jobz), lapack_uplo_const(opts.uplo));

    printf("    N   CPU Time (sec)   GPU Time(sec)\n");
    printf("======================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda    = N;
            n2     = N*lda;
            nb     = magma_get_zhetrd_nb(N);
            lwork  = 2*N*nb + N*N;
            lrwork = 1 + 5*N +2*N*N;
            liwork = 3 + 5*N;

            TESTING_MALLOC_CPU( h_A,    magmaDoubleComplex,  n2     );
            TESTING_MALLOC_CPU( h_B,    magmaDoubleComplex,  n2     );
            TESTING_MALLOC_CPU( w1,     double,              N      );
            TESTING_MALLOC_CPU( w2,     double,              N      );
            TESTING_MALLOC_CPU( rwork,  double,              lrwork );
            TESTING_MALLOC_CPU( iwork,  magma_int_t,         liwork );
            
            TESTING_MALLOC_PIN( h_R,    magmaDoubleComplex,  n2     );
            TESTING_MALLOC_PIN( h_S,    magmaDoubleComplex,  n2     );
            TESTING_MALLOC_PIN( h_work, magmaDoubleComplex,  lwork  );
            
            /* Initialize the matrix */
            lapackf77_zlarnv( &ione, ISEED, &n2, h_A );
            //lapackf77_zlatms( &N, &N, "U", ISEED, "P", w1, &five, &d_ten,
            //                 &d_one, &N, &N, lapack_uplo_const(opts.uplo), h_B, &lda, h_work, &info);
            //lapackf77_zlaset( "A", &N, &N, &c_zero, &c_one, h_B, &lda);
            lapackf77_zlarnv( &ione, ISEED, &n2, h_B );
            magma_zmake_hpd( N, h_B, lda );
            lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_A, &lda, h_R, &lda );
            lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda );
            
            /* warmup */
            if ( opts.warmup ) {
                magma_zhegvd( opts.itype, opts.jobz, opts.uplo,
                              N, h_R, lda, h_S, lda, w1,
                              h_work, lwork,
                              rwork, lrwork,
                              iwork, liwork,
                              &info );
                if (info != 0)
                    printf("magma_zhegvd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_A, &lda, h_R, &lda );
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda );
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_wtime();
            magma_zhegvd( opts.itype, opts.jobz, opts.uplo,
                          N, h_R, lda, h_S, lda, w1,
                          h_work, lwork,
                          rwork, lrwork,
                          iwork, liwork,
                          &info );
            gpu_time = magma_wtime() - gpu_time;
            if (info != 0)
                printf("magma_zhegvd returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            if ( opts.check ) {
                /* =====================================================================
                   Check the results following the LAPACK's [zc]hegvd routine.
                   A x = lambda B x is solved
                   and the following 3 tests computed:
                   (1)    | A Z - B Z D | / ( |A||Z| N )   (itype = 1)
                          | A B Z - Z D | / ( |A||Z| N )   (itype = 2)
                          | B A Z - Z D | / ( |A||Z| N )   (itype = 3)
                   (2)    | I - V V' B | / ( N )           (itype = 1,2)
                          | B - V V' | / ( |B| N )         (itype = 3)
                   (3)    | S(with V) - S(w/o V) | / | S |
                   =================================================================== */
                double temp1, temp2;
                //magmaDoubleComplex *tau;
                
                if ( opts.itype == 1 || opts.itype == 2 ) {
                    lapackf77_zlaset( "A", &N, &N, &c_zero, &c_one, h_S, &lda);
                    blasf77_zgemm("N", "C", &N, &N, &N, &c_one, h_R, &lda, h_R, &lda, &c_zero, h_work, &N);
                    blasf77_zhemm("R", lapack_uplo_const(opts.uplo), &N, &N, &c_neg_one, h_B, &lda, h_work, &N, &c_one, h_S, &lda);
                    result[1] = lapackf77_zlange("1", &N, &N, h_S, &lda, rwork) / N;
                }
                else if ( opts.itype == 3 ) {
                    lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda);
                    blasf77_zherk(lapack_uplo_const(opts.uplo), "N", &N, &N, &d_neg_one, h_R, &lda, &d_one, h_S, &lda);
                    result[1] = lapackf77_zlanhe("1", lapack_uplo_const(opts.uplo), &N, h_S, &lda, rwork) / N
                              / lapackf77_zlanhe("1", lapack_uplo_const(opts.uplo), &N, h_B, &lda, rwork);
                }
                
                result[0] = 1.;
                result[0] /= lapackf77_zlanhe("1", lapack_uplo_const(opts.uplo), &N, h_A, &lda, rwork);
                result[0] /= lapackf77_zlange("1", &N, &N, h_R, &lda, rwork);
                
                if ( opts.itype == 1 ) {
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_A, &lda, h_R, &lda, &c_zero, h_work, &N);
                    for(int i=0; i<N; ++i)
                        blasf77_zdscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_neg_one, h_B, &lda, h_R, &lda, &c_one, h_work, &N);
                    result[0] *= lapackf77_zlange("1", &N, &N, h_work, &lda, rwork)/N;
                }
                else if ( opts.itype == 2 ) {
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_B, &lda, h_R, &lda, &c_zero, h_work, &N);
                    for(int i=0; i<N; ++i)
                        blasf77_zdscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_A, &lda, h_work, &N, &c_neg_one, h_R, &lda);
                    result[0] *= lapackf77_zlange("1", &N, &N, h_R, &lda, rwork)/N;
                }
                else if ( opts.itype == 3 ) {
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_A, &lda, h_R, &lda, &c_zero, h_work, &N);
                    for(int i=0; i<N; ++i)
                        blasf77_zdscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_zhemm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_B, &lda, h_work, &N, &c_neg_one, h_R, &lda);
                    result[0] *= lapackf77_zlange("1", &N, &N, h_R, &lda, rwork)/N;
                }
                
                /*
                lapackf77_zhet21( &ione, lapack_uplo_const(opts.uplo), &N, &izero,
                                  h_A, &lda,
                                  w1, w1,
                                  h_R, &lda,
                                  h_R, &lda,
                                  tau, h_work, rwork, &result[0] );
                */
                
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_A, &lda, h_R, &lda );
                lapackf77_zlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda );
                
                magma_zhegvd( opts.itype, MagmaNoVec, opts.uplo,
                              N, h_R, lda, h_S, lda, w2,
                              h_work, lwork,
                              rwork, lrwork,
                              iwork, liwork,
                              &info );
                if (info != 0)
                    printf("magma_zhegvd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                temp1 = temp2 = 0;
                for(int j=0; j<N; j++) {
                    temp1 = max(temp1, absv(w1[j]));
                    temp1 = max(temp1, absv(w2[j]));
                    temp2 = max(temp2, absv(w1[j]-w2[j]));
                }
                result[2] = temp2 / (((double)N)*temp1);
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                lapackf77_zhegvd( &opts.itype, lapack_vec_const(opts.jobz), lapack_uplo_const(opts.uplo),
                                  &N, h_A, &lda, h_B, &lda, w2,
                                  h_work, &lwork,
                                  rwork, &lrwork,
                                  iwork, &liwork,
                                  &info );
                cpu_time = magma_wtime() - cpu_time;
                if (info != 0)
                    printf("lapackf77_zhegvd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                printf("%5d     %7.2f         %7.2f\n",
                       (int) N, cpu_time, gpu_time);
            }
            else {
                printf("%5d       ---           %7.2f\n",
                       (int) N, gpu_time);
            }
            
            /* =====================================================================
               Print execution time
               =================================================================== */
            if ( opts.check ) {
                printf("Testing the eigenvalues and eigenvectors for correctness:\n");
                if ( opts.itype==1 ) {
                    printf("(1)    | A Z - B Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed") );
                }
                else if ( opts.itype==2 ) {
                    printf("(1)    | A B Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed") );
                }
                else if ( opts.itype==3 ) {
                    printf("(1)    | B A Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed") );
                }
                if ( opts.itype==1 || opts.itype==2 ) {
                    printf("(2)    | I -   Z Z' B | /  N         = %8.2e   %s\n",   result[1], (result[1] < tol    ? "ok" : "failed") );
                }
                else {
                    printf("(2)    | B -  Z Z' | / (|B| N)       = %8.2e   %s\n",   result[1], (result[1] < tol    ? "ok" : "failed") );
                }
                printf(    "(3)    | D(w/ Z) - D(w/o Z) | / |D|  = %8.2e   %s\n\n", result[2], (result[2] < tolulp ? "ok" : "failed") );
                status += ! (result[0] < tol && result[1] < tol && result[2] < tolulp);
            }
            
            TESTING_FREE_CPU( h_A    );
            TESTING_FREE_CPU( h_B    );
            TESTING_FREE_CPU( w1     );
            TESTING_FREE_CPU( w2     );
            TESTING_FREE_CPU( rwork  );
            TESTING_FREE_CPU( iwork  );
            
            TESTING_FREE_PIN( h_R    );
            TESTING_FREE_PIN( h_S    );
            TESTING_FREE_PIN( h_work );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    TESTING_FINALIZE();
    return status;
}
Beispiel #6
0
extern "C" magma_int_t
magma_zhegvdx_2stage(magma_int_t itype, char jobz, char range, char uplo, magma_int_t n,
                     magmaDoubleComplex *a, magma_int_t lda, 
                     magmaDoubleComplex *b, magma_int_t ldb,
                     double vl, double vu, magma_int_t il, magma_int_t iu,
                     magma_int_t *m, double *w, 
                     magmaDoubleComplex *work, magma_int_t lwork, 
                     double *rwork, magma_int_t lrwork, 
                     magma_int_t *iwork, magma_int_t liwork, 
                     magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    ZHEGVDX_2STAGE computes all the eigenvalues, and optionally, the eigenvectors
    of a complex generalized Hermitian-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be Hermitian and B is also positive definite.
    It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    ITYPE   (input) INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangles of A and B are stored;
            = 'L':  Lower triangles of A and B are stored.

    N       (input) INTEGER
            The order of the matrices A and B.  N >= 0.

    A       (input/output) COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.

            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**H*B*Z = I;
            if ITYPE = 3, Z**H*inv(B)*Z = I.
            If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
            or the lower triangle (if UPLO='L') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    B       (input/output) COMPLEX_16 array, dimension (LDB, N)
            On entry, the Hermitian matrix B.  If UPLO = 'U', the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = 'L',
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.

            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**H*U or B = L*L**H.

    LDB     (input) INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    VL      (input) DOUBLE PRECISION
    VU      (input) DOUBLE PRECISION
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= LQ2 + N * (NB + 1).
            If JOBZ  = 'V' and N > 1, LWORK >= LQ2 + 2*N + N**2.
                                      where LQ2 is the size needed to store
                                      the Q2 matrix and is returned by
                                      MAGMA_BULGE_GET_LQ2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
            On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK >= 1.
            If JOBZ  = 'N' and N > 1, LRWORK >= N.
            If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  ZPOTRF or ZHEEVD returned an error code:
               <= N:  if INFO = i and JOBZ = 'N', then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = 'V', then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ===============
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if ZHEEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.
    =====================================================================  */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};

    magmaDoubleComplex c_one = MAGMA_Z_ONE;

    magmaDoubleComplex *da;
    magmaDoubleComplex *db;
    magma_int_t ldda = n;
    magma_int_t lddb = n;

    magma_int_t lower;
    char trans[1];
    magma_int_t wantz;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

//    magma_int_t lopt;
    magma_int_t lwmin;
//    magma_int_t liopt;
    magma_int_t liwmin;
//    magma_int_t lropt;
    magma_int_t lrwmin;

    magma_queue_t stream;
    magma_queue_create( &stream );

    /* determine the number of threads */
    magma_int_t threads = magma_get_numthreads();
    magma_setlapack_numthreads(threads);

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    alleig = lapackf77_lsame(range_, "A");
    valeig = lapackf77_lsame(range_, "V");
    indeig = lapackf77_lsame(range_, "I");
    lquery = lwork == -1 || lrwork == -1 || liwork == -1;

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -3;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,n)) {
        *info = -7;
    } else if (ldb < max(1,n)) {
        *info = -9;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -11;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -12;
            } else if (iu < min(n,il) || iu > n) {
                *info = -13;
            }
        }
    }

    magma_int_t nb = magma_get_zbulge_nb(n, threads);
    magma_int_t lq2 = magma_zbulge_get_lq2(n, threads);

    if (wantz) {
        lwmin = lq2 + 2 * n + n * n;
        lrwmin = 1 + 5 * n + 2 * n * n;
        liwmin = 5 * n + 3;
    } else {
        lwmin = lq2 + n * (nb + 1);
        lrwmin = n;
        liwmin = 1;
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * (1. + lapackf77_dlamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -17;
    } else if (lrwork < lrwmin && ! lquery) {
        *info = -19;
    } else if (liwork < liwmin && ! lquery) {
        *info = -21;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zhegvd(&itype, jobz_, uplo_,
                         &n, a, &lda, b, &ldb,
                         w, work, &lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork, 
#endif  
                         iwork, &liwork, info);
        *m = n;
        return *info;
    }

    if (MAGMA_SUCCESS != magma_zmalloc( &da, n*ldda ) ||
        MAGMA_SUCCESS != magma_zmalloc( &db, n*lddb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    /*     Form a Cholesky factorization of B. */
    magma_zsetmatrix( n, n, b, ldb, db, lddb );

    magma_zsetmatrix_async( n, n,
                           a,  lda,
                           da, ldda, stream );

#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    magma_zpotrf_gpu(uplo_[0], n, db, lddb, info);
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time zpotrf_gpu = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    magma_queue_sync( stream );
    magma_zgetmatrix_async( n, n,
                           db, lddb,
                           b,  ldb, stream );

#ifdef ENABLE_TIMER
    start = get_current_time();
#endif

    /*     Transform problem to standard eigenvalue problem and solve. */
    magma_zhegst_gpu(itype, uplo, n, da, ldda, db, lddb, info);
#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time zhegst_gpu = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    magma_zgetmatrix( n, n, da, ldda, a, lda );
    magma_queue_sync( stream );
    magma_free( da );
    magma_free( db );

#ifdef ENABLE_TIMER
    start = get_current_time();
#endif

    magma_zheevdx_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, m, w, work, lwork, rwork, lrwork, iwork, liwork, info);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time zheevdx_2stage = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    if (wantz && *info == 0) {

        if (MAGMA_SUCCESS != magma_zmalloc( &da, n*ldda ) ||
            MAGMA_SUCCESS != magma_zmalloc( &db, n*lddb )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        magma_zsetmatrix( n, *m, a, lda, da, ldda );
        magma_zsetmatrix( n,  n, b, ldb, db, lddb );

        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {

            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                *(unsigned char *)trans = MagmaConjTrans;
            } else {
                *(unsigned char *)trans = MagmaNoTrans;
            }

            magma_ztrsm(MagmaLeft, uplo, *trans, MagmaNonUnit, n, *m, c_one, db, lddb, da, ldda);

        } else if (itype == 3) {

            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                *(unsigned char *)trans = MagmaNoTrans;
            } else {
                *(unsigned char *)trans = MagmaConjTrans;
            }

            magma_ztrmm(MagmaLeft, uplo, *trans, MagmaNonUnit, n, *m, c_one, db, lddb, da, ldda);
        }

        magma_zgetmatrix( n, *m, da, ldda, a, lda );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time trsm/mm + getmatrix = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

        magma_free( da );
        magma_free( db );

    }

    magma_queue_destroy( stream );

    work[0]  = MAGMA_Z_MAKE( lwmin * (1. + lapackf77_dlamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* zhegvdx_2stage */
Beispiel #7
0
/**
    Purpose
    -------
    ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
    of a complex generalized Hermitian-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be Hermitian and B is also positive definite.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    itype   INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangles of A and B are stored;
      -     = MagmaLower:  Lower triangles of A and B are stored.

    @param[in]
    n       INTEGER
            The order of the matrices A and B.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
    \n
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**H*B*Z = I;
            if ITYPE = 3, Z**H*inv(B)*Z = I.
            If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper)
            or the lower triangle (if UPLO=MagmaLower) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in,out]
    B       COMPLEX_16 array, dimension (LDB, N)
            On entry, the Hermitian matrix B.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.
    \n
            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**H*U or B = L*L**H.

    @param[in]
    ldb     INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_zhetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  ZPOTRF or ZHEEVD returned an error code:
               <= N:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = MagmaVec, then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ---------------
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if ZHEEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.

    @ingroup magma_zhegv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zhegvd(magma_int_t itype, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n,
             magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *B, magma_int_t ldb,
             double *w, magmaDoubleComplex *work, magma_int_t lwork,
             double *rwork, magma_int_t lrwork,
             magma_int_t *iwork, magma_int_t liwork, magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );

    magmaDoubleComplex c_one = MAGMA_Z_ONE;

    magmaDoubleComplex *da;
    magmaDoubleComplex *db;
    magma_int_t ldda = n;
    magma_int_t lddb = n;

    magma_int_t lower;
    magma_trans_t trans;
    magma_int_t wantz;
    magma_int_t lquery;

    magma_int_t lwmin;
    magma_int_t liwmin;
    magma_int_t lrwmin;

    magma_queue_t stream;
    magma_queue_create( &stream );

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else if (ldb < max(1,n)) {
        *info = -8;
    }

    magma_int_t nb = magma_get_zhetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }

    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -11;
    } else if (lrwork < lrwmin && ! lquery) {
        *info = -13;
    } else if (liwork < liwmin && ! lquery) {
        *info = -15;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zhegvd(&itype, jobz_, uplo_,
                         &n, A, &lda, B, &ldb,
                         w, work, &lwork,
                         #if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork,
                         #endif
                         iwork, &liwork, info);
        return *info;
    }

    // TODO fix memory leak
    if (MAGMA_SUCCESS != magma_zmalloc( &da, n*ldda ) ||
        MAGMA_SUCCESS != magma_zmalloc( &db, n*lddb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Form a Cholesky factorization of B. */
    magma_zsetmatrix( n, n, B, ldb, db, lddb );

    magma_zsetmatrix_async( n, n,
                           A,  lda,
                           da, ldda, stream );

    magma_timer_t time=0;
    timer_start( time );
    magma_zpotrf_gpu(uplo, n, db, lddb, info);
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }
    timer_stop( time );
    timer_printf( "time zpotrf_gpu = %6.2f\n", time );

    magma_queue_sync( stream );
    magma_zgetmatrix_async( n, n,
                           db, lddb,
                           B,  ldb, stream );

    timer_start( time );
    /* Transform problem to standard eigenvalue problem and solve. */
    magma_zhegst_gpu(itype, uplo, n, da, ldda, db, lddb, info);
    timer_stop( time );
    timer_printf( "time zhegst_gpu = %6.2f\n", time );

    /* simple fix to be able to run bigger size.
     * need to have a dwork here that will be used
     * a db and then passed to  dsyevd.
     * */
    if (n > 5000) {
        magma_queue_sync( stream );
        magma_free( db );
    }

    timer_start( time );
    magma_zheevd_gpu(jobz, uplo, n, da, ldda, w, A, lda,
                     work, lwork, rwork, lrwork, iwork, liwork, info);
    timer_stop( time );
    timer_printf( "time zheevd_gpu = %6.2f\n", time );

    if (wantz && *info == 0) {
        timer_start( time );
        
        /* allocate and copy db back */
        if (n > 5000) {
            if (MAGMA_SUCCESS != magma_zmalloc( &db, n*lddb ) ) {
                *info = MAGMA_ERR_DEVICE_ALLOC;
                return *info;
            }
            magma_zsetmatrix( n, n, B, ldb, db, lddb );
        }
        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                trans = MagmaConjTrans;
            } else {
                trans = MagmaNoTrans;
            }

            magma_ztrsm(MagmaLeft, uplo, trans, MagmaNonUnit,
                        n, n, c_one, db, lddb, da, ldda);
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                trans = MagmaNoTrans;
            } else {
                trans = MagmaConjTrans;
            }

            magma_ztrmm(MagmaLeft, uplo, trans, MagmaNonUnit,
                        n, n, c_one, db, lddb, da, ldda);
        }

        magma_zgetmatrix( n, n, da, ldda, A, lda );
        
        /* free db */
        if (n > 5000) {
            magma_free( db );
        }
        
        timer_stop( time );
        timer_printf( "time ztrsm/mm + getmatrix = %6.2f\n", time );
    }

    magma_queue_sync( stream );
    magma_queue_destroy( stream );

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    magma_free( da );
    if (n <= 5000) {
        magma_free( db );
    }

    return *info;
} /* magma_zhegvd */
Beispiel #8
0
/**
    Purpose
    -------
    ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
    of a complex generalized Hermitian-definite eigenproblem, of the form
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
    B are assumed to be Hermitian and B is also positive definite.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    nrgpu   INTEGER
            Number of GPUs to use.

    @param[in]
    itype   INTEGER
            Specifies the problem type to be solved:
            = 1:  A*x = (lambda)*B*x
            = 2:  A*B*x = (lambda)*x
            = 3:  B*A*x = (lambda)*x

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangles of A and B are stored;
      -     = MagmaLower:  Lower triangles of A and B are stored.

    @param[in]
    n       INTEGER
            The order of the matrices A and B.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
    \n
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            matrix Z of eigenvectors.  The eigenvectors are normalized
            as follows:
            if ITYPE = 1 or 2, Z**H*B*Z = I;
            if ITYPE = 3, Z**H*inv(B)*Z = I.
            If JOBZ = MagmaNoVec, then on exit the upper triangle (if UPLO=MagmaUpper)
            or the lower triangle (if UPLO=MagmaLower) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in,out]
    B       COMPLEX_16 array, dimension (LDB, N)
            On entry, the Hermitian matrix B.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of B contains the
            upper triangular part of the matrix B.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of B contains
            the lower triangular part of the matrix B.
    \n
            On exit, if INFO <= N, the part of B containing the matrix is
            overwritten by the triangular factor U or L from the Cholesky
            factorization B = U**H*U or B = L*L**H.

    @param[in]
    ldb     INTEGER
            The leading dimension of the array B.  LDB >= max(1,N).

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_zhetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  ZPOTRF or ZHEEVD returned an error code:
               <= N:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm
                      failed to converge; i off-diagonal elements of an
                      intermediate tridiagonal form did not converge to
                      zero;
                      if INFO = i and JOBZ = MagmaVec, then the algorithm
                      failed to compute an eigenvalue while working on
                      the submatrix lying in rows and columns INFO/(N+1)
                      through mod(INFO,N+1);
               > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                      minor of order i of B is not positive definite.
                      The factorization of B could not be completed and
                      no eigenvalues or eigenvectors were computed.

    Further Details
    ---------------
    Based on contributions by
       Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

    Modified so that no backsubstitution is performed if ZHEEVD fails to
    converge (NEIG in old code could be greater than N causing out of
    bounds reference to A - reported by Ralf Meyer).  Also corrected the
    description of INFO and the test on ITYPE. Sven, 16 Feb 05.

    @ingroup magma_zhegv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zhegvd_m(magma_int_t nrgpu, magma_int_t itype, magma_vec_t jobz, magma_uplo_t uplo, magma_int_t n,
               magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *B, magma_int_t ldb,
               double *w, magmaDoubleComplex *work, magma_int_t lwork,
               double *rwork, magma_int_t lrwork,
               magma_int_t *iwork, magma_int_t liwork, magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );

    magmaDoubleComplex c_one = MAGMA_Z_ONE;

    magma_int_t lower;
    magma_trans_t trans;
    magma_int_t wantz;
    magma_int_t lquery;

    magma_int_t lwmin;
    magma_int_t liwmin;
    magma_int_t lrwmin;

    magma_queue_t stream;
    magma_queue_create( &stream );

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (itype < 1 || itype > 3) {
        *info = -1;
    } else if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else if (ldb < max(1,n)) {
        *info = -8;
    }

    magma_int_t nb = magma_get_zhetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }

    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if (lwork < lwmin && ! lquery) {
        *info = -11;
    } else if (lrwork < lrwmin && ! lquery) {
        *info = -13;
    } else if (liwork < liwmin && ! lquery) {
        *info = -15;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /*     Quick return if possible */
    if (n == 0) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zhegvd(&itype, jobz_, uplo_,
                         &n, A, &lda, B, &ldb,
                         w, work, &lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork,
#endif
                         iwork, &liwork, info);
        return *info;
    }

    magma_timer_t time=0;
    timer_start( time );

    magma_zpotrf_m(nrgpu, uplo, n, B, ldb, info);
    if (*info != 0) {
        *info = n + *info;
        return *info;
    }

    timer_stop( time );
    timer_printf( "time zpotrf = %6.2f\n", time );
    timer_start( time );

    /*  Transform problem to standard eigenvalue problem and solve. */
    magma_zhegst_m(nrgpu, itype, uplo, n, A, lda, B, ldb, info);

    timer_stop( time );
    timer_printf( "time zhegst = %6.2f\n", time );
    timer_start( time );

    magma_zheevd_m(nrgpu, jobz, uplo, n, A, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info);

    timer_stop( time );
    timer_printf( "time zheevd = %6.2f\n", time );

    if (wantz && *info == 0) {
        timer_start( time );

        /* Backtransform eigenvectors to the original problem. */
        if (itype == 1 || itype == 2) {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
               backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
            if (lower) {
                trans = MagmaConjTrans;
            } else {
                trans = MagmaNoTrans;
            }

            magma_ztrsm_m(nrgpu, MagmaLeft, uplo, trans, MagmaNonUnit,
                          n, n, c_one, B, ldb, A, lda);
        }
        else if (itype == 3) {
            /* For B*A*x=(lambda)*x;
               backtransform eigenvectors: x = L*y or U'*y */
            if (lower) {
                trans = MagmaNoTrans;
            } else {
                trans = MagmaConjTrans;
            }
            printf("--- the multi GPU version is falling back to 1 GPU to perform the last TRMM since there is no TRMM_mgpu --- \n");
            magmaDoubleComplex *dA=NULL, *dB=NULL;
            magma_int_t ldda = n;
            magma_int_t lddb = n;
            
            if (MAGMA_SUCCESS != magma_zmalloc( &dB, n*lddb ) ) {
                *info = MAGMA_ERR_DEVICE_ALLOC;
                return *info;
            }
            if (MAGMA_SUCCESS != magma_zmalloc( &dA, n*ldda ) ) {
                *info = MAGMA_ERR_DEVICE_ALLOC;
                return *info;
            }
            magma_zsetmatrix( n, n, B, ldb, dB, lddb );
            magma_zsetmatrix( n, n, A, lda, dA, ldda );
            magma_ztrmm(MagmaLeft, uplo, trans, MagmaNonUnit,
                        n, n, c_one, dB, lddb, dA, ldda);
            magma_zgetmatrix( n, n, dA, ldda, A, lda );
        }

        timer_stop( time );
        timer_printf( "time setmatrices trsm/mm + getmatrices = %6.2f\n", time );
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    return *info;
} /* magma_zhegvd_m */