Beispiel #1
0
long double
__ieee754_remainderl(long double x, long double p)
{
	int64_t hx,hp;
	u_int64_t sx,lx,lp;
	long double p_half;
	double xhi, xlo, phi, plo;

	ldbl_unpack (x, &xhi, &xlo);
	EXTRACT_WORDS64 (hx, xhi);
	EXTRACT_WORDS64 (lx, xlo);
	ldbl_unpack (p, &phi, &plo);
	EXTRACT_WORDS64 (hp, phi);
	EXTRACT_WORDS64 (lp, plo);
	sx = hx&0x8000000000000000ULL;
	lp ^= hp & 0x8000000000000000ULL;
	hp &= 0x7fffffffffffffffLL;
	lx ^= sx;
	hx &= 0x7fffffffffffffffLL;
	if (lp == 0x8000000000000000ULL)
	  lp = 0;
	if (lx == 0x8000000000000000ULL)
	  lx = 0;

    /* purge off exception values */
	if(hp==0) return (x*p)/(x*p);	/* p = 0 */
	if((hx>=0x7ff0000000000000LL)||			/* x not finite */
	   (hp>0x7ff0000000000000LL))			/* p is NaN */
	    return (x*p)/(x*p);


	if (hp<=0x7fdfffffffffffffLL) x = __ieee754_fmodl(x,p+p);	/* now x < 2p */
	if (((hx-hp)|(lx-lp))==0) return zero*x;
	x  = fabsl(x);
	p  = fabsl(p);
	if (hp<0x0020000000000000LL) {
	    if(x+x>p) {
		x-=p;
		if(x+x>=p) x -= p;
	    }
	} else {
	    p_half = 0.5L*p;
	    if(x>p_half) {
		x-=p;
		if(x>=p_half) x -= p;
	    }
	}
	if (sx)
	  x = -x;
	return x;
}
Beispiel #2
0
int
FUNC (long double *x, long double payload)
{
  double hi, lo;
  uint64_t hx, lx;

  ldbl_unpack (payload, &hi, &lo);
  EXTRACT_WORDS64 (hx, hi);
  EXTRACT_WORDS64 (lx, lo);
  int exponent = hx >> EXPLICIT_MANT_DIG;
  /* Test if argument is (a) negative or too large; (b) too small,
     except for 0 when allowed; (c) not an integer.  All valid
     arguments have the low part zero.  */
  if ((lx & 0x7fffffffffffffffULL) != 0
      || exponent >= BIAS + PAYLOAD_DIG
      || (exponent < BIAS && !(SET_HIGH_BIT && hx == 0))
      || (hx & ((1ULL << (BIAS + EXPLICIT_MANT_DIG - exponent)) - 1)) != 0)
    {
      *x = 0.0L;
      return 1;
    }
  if (hx != 0)
    {
      hx &= (1ULL << EXPLICIT_MANT_DIG) - 1;
      hx |= 1ULL << EXPLICIT_MANT_DIG;
      hx >>= BIAS + EXPLICIT_MANT_DIG - exponent;
    }
Beispiel #3
0
long double
__truncl (long double x)
{
  double xh, xl, hi, lo;

  ldbl_unpack (x, &xh, &xl);

  /* Return Inf, Nan, +/-0 unchanged.  */
  if (__builtin_expect (xh != 0.0
			&& __builtin_isless (__builtin_fabs (xh),
					     __builtin_inf ()), 1))
    {
      double orig_xh;

      /* Long double arithmetic, including the canonicalisation below,
	 only works in round-to-nearest mode.  */

      /* Convert the high double to integer.  */
      orig_xh = xh;
      hi = ldbl_nearbyint (xh);

      /* Subtract integral high part from the value.  */
      xh -= hi;
      ldbl_canonicalize (&xh, &xl);

      /* Now convert the low double, adjusted for any remainder from the
         high double.  */
      lo = ldbl_nearbyint (xh);

      /* Adjust the result when the remainder is non-zero.  nearbyint
         rounds values to the nearest integer, and values halfway
         between integers to the nearest even integer.  floorl must
         round towards -Inf.  */
      xh -= lo;
      ldbl_canonicalize (&xh, &xl);

      if (orig_xh < 0.0)
	{
	  if (xh > 0.0 || (xh == 0.0 && xl > 0.0))
	    lo += 1.0;
	}
      else
	{
	  if (xh < 0.0 || (xh == 0.0 && xl < 0.0))
	    lo -= 1.0;
	}

      /* Ensure the final value is canonical.  In certain cases,
         rounding causes hi,lo calculated so far to be non-canonical.  */
      xh = hi;
      xl = lo;
      ldbl_canonicalize (&xh, &xl);

      /* Ensure we return -0 rather than +0 when appropriate.  */
      if (orig_xh < 0.0)
	xh = -__builtin_fabs (xh);
    }

  return ldbl_pack (xh, xl);
}
Beispiel #4
0
long double
__truncl (long double x)
{
  double xh, xl, hi, lo;

  ldbl_unpack (x, &xh, &xl);

  /* Return Inf, Nan, +/-0 unchanged.  */
  if (__builtin_expect (xh != 0.0
			&& __builtin_isless (__builtin_fabs (xh),
					     __builtin_inf ()), 1))
    {
      hi = __trunc (xh);
      if (hi != xh)
	{
	  /* The high part is not an integer; the low part does not
	     affect the result.  */
	  xh = hi;
	  xl = 0;
	}
      else
	{
	  /* The high part is a nonzero integer.  */
	  lo = xh > 0 ? __floor (xl) : __ceil (xl);
	  xh = hi;
	  xl = lo;
	  ldbl_canonicalize_int (&xh, &xl);
	}
    }

  return ldbl_pack (xh, xl);
}
Beispiel #5
0
long double
__ieee754_acoshl(long double x)
{
	long double t;
	int64_t hx;
	uint64_t lx;
	double xhi, xlo;

	ldbl_unpack (x, &xhi, &xlo);
	EXTRACT_WORDS64 (hx, xhi);
	EXTRACT_WORDS64 (lx, xlo);
	if(hx<0x3ff0000000000000LL) {		/* x < 1 */
	    return (x-x)/(x-x);
	} else if(hx >=0x41b0000000000000LL) {	/* x > 2**28 */
	    if(hx >=0x7ff0000000000000LL) {	/* x is inf of NaN */
		return x+x;
	    } else
		return __ieee754_logl(x)+ln2;	/* acosh(huge)=log(2x) */
	} else if (((hx-0x3ff0000000000000LL)|(lx&0x7fffffffffffffffLL))==0) {
	    return 0.0;			/* acosh(1) = 0 */
	} else if (hx > 0x4000000000000000LL) {	/* 2**28 > x > 2 */
	    t=x*x;
	    return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
	} else {			/* 1<x<2 */
	    t = x-one;
	    return __log1pl(t+__ieee754_sqrtl(2.0*t+t*t));
	}
}
Beispiel #6
0
long double
__roundl (long double x)
{
  double xh, xl, hi, lo;

  ldbl_unpack (x, &xh, &xl);

  /* Return Inf, Nan, +/-0 unchanged.  */
  if (__builtin_expect (xh != 0.0
			&& __builtin_isless (__builtin_fabs (xh),
					     __builtin_inf ()), 1))
    {
      hi = __round (xh);
      if (hi != xh)
	{
	  /* The high part is not an integer; the low part only
	     affects the result if the high part is exactly half way
	     between two integers and the low part is nonzero with the
	     opposite sign.  */
	  if (fabs (hi - xh) == 0.5)
	    {
	      if (xh > 0 && xl < 0)
		xh = hi - 1;
	      else if (xh < 0 && xl > 0)
		xh = hi + 1;
	      else
		xh = hi;
	    }
	  else
	    xh = hi;
	  xl = 0;
	}
      else
	{
	  /* The high part is a nonzero integer.  */
	  lo = __round (xl);
	  if (fabs (lo - xl) == 0.5)
	    {
	      if (xh > 0 && xl < 0)
		xl = lo + 1;
	      else if (xh < 0 && lo > 0)
		xl = lo - 1;
	      else
		xl = lo;
	    }
	  else
	    xl = lo;
	  xh = hi;
	  ldbl_canonicalize_int (&xh, &xl);
	}
    }
  else
    /* Quiet signaling NaN arguments.  */
    xh += xh;

  return ldbl_pack (xh, xl);
}
Beispiel #7
0
long double
__roundl (long double x)
{
  double xh, xl, hi, lo;

  ldbl_unpack (x, &xh, &xl);

  /* Return Inf, Nan, +/-0 unchanged.  */
  if (__builtin_expect (xh != 0.0
			&& __builtin_isless (__builtin_fabs (xh),
					     __builtin_inf ()), 1))
    {
      double orig_xh;

      /* Long double arithmetic, including the canonicalisation below,
	 only works in round-to-nearest mode.  */

      /* Convert the high double to integer.  */
      orig_xh = xh;
      hi = ldbl_nearbyint (xh);

      /* Subtract integral high part from the value.  */
      xh -= hi;
      ldbl_canonicalize (&xh, &xl);

      /* Now convert the low double, adjusted for any remainder from the
	 high double.  */
      lo = ldbl_nearbyint (xh);

      /* Adjust the result when the remainder is exactly 0.5.  nearbyint
	 rounds values halfway between integers to the nearest even
	 integer.  roundl must round away from zero.
	 Also correct cases where nearbyint returns an incorrect value
	 for LO.  */
      xh -= lo;
      ldbl_canonicalize (&xh, &xl);
      if (xh == 0.5)
	{
	  if (xl > 0.0 || (xl == 0.0 && orig_xh > 0.0))
	    lo += 1.0;
	}
      else if (-xh == 0.5)
	{
	  if (xl < 0.0 || (xl == 0.0 && orig_xh < 0.0))
	    lo -= 1.0;
	}

      /* Ensure the final value is canonical.  In certain cases,
	 rounding causes hi,lo calculated so far to be non-canonical.  */
      xh = hi;
      xl = lo;
      ldbl_canonicalize (&xh, &xl);
    }

  return ldbl_pack (xh, xl);
}
Beispiel #8
0
long double __fabsl(long double x)
{
	uint64_t hx, lx;
	double xhi, xlo;

	ldbl_unpack (x, &xhi, &xlo);
	EXTRACT_WORDS64 (hx, xhi);
	EXTRACT_WORDS64 (lx, xlo);
	lx = lx ^ ( hx & 0x8000000000000000LL );
	hx = hx & 0x7fffffffffffffffLL;
	INSERT_WORDS64 (xhi, hx);
	INSERT_WORDS64 (xlo, lx);
	x = ldbl_pack (xhi, xlo);
	return x;
}
Beispiel #9
0
int
___fpclassifyl (long double x)
{
  u_int64_t hx, lx;
  int retval = FP_NORMAL;
  double xhi, xlo;

  ldbl_unpack (x, &xhi, &xlo);
  EXTRACT_WORDS64 (hx, xhi);
  if ((hx & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL) {
      /* +/-NaN or +/-Inf */
      if (hx & 0x000fffffffffffffULL) {
	  /* +/-NaN */
	  retval = FP_NAN;
      } else {
	  retval = FP_INFINITE;
      }
  } else {
      /* +/-zero or +/- normal or +/- denormal */
      if (hx & 0x7fffffffffffffffULL) {
	  /* +/- normal or +/- denormal */
	  if ((hx & 0x7ff0000000000000ULL) > 0x0360000000000000ULL) {
	      /* +/- normal */
	      retval = FP_NORMAL;
	  } else {
	      if ((hx & 0x7ff0000000000000ULL) == 0x0360000000000000ULL) {
		  EXTRACT_WORDS64 (lx, xlo);
		  if ((lx & 0x7fffffffffffffff)	/* lower is non-zero */
		  && ((lx^hx) & 0x8000000000000000ULL)) { /* and sign differs */
		      /* +/- denormal */
		      retval = FP_SUBNORMAL;
		  } else {
		      /* +/- normal */
		      retval = FP_NORMAL;
		  }
	      } else {
		  /* +/- denormal */
		  retval = FP_SUBNORMAL;
	      }
	  }
      } else {
	  /* +/- zero */
	  retval = FP_ZERO;
      }
  }

  return retval;
}
Beispiel #10
0
long double
__roundevenl (long double x)
{
  double xh, xl, hi;

  ldbl_unpack (x, &xh, &xl);

  if (xh != 0 && isfinite (xh))
    {
      hi = __roundeven (xh);
      if (hi != xh)
	{
	  /* The high part is not an integer; the low part only
	     affects the result if the high part is exactly half way
	     between two integers and the low part is nonzero in the
	     opposite direction to the rounding of the high part.  */
	  double diff = hi - xh;
	  if (fabs (diff) == 0.5)
	    {
	      if (xl < 0 && diff > 0)
		xh = hi - 1;
	      else if (xl > 0 && diff < 0)
		xh = hi + 1;
	      else
		xh = hi;
	    }
	  else
	    xh = hi;
	  xl = 0;
	}
      else
	{
	  /* The high part is a nonzero integer.  Rounding the low
	     part to nearest, ties round to even, is always correct,
	     as a high part that is an odd integer together with a low
	     part with magnitude 0.5 is not a valid long double.  */
	  xl = __roundeven (xl);
	  xh = hi;
	  ldbl_canonicalize_int (&xh, &xl);
	}
    }
  else
    /* Quiet signaling NaN arguments.  */
    xh += xh;

  return ldbl_pack (xh, xl);
}
Beispiel #11
0
long double
__remquol (long double x, long double y, int *quo)
{
  int64_t hx,hy;
  u_int64_t sx,lx,ly,qs;
  int cquo;
  double xhi, xlo, yhi, ylo;

  ldbl_unpack (x, &xhi, &xlo);
  EXTRACT_WORDS64 (hx, xhi);
  EXTRACT_WORDS64 (lx, xlo);
  ldbl_unpack (y, &yhi, &ylo);
  EXTRACT_WORDS64 (hy, yhi);
  EXTRACT_WORDS64 (ly, ylo);
  sx = hx & 0x8000000000000000ULL;
  qs = sx ^ (hy & 0x8000000000000000ULL);
  hy &= 0x7fffffffffffffffLL;
  hx &= 0x7fffffffffffffffLL;

  /* Purge off exception values.  */
  if (hy == 0)
    return (x * y) / (x * y); 			/* y = 0 */
  if ((hx >= 0x7ff0000000000000LL)		/* x not finite */
      || (hy > 0x7ff0000000000000LL))		/* y is NaN */
    return (x * y) / (x * y);

  if (hy <= 0x7fbfffffffffffffLL)
    x = __ieee754_fmodl (x, 8 * y);              /* now x < 8y */

  if (((hx - hy) | (lx - ly)) == 0)
    {
      *quo = qs ? -1 : 1;
      return zero * x;
    }

  x  = fabsl (x);
  y  = fabsl (y);
  cquo = 0;

  if (hy <= 0x7fcfffffffffffffLL && x >= 4 * y)
    {
      x -= 4 * y;
      cquo += 4;
    }
  if (hy <= 0x7fdfffffffffffffLL && x >= 2 * y)
    {
      x -= 2 * y;
      cquo += 2;
    }

  if (hy < 0x0020000000000000LL)
    {
      if (x + x > y)
	{
	  x -= y;
	  ++cquo;
	  if (x + x >= y)
	    {
	      x -= y;
	      ++cquo;
	    }
	}
    }
  else
    {
      long double y_half = 0.5L * y;
      if (x > y_half)
	{
	  x -= y;
	  ++cquo;
	  if (x >= y_half)
	    {
	      x -= y;
	      ++cquo;
	    }
	}
    }

  *quo = qs ? -cquo : cquo;

  /* Ensure correct sign of zero result in round-downward mode.  */
  if (x == 0.0L)
    x = 0.0L;
  if (sx)
    x = -x;
  return x;
}
Beispiel #12
0
long long
__llrintl (long double x)
{
  double xh, xl;
  long long res, hi, lo;
  int save_round;

  ldbl_unpack (x, &xh, &xl);

  /* Limit the range of values handled by the conversion to long long.
     We do this because we aren't sure whether that conversion properly
     raises FE_INVALID.  */
  if (__builtin_expect
      ((__builtin_fabs (xh) <= -(double) (-__LONG_LONG_MAX__ - 1)), 1)
#if !defined (FE_INVALID)
      || 1
#endif
    )
    {
      save_round = fegetround ();

      if (__glibc_unlikely ((xh == -(double) (-__LONG_LONG_MAX__ - 1))))
	{
	  /* When XH is 9223372036854775808.0, converting to long long will
	     overflow, resulting in an invalid operation.  However, XL might
	     be negative and of sufficient magnitude that the overall long
	     double is in fact in range.  Avoid raising an exception.  In any
	     case we need to convert this value specially, because
	     the converted value is not exactly represented as a double
	     thus subtracting HI from XH suffers rounding error.  */
	  hi = __LONG_LONG_MAX__;
	  xh = 1.0;
	}
      else
	{
	  hi = (long long) xh;
	  xh -= hi;
	}
      ldbl_canonicalize (&xh, &xl);

      lo = (long long) xh;

      /* Peg at max/min values, assuming that the above conversions do so.
         Strictly speaking, we can return anything for values that overflow,
         but this is more useful.  */
      res = hi + lo;

      /* This is just sign(hi) == sign(lo) && sign(res) != sign(hi).  */
      if (__glibc_unlikely (((~(hi ^ lo) & (res ^ hi)) < 0)))
	goto overflow;

      xh -= lo;
      ldbl_canonicalize (&xh, &xl);

      hi = res;
      switch (save_round)
	{
	case FE_TONEAREST:
	  if (fabs (xh) < 0.5
	      || (fabs (xh) == 0.5
		  && ((xh > 0.0 && xl < 0.0)
		      || (xh < 0.0 && xl > 0.0)
		      || (xl == 0.0 && (res & 1) == 0))))
	    return res;

	  if (xh < 0.0)
	    res -= 1;
	  else
	    res += 1;
	  break;

	case FE_TOWARDZERO:
	  if (res > 0 && (xh < 0.0 || (xh == 0.0 && xl < 0.0)))
	    res -= 1;
	  else if (res < 0 && (xh > 0.0 || (xh == 0.0 && xl > 0.0)))
	    res += 1;
	  return res;
	  break;

	case FE_UPWARD:
	  if (xh > 0.0 || (xh == 0.0 && xl > 0.0))
	    res += 1;
	  break;

	case FE_DOWNWARD:
	  if (xh < 0.0 || (xh == 0.0 && xl < 0.0))
	    res -= 1;
	  break;
	}

      if (__glibc_unlikely (((~(hi ^ (res - hi)) & (res ^ hi)) < 0)))
	goto overflow;

      return res;
    }
  else
    {
      if (xh > 0.0)
	hi = __LONG_LONG_MAX__;
      else if (xh < 0.0)
	hi = -__LONG_LONG_MAX__ - 1;
      else
	/* Nan */
	hi = 0;
    }

overflow:
#ifdef FE_INVALID
  feraiseexcept (FE_INVALID);
#endif
  return hi;
}
Beispiel #13
0
long
__lroundl (long double x)
{
  double xh, xl;
  long res, hi, lo;

  ldbl_unpack (x, &xh, &xl);

  /* Limit the range of values handled by the conversion to long.
     We do this because we aren't sure whether that conversion properly
     raises FE_INVALID.  */
  if (
#if __LONG_MAX__ == 2147483647
      __builtin_expect
      ((__builtin_fabs (xh) <= (double) __LONG_MAX__ + 2), 1)
#else
      __builtin_expect
      ((__builtin_fabs (xh) <= -(double) (-__LONG_MAX__ - 1)), 1)
#endif
#if !defined (FE_INVALID)
      || 1
#endif
    )
    {
#if __LONG_MAX__ == 2147483647
      long long llhi = (long long) xh;
      if (llhi != (long) llhi)
	hi = llhi < 0 ? -__LONG_MAX__ - 1 : __LONG_MAX__;
      else
	hi = llhi;
      xh -= hi;
#else
      if (__glibc_unlikely ((xh == -(double) (-__LONG_MAX__ - 1))))
	{
	  /* When XH is 9223372036854775808.0, converting to long long will
	     overflow, resulting in an invalid operation.  However, XL might
	     be negative and of sufficient magnitude that the overall long
	     double is in fact in range.  Avoid raising an exception.  In any
	     case we need to convert this value specially, because
	     the converted value is not exactly represented as a double
	     thus subtracting HI from XH suffers rounding error.  */
	  hi = __LONG_MAX__;
	  xh = 1.0;
	}
      else
	{
	  hi = (long) xh;
	  xh -= hi;
	}
#endif
      ldbl_canonicalize (&xh, &xl);

      lo = (long) xh;

      /* Peg at max/min values, assuming that the above conversions do so.
         Strictly speaking, we can return anything for values that overflow,
         but this is more useful.  */
      res = hi + lo;

      /* This is just sign(hi) == sign(lo) && sign(res) != sign(hi).  */
      if (__glibc_unlikely (((~(hi ^ lo) & (res ^ hi)) < 0)))
	goto overflow;

      xh -= lo;
      ldbl_canonicalize (&xh, &xl);

      hi = res;
      if (xh > 0.5)
	{
	  res += 1;
	}
      else if (xh == 0.5)
	{
	  if (xl > 0.0 || (xl == 0.0 && res >= 0))
	    res += 1;
	}
      else if (-xh > 0.5)
	{
	  res -= 1;
	}
      else if (-xh == 0.5)
	{
	  if (xl < 0.0 || (xl == 0.0 && res <= 0))
	    res -= 1;
	}

      if (__glibc_unlikely (((~(hi ^ (res - hi)) & (res ^ hi)) < 0)))
	goto overflow;

      return res;
    }
  else
    {
      if (xh > 0.0)
	hi = __LONG_MAX__;
      else if (xh < 0.0)
	hi = -__LONG_MAX__ - 1;
      else
	/* Nan */
	hi = 0;
    }

overflow:
#ifdef FE_INVALID
  feraiseexcept (FE_INVALID);
#endif
  return hi;
}
Beispiel #14
0
long double
__rintl (long double x)
{
    double xh, xl, hi, lo;

    ldbl_unpack (x, &xh, &xl);

    /* Return Inf, Nan, +/-0 unchanged.  */
    if (__builtin_expect (xh != 0.0
                          && __builtin_isless (__builtin_fabs (xh),
                                  __builtin_inf ()), 1))
    {
        double orig_xh;
        int save_round = fegetround ();

        /* Long double arithmetic, including the canonicalisation below,
        only works in round-to-nearest mode.  */
        fesetround (FE_TONEAREST);

        /* Convert the high double to integer.  */
        orig_xh = xh;
        hi = ldbl_nearbyint (xh);

        /* Subtract integral high part from the value.  If the low double
        happens to be exactly 0.5 or -0.5, you might think that this
         subtraction could result in an incorrect conversion.  For
         instance, subtracting an odd number would cause this function
         to round in the wrong direction.  However, if we have a
         canonical long double with the low double 0.5 or -0.5, then the
         high double must be even.  */
        xh -= hi;
        ldbl_canonicalize (&xh, &xl);

        /* Now convert the low double, adjusted for any remainder from the
        high double.  */
        lo = ldbl_nearbyint (xh);

        xh -= lo;
        ldbl_canonicalize (&xh, &xl);

        switch (save_round)
        {
        case FE_TONEAREST:
            if (xl > 0.0 && xh == 0.5)
                lo += 1.0;
            else if (xl < 0.0 && -xh == 0.5)
                lo -= 1.0;
            break;

        case FE_TOWARDZERO:
            if (orig_xh < 0.0)
                goto do_up;
        /* Fall thru */

        case FE_DOWNWARD:
            if (xh < 0.0 || (xh == 0.0 && xl < 0.0))
                lo -= 1.0;
            break;

        case FE_UPWARD:
do_up:
            if (xh > 0.0 || (xh == 0.0 && xl > 0.0))
                lo += 1.0;
            break;
        }

        /* Ensure the final value is canonical.  In certain cases,
           rounding causes hi,lo calculated so far to be non-canonical.  */
        xh = hi;
        xl = lo;
        ldbl_canonicalize (&xh, &xl);

        /* Ensure we return -0 rather than +0 when appropriate.  */
        if (orig_xh < 0.0)
            xh = -__builtin_fabs (xh);

        fesetround (save_round);
    }

    return ldbl_pack (xh, xl);
}
Beispiel #15
0
long double
__ieee754_hypotl(long double x, long double y)
{
	long double a,b,a1,a2,b1,b2,w,kld;
	int64_t j,k,ha,hb;
	double xhi, yhi, hi, lo;

	xhi = ldbl_high (x);
	EXTRACT_WORDS64 (ha, xhi);
	yhi = ldbl_high (y);
	EXTRACT_WORDS64 (hb, yhi);
	ha &= 0x7fffffffffffffffLL;
	hb &= 0x7fffffffffffffffLL;
	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
	a = fabsl(a);	/* a <- |a| */
	b = fabsl(b);	/* b <- |b| */
	if((ha-hb)>0x0780000000000000LL) {return a+b;} /* x/y > 2**120 */
	k=0;
	kld = 1.0L;
	if(ha > 0x5f30000000000000LL) {	/* a>2**500 */
	   if(ha >= 0x7ff0000000000000LL) {	/* Inf or NaN */
	       w = a+b;			/* for sNaN */
	       if (issignaling (a) || issignaling (b))
		 return w;
	       if(ha == 0x7ff0000000000000LL)
		 w = a;
	       if(hb == 0x7ff0000000000000LL)
		 w = b;
	       return w;
	   }
	   /* scale a and b by 2**-600 */
	   a *= 0x1p-600L;
	   b *= 0x1p-600L;
	   k = 600;
	   kld = 0x1p+600L;
	}
	else if(hb < 0x23d0000000000000LL) {	/* b < 2**-450 */
	    if(hb <= 0x000fffffffffffffLL) {	/* subnormal b or 0 */
		if(hb==0) return a;
		a *= 0x1p+1022L;
		b *= 0x1p+1022L;
		k = -1022;
		kld = 0x1p-1022L;
	    } else {		/* scale a and b by 2^600 */
		a *= 0x1p+600L;
		b *= 0x1p+600L;
		k = -600;
		kld = 0x1p-600L;
	    }
	}
    /* medium size a and b */
	w = a-b;
	if (w>b) {
	    ldbl_unpack (a, &hi, &lo);
	    a1 = hi;
	    a2 = lo;
	    /* a*a + b*b
	       = (a1+a2)*a + b*b
	       = a1*a + a2*a + b*b
	       = a1*(a1+a2) + a2*a + b*b
	       = a1*a1 + a1*a2 + a2*a + b*b
	       = a1*a1 + a2*(a+a1) + b*b  */
	    w  = sqrtl(a1*a1-(b*(-b)-a2*(a+a1)));
	} else {
	    a  = a+a;
	    ldbl_unpack (b, &hi, &lo);
	    b1 = hi;
	    b2 = lo;
	    ldbl_unpack (a, &hi, &lo);
	    a1 = hi;
	    a2 = lo;
	    /* a*a + b*b
	       = a*a + (a-b)*(a-b) - (a-b)*(a-b) + b*b
	       = a*a + w*w  - (a*a - 2*a*b + b*b) + b*b
	       = w*w + 2*a*b
	       = w*w + (a1+a2)*b
	       = w*w + a1*b + a2*b
	       = w*w + a1*(b1+b2) + a2*b
	       = w*w + a1*b1 + a1*b2 + a2*b  */
	    w  = sqrtl(a1*b1-(w*(-w)-(a1*b2+a2*b)));
	}
	if(k!=0)
	    {
		w *= kld;
		math_check_force_underflow_nonneg (w);
		return w;
	    }
	else
	    return w;
}