Beispiel #1
0
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
{
	int n_hw_addr;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);

	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));

	return n_hw_addr & N_HW_ADDR_MASK;
}
Beispiel #2
0
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
{
	int n_hw_addr;

	if (cfg->nvm_type != IWL_NVM_EXT)
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);

	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));

	return n_hw_addr & N_HW_ADDR_MASK;
}
/*
 * Setting the seed allows arbitrary accumulators and flexible XOR policy
 * If your algorithm starts with ~0, then XOR with ~0 before you set
 * the seed.
 */
static int crc32c_pclmul_setkey(struct crypto_shash *hash, const u8 *key,
			unsigned int keylen)
{
	u32 *mctx = crypto_shash_ctx(hash);

	if (keylen != sizeof(u32)) {
		crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	*mctx = le32_to_cpup((__le32 *)key);
	return 0;
}
Beispiel #4
0
/**
 * ntfs_security_hash - calculate the hash of a security descriptor
 * @sd:         self-relative security descriptor whose hash to calculate
 * @length:     size in bytes of the security descritor @sd
 *
 * Calculate the hash of the self-relative security descriptor @sd of length
 * @length bytes.
 *
 * This hash is used in the $Secure system file as the primary key for the $SDH
 * index and is also stored in the header of each security descriptor in the
 * $SDS data stream as well as in the index data of both the $SII and $SDH
 * indexes.  In all three cases it forms part of the SDS_ENTRY_HEADER
 * structure.
 *
 * Return the calculated security hash in little endian.
 */
le32 ntfs_security_hash(const SECURITY_DESCRIPTOR_RELATIVE *sd, const u32 len)
{
        const le32 *pos = (const le32 *)sd;
        const le32 *end = pos + (len >> 2);
        u32 hash = 0;

        while (pos < end) {
                hash = le32_to_cpup(pos) + ntfs_rol32(hash, 3);
		pos++;
	}
        return cpu_to_le32(hash);
}
static uint32_t sh_pci_reg_read (void *p, target_phys_addr_t addr)
{
    SHPCIC *pcic = p;
    switch(addr) {
    case 0 ... 0xfc:
        return le32_to_cpup((uint32_t*)(pcic->dev->config + addr));
    case 0x1c0:
        return pcic->par;
    case 0x220:
        return pci_data_read(pcic->bus, pcic->par, 4);
    }
    return 0;
}
static int crc32_digest_setkey(struct crypto_tfm *tfm, const u8 *key,
                               unsigned int keylen)
#endif
{
    u32 *mctx = crypto_tfm_ctx(tfm);

    if (keylen != sizeof(u32)) {
        tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
        return -EINVAL;
    }
    *mctx = le32_to_cpup((__le32 *)key);
    return 0;
}
static void ar9170_usb_callback_cmd(struct ar9170 *ar, u32 len , void *buffer)
{
	struct ar9170_usb *aru = (void *) ar;
	unsigned long flags;
	u32 in, out;

	if (unlikely(!buffer))
		return ;

	in = le32_to_cpup((__le32 *)buffer);
	out = le32_to_cpu(ar->cmdbuf[0]);

	/* mask off length byte */
	out &= ~0xFF;

	if (aru->readlen >= 0) {
		/* add expected length */
		out |= aru->readlen;
	} else {
		/* add obtained length */
		out |= in & 0xFF;
	}

	/*
	 * Some commands (e.g: AR9170_CMD_FREQUENCY) have a variable response
	 * length and we cannot predict the correct length in advance.
	 * So we only check if we provided enough space for the data.
	 */
	if (unlikely(out < in)) {
		dev_warn(&aru->udev->dev, "received invalid command response "
					  "got %d bytes, instead of %d bytes "
					  "and the resp length is %d bytes\n",
			 in, out, len);
		print_hex_dump_bytes("ar9170 invalid resp: ",
				     DUMP_PREFIX_OFFSET, buffer, len);
		/*
		 * Do not complete, then the command times out,
		 * and we get a stack trace from there.
		 */
		return ;
	}

	spin_lock_irqsave(&aru->common.cmdlock, flags);
	if (aru->readbuf && len > 0) {
		memcpy(aru->readbuf, buffer + 4, len - 4);
		aru->readbuf = NULL;
	}
	complete(&aru->cmd_wait);
	spin_unlock_irqrestore(&aru->common.cmdlock, flags);
}
static int ms_nxtmmx_get_position(void *context, long *position)
{
	struct ms_nxtmmx_data *mmx = context;
	int err;
	u8 bytes[ENCODER_SIZE];

	err = i2c_smbus_read_i2c_block_data(mmx->i2c_client,
		READ_ENCODER_POS_REG(mmx->index), ENCODER_SIZE, bytes);
	if (err < 0)
		return err;

	*position = le32_to_cpup((int *)bytes);

	return 0;
}
Beispiel #9
0
static int ntfs_collate_ntofs_ulong(ntfs_volume *vol,
        const void *data1, const int data1_len,
        const void *data2, const int data2_len)
{
    int rc;
    u32 d1, d2;

    ntfs_debug("Entering.");
    // FIXME:  We don't really want to bug here.
    BUG_ON(data1_len != data2_len);
    BUG_ON(data1_len != 4);
    d1 = le32_to_cpup(data1);
    d2 = le32_to_cpup(data2);
    if (d1 < d2)
        rc = -1;
    else {
        if (d1 == d2)
            rc = 0;
        else
            rc = 1;
    }
    ntfs_debug("Done, returning %i", rc);
    return rc;
}
Beispiel #10
0
/**
 *	sdio_readl - read a 32 bit integer from a SDIO function
 *	@func: SDIO function to access
 *	@addr: address to read
 *	@err_ret: optional status value from transfer
 *
 *	Reads a 32 bit integer from the address space of a given SDIO
 *	function. If there is a problem reading the address,
 *	0xffffffff is returned and @err_ret will contain the error
 *	code.
 */
u32 sdio_readl(struct sdio_func *func, unsigned int addr, int *err_ret)
{
	int ret;

	if (err_ret)
		*err_ret = 0;

	ret = sdio_memcpy_fromio(func, func->tmpbuf, addr, 4);
	if (ret) {
		if (err_ret)
			*err_ret = ret;
		return 0xFFFFFFFF;
	}

	return le32_to_cpup((__le32 *)func->tmpbuf);
}
Beispiel #11
0
static int fw_parse(const uint8_t **pmem, uint16_t *ptype, uint32_t *paddr,
		uint16_t *plen, const uint8_t **pdat)
{
	uint16_t checksum[2];
	const uint8_t *mem;
	const uint8_t *end;

	/*
	 * firmware records are a binary, unaligned stream composed of:
	 * uint16_t type;
	 * uint32_t addr;
	 * uint16_t len;
	 * uint8_t dat[len];
	 * uint16_t checksum;
	 * all values in little endian.
	 * We could define a struct for this, with __attribute__((packed)),
	 * but would that solve the alignment in _all_ cases (cfr. the
	 * struct itself may be an odd address)?
	 *
	 * I chose to use leXX_to_cpup() since this solves both
	 * endianness & alignment.
	 */
	mem = *pmem;
	*ptype = le16_to_cpup((void *)&mem[0]);
	*paddr = le32_to_cpup((void *)&mem[2]);
	*plen = le16_to_cpup((void *)&mem[6]);
	*pdat = &mem[8];
	/* verify checksum */
	end = &mem[8 + *plen];
	checksum[0] = le16_to_cpup((void *)end);
	for (checksum[1] = 0; mem < end; ++mem)
		checksum[1] += *mem;
	if (checksum[0] != checksum[1])
		return -EINVAL;
	/* increment */
	*pmem += 10 + *plen;
	return 0;
}
Beispiel #12
0
static struct sk_buff *vl600_tx_fixup(struct usbnet *dev,
		struct sk_buff *skb, gfp_t flags)
{
	struct sk_buff *ret;
	struct vl600_frame_hdr *frame;
	struct vl600_pkt_hdr *packet;
	static uint32_t serial = 1;
	int orig_len = skb->len - sizeof(struct ethhdr);
	int full_len = (skb->len + sizeof(struct vl600_frame_hdr) + 3) & ~3;

	frame = (struct vl600_frame_hdr *) skb->data;
	if (skb->len > sizeof(*frame) && skb->len == le32_to_cpup(&frame->len))
		return skb; /* Already encapsulated? */

	if (skb->len < sizeof(struct ethhdr))
		/* Drop, device can only deal with ethernet packets */
		return NULL;

	if (!skb_cloned(skb)) {
		int headroom = skb_headroom(skb);
		int tailroom = skb_tailroom(skb);

		if (tailro
static int fw_parse(const uint8_t **pmem, uint16_t *ptype, uint32_t *paddr,
		uint16_t *plen, const uint8_t **pdat)
{
	uint16_t checksum[2];
	const uint8_t *mem;
	const uint8_t *end;

	mem = *pmem;
	*ptype = le16_to_cpup((void *)&mem[0]);
	*paddr = le32_to_cpup((void *)&mem[2]);
	*plen = le16_to_cpup((void *)&mem[6]);
	*pdat = &mem[8];
	
	end = &mem[8 + *plen];
	checksum[0] = le16_to_cpup((void *)end);
	for (checksum[1] = 0; mem < end; ++mem)
		checksum[1] += *mem;
	if (checksum[0] != checksum[1])
		return -EINVAL;
	
	*pmem += 10 + *plen;
	return 0;
}
Beispiel #14
0
/*
 * iwl_mvm_rx_rx_mpdu - REPLY_RX_MPDU_CMD handler
 *
 * Handles the actual data of the Rx packet from the fw
 */
int iwl_mvm_rx_rx_mpdu(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb,
		       struct iwl_device_cmd *cmd)
{
	struct ieee80211_hdr *hdr;
	struct ieee80211_rx_status rx_status = {};
	struct iwl_rx_packet *pkt = rxb_addr(rxb);
	struct iwl_rx_phy_info *phy_info;
	struct iwl_rx_mpdu_res_start *rx_res;
	u32 len;
	u32 ampdu_status;
	u32 rate_n_flags;
	u32 rx_pkt_status;

	phy_info = &mvm->last_phy_info;
	rx_res = (struct iwl_rx_mpdu_res_start *)pkt->data;
	hdr = (struct ieee80211_hdr *)(pkt->data + sizeof(*rx_res));
	len = le16_to_cpu(rx_res->byte_count);
	rx_pkt_status = le32_to_cpup((__le32 *)
		(pkt->data + sizeof(*rx_res) + len));

	memset(&rx_status, 0, sizeof(rx_status));

	/*
	 * drop the packet if it has failed being decrypted by HW
	 */
	if (iwl_mvm_set_mac80211_rx_flag(mvm, hdr, &rx_status, rx_pkt_status)) {
		IWL_DEBUG_DROP(mvm, "Bad decryption results 0x%08x\n",
			       rx_pkt_status);
		return 0;
	}

	if ((unlikely(phy_info->cfg_phy_cnt > 20))) {
		IWL_DEBUG_DROP(mvm, "dsp size out of range [0,20]: %d\n",
			       phy_info->cfg_phy_cnt);
		return 0;
	}

	if (!(rx_pkt_status & RX_MPDU_RES_STATUS_CRC_OK) ||
	    !(rx_pkt_status & RX_MPDU_RES_STATUS_OVERRUN_OK)) {
		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
		return 0;
	}

	/* This will be used in several places later */
	rate_n_flags = le32_to_cpu(phy_info->rate_n_flags);

	/* rx_status carries information about the packet to mac80211 */
	rx_status.mactime = le64_to_cpu(phy_info->timestamp);
	rx_status.device_timestamp = le32_to_cpu(phy_info->system_timestamp);
	rx_status.band =
		(phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_BAND_24)) ?
				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
	rx_status.freq =
		ieee80211_channel_to_frequency(le16_to_cpu(phy_info->channel),
					       rx_status.band);
	/*
	 * TSF as indicated by the fw is at INA time, but mac80211 expects the
	 * TSF at the beginning of the MPDU.
	 */
	/*rx_status.flag |= RX_FLAG_MACTIME_MPDU;*/

	/* Find max signal strength (dBm) among 3 antenna/receiver chains */
	rx_status.signal = iwl_mvm_calc_rssi(mvm, phy_info);

	IWL_DEBUG_STATS_LIMIT(mvm, "Rssi %d, TSF %llu\n", rx_status.signal,
			      (unsigned long long)rx_status.mactime);

	/*
	 * "antenna number"
	 *
	 * It seems that the antenna field in the phy flags value
	 * is actually a bit field. This is undefined by radiotap,
	 * it wants an actual antenna number but I always get "7"
	 * for most legacy frames I receive indicating that the
	 * same frame was received on all three RX chains.
	 *
	 * I think this field should be removed in favor of a
	 * new 802.11n radiotap field "RX chains" that is defined
	 * as a bitmask.
	 */
	rx_status.antenna = (le16_to_cpu(phy_info->phy_flags) &
				RX_RES_PHY_FLAGS_ANTENNA)
				>> RX_RES_PHY_FLAGS_ANTENNA_POS;

	/* set the preamble flag if appropriate */
	if (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_SHORT_PREAMBLE))
		rx_status.flag |= RX_FLAG_SHORTPRE;

	if (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_AGG)) {
		/*
		 * We know which subframes of an A-MPDU belong
		 * together since we get a single PHY response
		 * from the firmware for all of them
		 */
		rx_status.flag |= RX_FLAG_AMPDU_DETAILS;
		rx_status.ampdu_reference = mvm->ampdu_ref;
	}

	/* Set up the HT phy flags */
	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
	case RATE_MCS_CHAN_WIDTH_20:
		break;
	case RATE_MCS_CHAN_WIDTH_40:
		rx_status.flag |= RX_FLAG_40MHZ;
		break;
	case RATE_MCS_CHAN_WIDTH_80:
		rx_status.flag |= RX_FLAG_80MHZ;
		break;
	case RATE_MCS_CHAN_WIDTH_160:
		rx_status.flag |= RX_FLAG_160MHZ;
		break;
	}
	if (rate_n_flags & RATE_MCS_SGI_MSK)
		rx_status.flag |= RX_FLAG_SHORT_GI;
	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
		rx_status.flag |= RX_FLAG_HT_GF;
	if (rate_n_flags & RATE_MCS_HT_MSK) {
		rx_status.flag |= RX_FLAG_HT;
		rx_status.rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
		rx_status.vht_nss =
			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
						RATE_VHT_MCS_NSS_POS) + 1;
		rx_status.rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
		rx_status.flag |= RX_FLAG_VHT;
	} else {
Beispiel #15
0
static struct sk_buff *vl600_tx_fixup(struct usbnet *dev,
		struct sk_buff *skb, gfp_t flags)
{
	struct sk_buff *ret;
	struct vl600_frame_hdr *frame;
	struct vl600_pkt_hdr *packet;
	static uint32_t serial = 1;
	int orig_len = skb->len - sizeof(struct ethhdr);
	int full_len = (skb->len + sizeof(struct vl600_frame_hdr) + 3) & ~3;

	frame = (struct vl600_frame_hdr *) skb->data;
	if (skb->len > sizeof(*frame) && skb->len == le32_to_cpup(&frame->len))
		return skb; /* Already encapsulated? */

	if (skb->len < sizeof(struct ethhdr))
		/* Drop, device can only deal with ethernet packets */
		return NULL;

	if (!skb_cloned(skb)) {
		int headroom = skb_headroom(skb);
		int tailroom = skb_tailroom(skb);

		if (tailroom >= full_len - skb->len - sizeof(*frame) &&
				headroom >= sizeof(*frame))
			/* There's enough head and tail room */
			goto encapsulate;

		if (headroom + tailroom + skb->len >= full_len) {
			/* There's enough total room, just readjust */
			skb->data = memmove(skb->head + sizeof(*frame),
					skb->data, skb->len);
			skb_set_tail_pointer(skb, skb->len);
			goto encapsulate;
		}
	}

	/* Alloc a new skb with the required size */
	ret = skb_copy_expand(skb, sizeof(struct vl600_frame_hdr), full_len -
			skb->len - sizeof(struct vl600_frame_hdr), flags);
	dev_kfree_skb_any(skb);
	if (!ret)
		return ret;
	skb = ret;

encapsulate:
	/* Packet header is same size as ethernet packet header
	 * (sizeof(*packet) == sizeof(struct ethhdr)), additionally the
	 * h_proto field is in the same place so we just leave it alone and
	 * overwrite the remaining fields.
	 */
	packet = (struct vl600_pkt_hdr *) skb->data;
	/* The VL600 wants IPv6 packets to have an IPv4 ethertype
	 * Since this modem only supports IPv4 and IPv6, just set all
	 * frames to 0x0800 (ETH_P_IP)
	 */
	packet->h_proto = htons(ETH_P_IP);
	memset(&packet->dummy, 0, sizeof(packet->dummy));
	packet->len = cpu_to_le32(orig_len);

	frame = (struct vl600_frame_hdr *) skb_push(skb, sizeof(*frame));
	memset(frame, 0, sizeof(*frame));
	frame->len = cpu_to_le32(full_len);
	frame->serial = cpu_to_le32(serial++);
	frame->pkt_cnt = cpu_to_le32(1);

	if (skb->len < full_len) /* Pad */
		skb_put(skb, full_len - skb->len);

	return skb;
}
Beispiel #16
0
/*
 * iwl_mvm_rx_rx_mpdu - REPLY_RX_MPDU_CMD handler
 *
 * Handles the actual data of the Rx packet from the fw
 */
int iwl_mvm_rx_rx_mpdu(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb,
                       struct iwl_device_cmd *cmd)
{
    struct ieee80211_hdr *hdr;
    struct ieee80211_rx_status *rx_status;
    struct iwl_rx_packet *pkt = rxb_addr(rxb);
    struct iwl_rx_phy_info *phy_info;
    struct iwl_rx_mpdu_res_start *rx_res;
    struct ieee80211_sta *sta;
    struct sk_buff *skb;
    u32 len;
    u32 ampdu_status;
    u32 rate_n_flags;
    u32 rx_pkt_status;
    u8 crypt_len = 0;

    phy_info = &mvm->last_phy_info;
    rx_res = (struct iwl_rx_mpdu_res_start *)pkt->data;
    hdr = (struct ieee80211_hdr *)(pkt->data + sizeof(*rx_res));
    len = le16_to_cpu(rx_res->byte_count);
    rx_pkt_status = le32_to_cpup((__le32 *)
                                 (pkt->data + sizeof(*rx_res) + len));

    /* Dont use dev_alloc_skb(), we'll have enough headroom once
     * ieee80211_hdr pulled.
     */
    skb = alloc_skb(128, GFP_ATOMIC);
    if (!skb) {
        IWL_ERR(mvm, "alloc_skb failed\n");
        return 0;
    }

    rx_status = IEEE80211_SKB_RXCB(skb);

    /*
     * drop the packet if it has failed being decrypted by HW
     */
    if (iwl_mvm_set_mac80211_rx_flag(mvm, hdr, rx_status, rx_pkt_status,
                                     &crypt_len)) {
        IWL_DEBUG_DROP(mvm, "Bad decryption results 0x%08x\n",
                       rx_pkt_status);
        kfree_skb(skb);
        return 0;
    }

    if ((unlikely(phy_info->cfg_phy_cnt > 20))) {
        IWL_DEBUG_DROP(mvm, "dsp size out of range [0,20]: %d\n",
                       phy_info->cfg_phy_cnt);
        kfree_skb(skb);
        return 0;
    }

    /*
     * Keep packets with CRC errors (and with overrun) for monitor mode
     * (otherwise the firmware discards them) but mark them as bad.
     */
    if (!(rx_pkt_status & RX_MPDU_RES_STATUS_CRC_OK) ||
            !(rx_pkt_status & RX_MPDU_RES_STATUS_OVERRUN_OK)) {
        IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
        rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
    }

    /* This will be used in several places later */
    rate_n_flags = le32_to_cpu(phy_info->rate_n_flags);

    /* rx_status carries information about the packet to mac80211 */
    rx_status->mactime = le64_to_cpu(phy_info->timestamp);
    rx_status->device_timestamp = le32_to_cpu(phy_info->system_timestamp);
    rx_status->band =
        (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_BAND_24)) ?
        IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
    rx_status->freq =
        ieee80211_channel_to_frequency(le16_to_cpu(phy_info->channel),
                                       rx_status->band);
    /*
     * TSF as indicated by the fw is at INA time, but mac80211 expects the
     * TSF at the beginning of the MPDU.
     */
    /*rx_status->flag |= RX_FLAG_MACTIME_MPDU;*/

    iwl_mvm_get_signal_strength(mvm, phy_info, rx_status);

    IWL_DEBUG_STATS_LIMIT(mvm, "Rssi %d, TSF %llu\n", rx_status->signal,
                          (unsigned long long)rx_status->mactime);

    rcu_read_lock();
    /*
     * We have tx blocked stations (with CS bit). If we heard frames from
     * a blocked station on a new channel we can TX to it again.
     */
    if (unlikely(mvm->csa_tx_block_bcn_timeout)) {
        sta = ieee80211_find_sta(
                  rcu_dereference(mvm->csa_tx_blocked_vif), hdr->addr2);
        if (sta)
            iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, false);
    }

    /* This is fine since we don't support multiple AP interfaces */
    sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
    if (sta) {
        struct iwl_mvm_sta *mvmsta;
        mvmsta = iwl_mvm_sta_from_mac80211(sta);
        rs_update_last_rssi(mvm, &mvmsta->lq_sta, rx_status);

        if (iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_RSSI) &&
                ieee80211_is_beacon(hdr->frame_control)) {
            struct iwl_fw_dbg_trigger_tlv *trig;
            struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
            bool trig_check;
            s32 rssi;

            trig = iwl_fw_dbg_get_trigger(mvm->fw,
                                          FW_DBG_TRIGGER_RSSI);
            rssi_trig = (void *)trig->data;
            rssi = le32_to_cpu(rssi_trig->rssi);

            trig_check =
                iwl_fw_dbg_trigger_check_stop(mvm, mvmsta->vif,
                                              trig);
            if (trig_check && rx_status->signal < rssi)
                iwl_mvm_fw_dbg_collect_trig(mvm, trig, NULL);
        }
    }

    rcu_read_unlock();

    /* set the preamble flag if appropriate */
    if (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_SHORT_PREAMBLE))
        rx_status->flag |= RX_FLAG_SHORTPRE;

    if (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_AGG)) {
        /*
         * We know which subframes of an A-MPDU belong
         * together since we get a single PHY response
         * from the firmware for all of them
         */
        rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
        rx_status->ampdu_reference = mvm->ampdu_ref;
    }

    /* Set up the HT phy flags */
    switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
    case RATE_MCS_CHAN_WIDTH_20:
        break;
    case RATE_MCS_CHAN_WIDTH_40:
        rx_status->flag |= RX_FLAG_40MHZ;
        break;
    case RATE_MCS_CHAN_WIDTH_80:
        rx_status->vht_flag |= RX_VHT_FLAG_80MHZ;
        break;
    case RATE_MCS_CHAN_WIDTH_160:
        rx_status->vht_flag |= RX_VHT_FLAG_160MHZ;
        break;
    }
    if (rate_n_flags & RATE_MCS_SGI_MSK)
        rx_status->flag |= RX_FLAG_SHORT_GI;
    if (rate_n_flags & RATE_HT_MCS_GF_MSK)
        rx_status->flag |= RX_FLAG_HT_GF;
    if (rate_n_flags & RATE_MCS_LDPC_MSK)
        rx_status->flag |= RX_FLAG_LDPC;
    if (rate_n_flags & RATE_MCS_HT_MSK) {
        u8 stbc = (rate_n_flags & RATE_MCS_HT_STBC_MSK) >>
                  RATE_MCS_STBC_POS;
        rx_status->flag |= RX_FLAG_HT;
        rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
        rx_status->flag |= stbc << RX_FLAG_STBC_SHIFT;
    } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
static int iwl_parse_tlv_firmware(struct iwl_drv *drv,
				const struct firmware *ucode_raw,
				struct iwl_firmware_pieces *pieces,
				struct iwl_ucode_capabilities *capa)
{
	struct iwl_tlv_ucode_header *ucode = (void *)ucode_raw->data;
	struct iwl_ucode_tlv *tlv;
	size_t len = ucode_raw->size;
	const u8 *data;
	int wanted_alternative = iwlagn_mod_params.wanted_ucode_alternative;
	int tmp;
	u64 alternatives;
	u32 tlv_len;
	enum iwl_ucode_tlv_type tlv_type;
	const u8 *tlv_data;
	char buildstr[25];
	u32 build;

	if (len < sizeof(*ucode)) {
		IWL_ERR(drv, "uCode has invalid length: %zd\n", len);
		return -EINVAL;
	}

	if (ucode->magic != cpu_to_le32(IWL_TLV_UCODE_MAGIC)) {
		IWL_ERR(drv, "invalid uCode magic: 0X%x\n",
			le32_to_cpu(ucode->magic));
		return -EINVAL;
	}

	alternatives = le64_to_cpu(ucode->alternatives);
	tmp = wanted_alternative;
	if (wanted_alternative > 63)
		wanted_alternative = 63;
	while (wanted_alternative && !(alternatives & BIT(wanted_alternative)))
		wanted_alternative--;
	if (wanted_alternative && wanted_alternative != tmp)
		IWL_WARN(drv,
			 "uCode alternative %d not available, choosing %d\n",
			 tmp, wanted_alternative);

	drv->fw.ucode_ver = le32_to_cpu(ucode->ver);
	build = le32_to_cpu(ucode->build);

	if (build)
		sprintf(buildstr, " build %u%s", build,
		       (drv->fw_index == UCODE_EXPERIMENTAL_INDEX)
				? " (EXP)" : "");
	else
		buildstr[0] = '\0';

	snprintf(drv->fw.fw_version,
		 sizeof(drv->fw.fw_version),
		 "%u.%u.%u.%u%s",
		 IWL_UCODE_MAJOR(drv->fw.ucode_ver),
		 IWL_UCODE_MINOR(drv->fw.ucode_ver),
		 IWL_UCODE_API(drv->fw.ucode_ver),
		 IWL_UCODE_SERIAL(drv->fw.ucode_ver),
		 buildstr);

	data = ucode->data;

	len -= sizeof(*ucode);

	while (len >= sizeof(*tlv)) {
		u16 tlv_alt;

		len -= sizeof(*tlv);
		tlv = (void *)data;

		tlv_len = le32_to_cpu(tlv->length);
		tlv_type = le16_to_cpu(tlv->type);
		tlv_alt = le16_to_cpu(tlv->alternative);
		tlv_data = tlv->data;

		if (len < tlv_len) {
			IWL_ERR(drv, "invalid TLV len: %zd/%u\n",
				len, tlv_len);
			return -EINVAL;
		}
		len -= ALIGN(tlv_len, 4);
		data += sizeof(*tlv) + ALIGN(tlv_len, 4);

		if (tlv_alt != 0 && tlv_alt != wanted_alternative)
			continue;

		switch (tlv_type) {
		case IWL_UCODE_TLV_INST:
			set_sec_data(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_INST, tlv_data);
			set_sec_size(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_INST, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_REGULAR,
				       IWL_UCODE_SECTION_INST,
				       IWLAGN_RTC_INST_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_DATA:
			set_sec_data(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_DATA, tlv_data);
			set_sec_size(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_DATA, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_REGULAR,
				       IWL_UCODE_SECTION_DATA,
				       IWLAGN_RTC_DATA_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_INIT:
			set_sec_data(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_INST, tlv_data);
			set_sec_size(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_INST, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_INIT,
				       IWL_UCODE_SECTION_INST,
				       IWLAGN_RTC_INST_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_INIT_DATA:
			set_sec_data(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_DATA, tlv_data);
			set_sec_size(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_DATA, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_INIT,
				       IWL_UCODE_SECTION_DATA,
				       IWLAGN_RTC_DATA_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_BOOT:
			IWL_ERR(drv, "Found unexpected BOOT ucode\n");
			break;
		case IWL_UCODE_TLV_PROBE_MAX_LEN:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			capa->max_probe_length =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_PAN:
			if (tlv_len)
				goto invalid_tlv_len;
			capa->flags |= IWL_UCODE_TLV_FLAGS_PAN;
			break;
		case IWL_UCODE_TLV_FLAGS:
			
			if (tlv_len < sizeof(u32))
				goto invalid_tlv_len;
			
			if (tlv_len % sizeof(u32))
				goto invalid_tlv_len;
			capa->flags = le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_INIT_EVTLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->init_evtlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_INIT_EVTLOG_SIZE:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->init_evtlog_size =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_INIT_ERRLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->init_errlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_RUNT_EVTLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->inst_evtlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_RUNT_EVTLOG_SIZE:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->inst_evtlog_size =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_RUNT_ERRLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->inst_errlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_ENHANCE_SENS_TBL:
			if (tlv_len)
				goto invalid_tlv_len;
			drv->fw.enhance_sensitivity_table = true;
			break;
		case IWL_UCODE_TLV_WOWLAN_INST:
			set_sec_data(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_INST, tlv_data);
			set_sec_size(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_INST, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_WOWLAN,
				       IWL_UCODE_SECTION_INST,
				       IWLAGN_RTC_INST_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_WOWLAN_DATA:
			set_sec_data(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_DATA, tlv_data);
			set_sec_size(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_DATA, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_WOWLAN,
				       IWL_UCODE_SECTION_DATA,
				       IWLAGN_RTC_DATA_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_PHY_CALIBRATION_SIZE:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			capa->standard_phy_calibration_size =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		 case IWL_UCODE_TLV_SEC_RT:
			iwl_store_ucode_sec(pieces, tlv_data, IWL_UCODE_REGULAR,
					    tlv_len);
			drv->fw.mvm_fw = true;
			break;
		case IWL_UCODE_TLV_SEC_INIT:
			iwl_store_ucode_sec(pieces, tlv_data, IWL_UCODE_INIT,
					    tlv_len);
			drv->fw.mvm_fw = true;
			break;
		case IWL_UCODE_TLV_SEC_WOWLAN:
			iwl_store_ucode_sec(pieces, tlv_data, IWL_UCODE_WOWLAN,
					    tlv_len);
			drv->fw.mvm_fw = true;
			break;
		case IWL_UCODE_TLV_DEF_CALIB:
			if (tlv_len != sizeof(struct iwl_tlv_calib_data))
				goto invalid_tlv_len;
			if (iwl_set_default_calib(drv, tlv_data))
				goto tlv_error;
			break;
		case IWL_UCODE_TLV_PHY_SKU:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			drv->fw.phy_config = le32_to_cpup((__le32 *)tlv_data);
			break;
		default:
			IWL_DEBUG_INFO(drv, "unknown TLV: %d\n", tlv_type);
			break;
		}
	}

	if (len) {
		IWL_ERR(drv, "invalid TLV after parsing: %zd\n", len);
		iwl_print_hex_dump(drv, IWL_DL_FW, (u8 *)data, len);
		return -EINVAL;
	}

	return 0;

 invalid_tlv_len:
	IWL_ERR(drv, "TLV %d has invalid size: %u\n", tlv_type, tlv_len);
 tlv_error:
	iwl_print_hex_dump(drv, IWL_DL_FW, tlv_data, tlv_len);

	return -EINVAL;
}
Beispiel #18
0
static int qnx4_fill_super(struct super_block *s, void *data, int silent)
{
	struct buffer_head *bh;
	struct inode *root;
	const char *errmsg;
	struct qnx4_sb_info *qs;
	int ret = -EINVAL;

	qs = kzalloc(sizeof(struct qnx4_sb_info), GFP_KERNEL);
	if (!qs)
		return -ENOMEM;
	s->s_fs_info = qs;

	sb_set_blocksize(s, QNX4_BLOCK_SIZE);

	/* Check the superblock signature. Since the qnx4 code is
	   dangerous, we should leave as quickly as possible
	   if we don't belong here... */
	bh = sb_bread(s, 1);
	if (!bh) {
		printk(KERN_ERR "qnx4: unable to read the superblock\n");
		goto outnobh;
	}
	if ( le32_to_cpup((__le32*) bh->b_data) != QNX4_SUPER_MAGIC ) {
		if (!silent)
			printk(KERN_ERR "qnx4: wrong fsid in superblock.\n");
		goto out;
	}
	s->s_op = &qnx4_sops;
	s->s_magic = QNX4_SUPER_MAGIC;
	s->s_flags |= MS_RDONLY;	/* Yup, read-only yet */
	qnx4_sb(s)->sb_buf = bh;
	qnx4_sb(s)->sb = (struct qnx4_super_block *) bh->b_data;


 	/* check before allocating dentries, inodes, .. */
	errmsg = qnx4_checkroot(s);
	if (errmsg != NULL) {
 		if (!silent)
			printk(KERN_ERR "qnx4: %s\n", errmsg);
		goto out;
	}

 	/* does root not have inode number QNX4_ROOT_INO ?? */
	root = qnx4_iget(s, QNX4_ROOT_INO * QNX4_INODES_PER_BLOCK);
	if (IS_ERR(root)) {
		printk(KERN_ERR "qnx4: get inode failed\n");
		ret = PTR_ERR(root);
 		goto out;
 	}

	ret = -ENOMEM;
 	s->s_root = d_alloc_root(root);
 	if (s->s_root == NULL)
 		goto outi;

	brelse(bh);

	return 0;

      outi:
	iput(root);
      out:
	brelse(bh);
      outnobh:
	kfree(qs);
	s->s_fs_info = NULL;
	return ret;
}
Beispiel #19
0
int
generic_rndis_bind(struct usbnet *dev, struct usb_interface *intf, int flags)
{
    int			retval;
    struct net_device	*net = dev->net;
    struct cdc_state	*info = (void *) &dev->data;
    union {
        void			*buf;
        struct rndis_msg_hdr	*header;
        struct rndis_init	*init;
        struct rndis_init_c	*init_c;
        struct rndis_query	*get;
        struct rndis_query_c	*get_c;
        struct rndis_set	*set;
        struct rndis_set_c	*set_c;
        struct rndis_halt	*halt;
    } u;
    u32			tmp;
    __le32			phym_unspec, *phym;
    int			reply_len;
    unsigned char		*bp;

    /* we can't rely on i/o from stack working, or stack allocation */
    u.buf = kmalloc(CONTROL_BUFFER_SIZE, GFP_KERNEL);
    if (!u.buf)
        return -ENOMEM;
    retval = usbnet_generic_cdc_bind(dev, intf);
    if (retval < 0)
        goto fail;

    u.init->msg_type = cpu_to_le32(RNDIS_MSG_INIT);
    u.init->msg_len = cpu_to_le32(sizeof *u.init);
    u.init->major_version = cpu_to_le32(1);
    u.init->minor_version = cpu_to_le32(0);

#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29))
    /* can't we remove this? */
    net->change_mtu = NULL;
#endif

    /* max transfer (in spec) is 0x4000 at full speed, but for
     * TX we'll stick to one Ethernet packet plus RNDIS framing.
     * For RX we handle drivers that zero-pad to end-of-packet.
     * Don't let userspace change these settings.
     *
     * NOTE: there still seems to be wierdness here, as if we need
     * to do some more things to make sure WinCE targets accept this.
     * They default to jumbograms of 8KB or 16KB, which is absurd
     * for such low data rates and which is also more than Linux
     * can usually expect to allocate for SKB data...
     */
    net->hard_header_len += sizeof (struct rndis_data_hdr);
    dev->hard_mtu = net->mtu + net->hard_header_len;

    dev->maxpacket = usb_maxpacket(dev->udev, dev->out, 1);
    if (dev->maxpacket == 0) {
        netif_dbg(dev, probe, dev->net,
                  "dev->maxpacket can't be 0\n");
        retval = -EINVAL;
        goto fail_and_release;
    }

    dev->rx_urb_size = dev->hard_mtu + (dev->maxpacket + 1);
    dev->rx_urb_size &= ~(dev->maxpacket - 1);
    u.init->max_transfer_size = cpu_to_le32(dev->rx_urb_size);

    netdev_attach_ops(net, &rndis_netdev_ops);

    retval = rndis_command(dev, u.header, CONTROL_BUFFER_SIZE);
    if (unlikely(retval < 0)) {
        /* it might not even be an RNDIS device!! */
        dev_err(&intf->dev, "RNDIS init failed, %d\n", retval);
        goto fail_and_release;
    }
    tmp = le32_to_cpu(u.init_c->max_transfer_size);
    if (tmp < dev->hard_mtu) {
        if (tmp <= net->hard_header_len) {
            dev_err(&intf->dev,
                    "dev can't take %u byte packets (max %u)\n",
                    dev->hard_mtu, tmp);
            retval = -EINVAL;
            goto halt_fail_and_release;
        }
        dev_warn(&intf->dev,
                 "dev can't take %u byte packets (max %u), "
                 "adjusting MTU to %u\n",
                 dev->hard_mtu, tmp, tmp - net->hard_header_len);
        dev->hard_mtu = tmp;
        net->mtu = dev->hard_mtu - net->hard_header_len;
    }

    /* REVISIT:  peripheral "alignment" request is ignored ... */
    dev_dbg(&intf->dev,
            "hard mtu %u (%u from dev), rx buflen %Zu, align %d\n",
            dev->hard_mtu, tmp, dev->rx_urb_size,
            1 << le32_to_cpu(u.init_c->packet_alignment));

    /* module has some device initialization code needs to be done right
     * after RNDIS_INIT */
    if (dev->driver_info->early_init &&
            dev->driver_info->early_init(dev) != 0)
        goto halt_fail_and_release;

    /* Check physical medium */
    phym = NULL;
    reply_len = sizeof *phym;
    retval = rndis_query(dev, intf, u.buf,
                         RNDIS_OID_GEN_PHYSICAL_MEDIUM,
                         0, (void **) &phym, &reply_len);
    if (retval != 0 || !phym) {
        /* OID is optional so don't fail here. */
        phym_unspec = cpu_to_le32(RNDIS_PHYSICAL_MEDIUM_UNSPECIFIED);
        phym = &phym_unspec;
    }
    if ((flags & FLAG_RNDIS_PHYM_WIRELESS) &&
            le32_to_cpup(phym) != RNDIS_PHYSICAL_MEDIUM_WIRELESS_LAN) {
        netif_dbg(dev, probe, dev->net,
                  "driver requires wireless physical medium, but device is not\n");
        retval = -ENODEV;
        goto halt_fail_and_release;
    }
    if ((flags & FLAG_RNDIS_PHYM_NOT_WIRELESS) &&
            le32_to_cpup(phym) == RNDIS_PHYSICAL_MEDIUM_WIRELESS_LAN) {
        netif_dbg(dev, probe, dev->net,
                  "driver requires non-wireless physical medium, but device is wireless.\n");
        retval = -ENODEV;
        goto halt_fail_and_release;
    }

    /* Get designated host ethernet address */
    reply_len = ETH_ALEN;
    retval = rndis_query(dev, intf, u.buf,
                         RNDIS_OID_802_3_PERMANENT_ADDRESS,
                         48, (void **) &bp, &reply_len);
    if (unlikely(retval< 0)) {
        dev_err(&intf->dev, "rndis get ethaddr, %d\n", retval);
        goto halt_fail_and_release;
    }
    memcpy(net->dev_addr, bp, ETH_ALEN);
    memcpy(net->perm_addr, bp, ETH_ALEN);

    /* set a nonzero filter to enable data transfers */
    memset(u.set, 0, sizeof *u.set);
    u.set->msg_type = cpu_to_le32(RNDIS_MSG_SET);
    u.set->msg_len = cpu_to_le32(4 + sizeof *u.set);
    u.set->oid = cpu_to_le32(RNDIS_OID_GEN_CURRENT_PACKET_FILTER);
    u.set->len = cpu_to_le32(4);
    u.set->offset = cpu_to_le32((sizeof *u.set) - 8);
    *(__le32 *)(u.buf + sizeof *u.set) = cpu_to_le32(RNDIS_DEFAULT_FILTER);

    retval = rndis_command(dev, u.header, CONTROL_BUFFER_SIZE);
    if (unlikely(retval < 0)) {
        dev_err(&intf->dev, "rndis set packet filter, %d\n", retval);
        goto halt_fail_and_release;
    }

    retval = 0;

    kfree(u.buf);
    return retval;

halt_fail_and_release:
    memset(u.halt, 0, sizeof *u.halt);
    u.halt->msg_type = cpu_to_le32(RNDIS_MSG_HALT);
    u.halt->msg_len = cpu_to_le32(sizeof *u.halt);
    (void) rndis_command(dev, (void *)u.halt, CONTROL_BUFFER_SIZE);
fail_and_release:
    usb_set_intfdata(info->data, NULL);
    usb_driver_release_interface(driver_of(intf), info->data);
    info->data = NULL;
fail:
    kfree(u.buf);
    return retval;
}
Beispiel #20
0
static int vl600_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
	struct vl600_frame_hdr *frame;
	struct vl600_pkt_hdr *packet;
	struct ethhdr *ethhdr;
	int packet_len, count;
	struct sk_buff *buf = skb;
	struct sk_buff *clone;
	struct vl600_state *s = dev->driver_priv;

	/* Frame lengths are generally 4B multiplies but every couple of
	 * hours there's an odd number of bytes sized yet correct frame,
	 * so don't require this.  */

	/* Allow a packet (or multiple packets batched together) to be
	 * split across many frames.  We don't allow a new batch to
	 * begin in the same frame another one is ending however, and no
	 * leading or trailing pad bytes.  */
	if (s->current_rx_buf) {
		frame = (struct vl600_frame_hdr *) s->current_rx_buf->data;
		if (skb->len + s->current_rx_buf->len >
				le32_to_cpup(&frame->len)) {
			netif_err(dev, ifup, dev->net, "Fragment too long\n");
			dev->net->stats.rx_length_errors++;
			goto error;
		}

		buf = s->current_rx_buf;
		memcpy(skb_put(buf, skb->len), skb->data, skb->len);
	} else if (skb->len < 4) {
		netif_err(dev, ifup, dev->net, "Frame too short\n");
		dev->net->stats.rx_length_errors++;
		goto error;
	}

	frame = (struct vl600_frame_hdr *) buf->data;
	/* Yes, check that frame->magic == 0x53544448 (or 0x44544d48),
	 * otherwise we may run out of memory w/a bad packet */
	if (ntohl(frame->magic) != 0x53544448 &&
			ntohl(frame->magic) != 0x44544d48)
		goto error;

	if (buf->len < sizeof(*frame) ||
			buf->len != le32_to_cpup(&frame->len)) {
		/* Save this fragment for later assembly */
		if (s->current_rx_buf)
			return 0;

		s->current_rx_buf = skb_copy_expand(skb, 0,
				le32_to_cpup(&frame->len), GFP_ATOMIC);
		if (!s->current_rx_buf) {
			netif_err(dev, ifup, dev->net, "Reserving %i bytes "
					"for packet assembly failed.\n",
					le32_to_cpup(&frame->len));
			dev->net->stats.rx_errors++;
		}

		return 0;
	}

	count = le32_to_cpup(&frame->pkt_cnt);

	skb_pull(buf, sizeof(*frame));

	while (count--) {
		if (buf->len < sizeof(*packet)) {
			netif_err(dev, ifup, dev->net, "Packet too short\n");
			goto error;
		}

		packet = (struct vl600_pkt_hdr *) buf->data;
		packet_len = sizeof(*packet) + le32_to_cpup(&packet->len);
		if (packet_len > buf->len) {
			netif_err(dev, ifup, dev->net,
					"Bad packet length stored in header\n");
			goto error;
		}

		/* Packet header is same size as the ethernet header
		 * (sizeof(*packet) == sizeof(*ethhdr)), additionally
		 * the h_proto field is in the same place so we just leave it
		 * alone and fill in the remaining fields.
		 */
		ethhdr = (struct ethhdr *) skb->data;
		if (be16_to_cpup(&ethhdr->h_proto) == ETH_P_ARP &&
				buf->len > 0x26) {
			/* Copy the addresses from packet contents */
			memcpy(ethhdr->h_source,
					&buf->data[sizeof(*ethhdr) + 0x8],
					ETH_ALEN);
			memcpy(ethhdr->h_dest,
					&buf->data[sizeof(*ethhdr) + 0x12],
					ETH_ALEN);
		} else {
			memset(ethhdr->h_source, 0, ETH_ALEN);
			memcpy(ethhdr->h_dest, dev->net->dev_addr, ETH_ALEN);

			/* Inbound IPv6 packets have an IPv4 ethertype (0x800)
			 * for some reason.  Peek at the L3 header to check
			 * for IPv6 packets, and set the ethertype to IPv6
			 * (0x86dd) so Linux can understand it.
			 */
			if ((buf->data[sizeof(*ethhdr)] & 0xf0) == 0x60)
				ethhdr->h_proto = __constant_htons(ETH_P_IPV6);
		}

		if (count) {
			/* Not the last packet in this batch */
			clone = skb_clone(buf, GFP_ATOMIC);
			if (!clone)
				goto error;

			skb_trim(clone, packet_len);
			usbnet_skb_return(dev, clone);

			skb_pull(buf, (packet_len + 3) & ~3);
		} else {
			skb_trim(buf, packet_len);

			if (s->current_rx_buf) {
				usbnet_skb_return(dev, buf);
				s->current_rx_buf = NULL;
				return 0;
			}

			return 1;
		}
	}

error:
	if (s->current_rx_buf) {
		dev_kfree_skb_any(s->current_rx_buf);
		s->current_rx_buf = NULL;
	}
	dev->net->stats.rx_errors++;
	return 0;
}
/*
 * iwl_mvm_rx_rx_mpdu - REPLY_RX_MPDU_CMD handler
 *
 * Handles the actual data of the Rx packet from the fw
 */
int iwl_mvm_rx_rx_mpdu(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb,
		       struct iwl_device_cmd *cmd)
{
	struct ieee80211_hdr *hdr;
	struct ieee80211_rx_status rx_status = {};
	struct iwl_rx_packet *pkt = rxb_addr(rxb);
	struct iwl_rx_phy_info *phy_info;
	struct iwl_rx_mpdu_res_start *rx_res;
	u32 len;
	u32 ampdu_status;
	u32 rate_n_flags;
	u32 rx_pkt_status;

	phy_info = &mvm->last_phy_info;
	rx_res = (struct iwl_rx_mpdu_res_start *)pkt->data;
	hdr = (struct ieee80211_hdr *)(pkt->data + sizeof(*rx_res));
	len = le16_to_cpu(rx_res->byte_count);
	rx_pkt_status = le32_to_cpup((__le32 *)
		(pkt->data + sizeof(*rx_res) + len));

	memset(&rx_status, 0, sizeof(rx_status));

	/*
	 * drop the packet if it has failed being decrypted by HW
	 */
	if (iwl_mvm_set_mac80211_rx_flag(mvm, hdr, &rx_status, rx_pkt_status)) {
		IWL_DEBUG_DROP(mvm, "Bad decryption results 0x%08x\n",
			       rx_pkt_status);
		return 0;
	}

	if ((unlikely(phy_info->cfg_phy_cnt > 20))) {
		IWL_DEBUG_DROP(mvm, "dsp size out of range [0,20]: %d\n",
			       phy_info->cfg_phy_cnt);
		return 0;
	}

	/*
	 * Keep packets with CRC errors (and with overrun) for monitor mode
	 * (otherwise the firmware discards them) but mark them as bad.
	 */
	if (!(rx_pkt_status & RX_MPDU_RES_STATUS_CRC_OK) ||
	    !(rx_pkt_status & RX_MPDU_RES_STATUS_OVERRUN_OK)) {
		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
		rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
	}

	/* This will be used in several places later */
	rate_n_flags = le32_to_cpu(phy_info->rate_n_flags);

	/* rx_status carries information about the packet to mac80211 */
	rx_status.mactime = le64_to_cpu(phy_info->timestamp);
	rx_status.device_timestamp = le32_to_cpu(phy_info->system_timestamp);
	rx_status.band =
		(phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_BAND_24)) ?
				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
	rx_status.freq =
		ieee80211_channel_to_frequency(le16_to_cpu(phy_info->channel),
					       rx_status.band);
	/*
	 * TSF as indicated by the fw is at INA time, but mac80211 expects the
	 * TSF at the beginning of the MPDU.
	 */
	/*rx_status.flag |= RX_FLAG_MACTIME_MPDU;*/

	if (mvm->fw->ucode_capa.flags & IWL_UCODE_TLV_FLAGS_RX_ENERGY_API)
		iwl_mvm_get_signal_strength(mvm, phy_info, &rx_status);
	else
		iwl_mvm_calc_rssi(mvm, phy_info, &rx_status);

	IWL_DEBUG_STATS_LIMIT(mvm, "Rssi %d, TSF %llu\n", rx_status.signal,
			      (unsigned long long)rx_status.mactime);

	/* set the preamble flag if appropriate */
	if (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_SHORT_PREAMBLE))
		rx_status.flag |= RX_FLAG_SHORTPRE;

	if (phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_AGG)) {
		/*
		 * We know which subframes of an A-MPDU belong
		 * together since we get a single PHY response
		 * from the firmware for all of them
		 */
		rx_status.flag |= RX_FLAG_AMPDU_DETAILS;
		rx_status.ampdu_reference = mvm->ampdu_ref;
	}

	/* Set up the HT phy flags */
	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
	case RATE_MCS_CHAN_WIDTH_20:
		break;
	case RATE_MCS_CHAN_WIDTH_40:
		rx_status.flag |= RX_FLAG_40MHZ;
		break;
	case RATE_MCS_CHAN_WIDTH_80:
		rx_status.flag |= RX_FLAG_80MHZ;
		break;
	case RATE_MCS_CHAN_WIDTH_160:
		rx_status.flag |= RX_FLAG_160MHZ;
		break;
	}
	if (rate_n_flags & RATE_MCS_SGI_MSK)
		rx_status.flag |= RX_FLAG_SHORT_GI;
	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
		rx_status.flag |= RX_FLAG_HT_GF;
	if (rate_n_flags & RATE_MCS_HT_MSK) {
		rx_status.flag |= RX_FLAG_HT;
		rx_status.rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
		rx_status.vht_nss =
			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
						RATE_VHT_MCS_NSS_POS) + 1;
		rx_status.rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
		rx_status.flag |= RX_FLAG_VHT;
	} else {
Beispiel #22
0
/*
 * Each ring entry is 128 bits:
 * [7:0]    - interrupt source id
 * [31:8]   - reserved
 * [59:32]  - interrupt source data
 * [63:60]  - reserved
 * [71:64]  - RINGID
 * [79:72]  - VMID
 * [127:80] - reserved
 */
static void vector(struct pci_dev *dev, u32 id, u32 data, u8 ring_id,
					u8 *irq_thd, u8 *dce6_irqs_acked)
{
	struct dev_drv_data *dd;

	dd = pci_get_drvdata(dev);

	switch (id) {
	case VECTOR_ID_HPD:
		if (!*dce6_irqs_acked) {
			dce6_irqs_ack(dd->dce);
			*dce6_irqs_acked = 1;
                }
		dce6_hpd_irq(dd->dce, data);
		*irq_thd = IRQ_THD_ENA;
		break;
	case VECTOR_ID_D0:
	case VECTOR_ID_D1:
	case VECTOR_ID_D2:
	case VECTOR_ID_D3:
	case VECTOR_ID_D4:
	case VECTOR_ID_D5:
		if (!*dce6_irqs_acked) {
			dce6_irqs_ack(dd->dce);
			*dce6_irqs_acked = 1;
                }
		if (data == Dx_VBLANK) {/* only page flipping in vblank */
			struct timespec tp;
			getrawmonotonic(&tp);

			dce6_pf_irq(dd->dce, id - 1, tp);
		}
		break;
	case VECTOR_ID_EOP:
		switch(ring_id) {
		case 0:
			atomic_set(&dd->gpu_3d.fence.bottom,
				le32_to_cpup(dd->gpu_3d.fence.cpu_addr));

			wake_up(&dd->gpu_3d.fence.wait_queue);
			break;
		case 1:
			atomic_set(&dd->gpu_c0.fence.bottom,
				le32_to_cpup(dd->gpu_c0.fence.cpu_addr));

			wake_up(&dd->gpu_c0.fence.wait_queue);
			break;
		case 2:
			atomic_set(&dd->gpu_c1.fence.bottom,
				le32_to_cpup(dd->gpu_c1.fence.cpu_addr));

			wake_up(&dd->gpu_c1.fence.wait_queue);
			break;
		};
		break;
	case VECTOR_ID_DMA_0:
		atomic_set(&dd->dmas[0].fence.bottom,
				le32_to_cpup(dd->dmas[0].fence.cpu_addr));

		wake_up(&dd->dmas[0].fence.wait_queue);
		break;
	case VECTOR_ID_DMA_1:
		atomic_set(&dd->dmas[1].fence.bottom,
				le32_to_cpup(dd->dmas[1].fence.cpu_addr));
		wake_up(&dd->dmas[1].fence.wait_queue);
		break;
	}
}
Beispiel #23
0
static inline u32 iwl5000_get_scd_ssn(struct iwl5000_tx_resp *tx_resp)
{
	return le32_to_cpup((__le32 *)&tx_resp->status +
			    tx_resp->frame_count) & MAX_SN;
}
Beispiel #24
0
Datei: rx.c Projekt: mdamt/linux
/*
 * iwl_mvm_rx_rx_mpdu - REPLY_RX_MPDU_CMD handler
 *
 * Handles the actual data of the Rx packet from the fw
 */
void iwl_mvm_rx_rx_mpdu(struct iwl_mvm *mvm, struct napi_struct *napi,
			struct iwl_rx_cmd_buffer *rxb)
{
	struct ieee80211_hdr *hdr;
	struct ieee80211_rx_status *rx_status;
	struct iwl_rx_packet *pkt = rxb_addr(rxb);
	struct iwl_rx_phy_info *phy_info;
	struct iwl_rx_mpdu_res_start *rx_res;
	struct ieee80211_sta *sta = NULL;
	struct sk_buff *skb;
	u32 len;
	u32 rate_n_flags;
	u32 rx_pkt_status;
	u8 crypt_len = 0;
	bool take_ref;

	phy_info = &mvm->last_phy_info;
	rx_res = (struct iwl_rx_mpdu_res_start *)pkt->data;
	hdr = (struct ieee80211_hdr *)(pkt->data + sizeof(*rx_res));
	len = le16_to_cpu(rx_res->byte_count);
	rx_pkt_status = le32_to_cpup((__le32 *)
		(pkt->data + sizeof(*rx_res) + len));

	/* Dont use dev_alloc_skb(), we'll have enough headroom once
	 * ieee80211_hdr pulled.
	 */
	skb = alloc_skb(128, GFP_ATOMIC);
	if (!skb) {
		IWL_ERR(mvm, "alloc_skb failed\n");
		return;
	}

	rx_status = IEEE80211_SKB_RXCB(skb);

	/*
	 * drop the packet if it has failed being decrypted by HW
	 */
	if (iwl_mvm_set_mac80211_rx_flag(mvm, hdr, rx_status, rx_pkt_status,
					 &crypt_len)) {
		IWL_DEBUG_DROP(mvm, "Bad decryption results 0x%08x\n",
			       rx_pkt_status);
		kfree_skb(skb);
		return;
	}

	/*
	 * Keep packets with CRC errors (and with overrun) for monitor mode
	 * (otherwise the firmware discards them) but mark them as bad.
	 */
	if (!(rx_pkt_status & RX_MPDU_RES_STATUS_CRC_OK) ||
	    !(rx_pkt_status & RX_MPDU_RES_STATUS_OVERRUN_OK)) {
		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
	}

	/* This will be used in several places later */
	rate_n_flags = le32_to_cpu(phy_info->rate_n_flags);

	/* rx_status carries information about the packet to mac80211 */
	rx_status->mactime = le64_to_cpu(phy_info->timestamp);
	rx_status->device_timestamp = le32_to_cpu(phy_info->system_timestamp);
	rx_status->band =
		(phy_info->phy_flags & cpu_to_le16(RX_RES_PHY_FLAGS_BAND_24)) ?
				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
	rx_status->freq =
		ieee80211_channel_to_frequency(le16_to_cpu(phy_info->channel),
					       rx_status->band);

	/* TSF as indicated by the firmware  is at INA time */
	rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;

	iwl_mvm_get_signal_strength(mvm, phy_info, rx_status);

	IWL_DEBUG_STATS_LIMIT(mvm, "Rssi %d, TSF %llu\n", rx_status->signal,
			      (unsigned long long)rx_status->mactime);

	rcu_read_lock();
	if (rx_pkt_status & RX_MPDU_RES_STATUS_SRC_STA_FOUND) {
		u32 id = rx_pkt_status & RX_MPDU_RES_STATUS_STA_ID_MSK;

		id >>= RX_MDPU_RES_STATUS_STA_ID_SHIFT;

		if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
			if (IS_ERR(sta))
				sta = NULL;
		}
	} else if (!is_multicast_ether_addr(hdr->addr2)) {
Beispiel #25
0
unsigned int ioread32(void __iomem *addr)
{
	if (unlikely(INDIRECT_ADDR(addr)))
		return iomap_ops[ADDR_TO_REGION(addr)]->read32(addr);
	return le32_to_cpup((u32 *)addr);
}
Beispiel #26
0
static int iwl_parse_tlv_firmware(struct iwl_drv *drv,
				const struct firmware *ucode_raw,
				struct iwl_firmware_pieces *pieces,
				struct iwl_ucode_capabilities *capa)
{
	struct iwl_tlv_ucode_header *ucode = (void *)ucode_raw->data;
	struct iwl_ucode_tlv *tlv;
	size_t len = ucode_raw->size;
	const u8 *data;
	u32 tlv_len;
	enum iwl_ucode_tlv_type tlv_type;
	const u8 *tlv_data;
	char buildstr[25];
	u32 build;

	if (len < sizeof(*ucode)) {
		IWL_ERR(drv, "uCode has invalid length: %zd\n", len);
		return -EINVAL;
	}

	if (ucode->magic != cpu_to_le32(IWL_TLV_UCODE_MAGIC)) {
		IWL_ERR(drv, "invalid uCode magic: 0X%x\n",
			le32_to_cpu(ucode->magic));
		return -EINVAL;
	}

	drv->fw.ucode_ver = le32_to_cpu(ucode->ver);
	build = le32_to_cpu(ucode->build);

	if (build)
		sprintf(buildstr, " build %u%s", build,
		       (drv->fw_index == UCODE_EXPERIMENTAL_INDEX)
				? " (EXP)" : "");
	else
		buildstr[0] = '\0';

	snprintf(drv->fw.fw_version,
		 sizeof(drv->fw.fw_version),
		 "%u.%u.%u.%u%s",
		 IWL_UCODE_MAJOR(drv->fw.ucode_ver),
		 IWL_UCODE_MINOR(drv->fw.ucode_ver),
		 IWL_UCODE_API(drv->fw.ucode_ver),
		 IWL_UCODE_SERIAL(drv->fw.ucode_ver),
		 buildstr);

	data = ucode->data;

	len -= sizeof(*ucode);

	while (len >= sizeof(*tlv)) {
		len -= sizeof(*tlv);
		tlv = (void *)data;

		tlv_len = le32_to_cpu(tlv->length);
		tlv_type = le32_to_cpu(tlv->type);
		tlv_data = tlv->data;

		if (len < tlv_len) {
			IWL_ERR(drv, "invalid TLV len: %zd/%u\n",
				len, tlv_len);
			return -EINVAL;
		}
		len -= ALIGN(tlv_len, 4);
		data += sizeof(*tlv) + ALIGN(tlv_len, 4);

		switch (tlv_type) {
		case IWL_UCODE_TLV_INST:
			set_sec_data(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_INST, tlv_data);
			set_sec_size(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_INST, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_REGULAR,
				       IWL_UCODE_SECTION_INST,
				       IWLAGN_RTC_INST_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_DATA:
			set_sec_data(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_DATA, tlv_data);
			set_sec_size(pieces, IWL_UCODE_REGULAR,
				     IWL_UCODE_SECTION_DATA, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_REGULAR,
				       IWL_UCODE_SECTION_DATA,
				       IWLAGN_RTC_DATA_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_INIT:
			set_sec_data(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_INST, tlv_data);
			set_sec_size(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_INST, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_INIT,
				       IWL_UCODE_SECTION_INST,
				       IWLAGN_RTC_INST_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_INIT_DATA:
			set_sec_data(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_DATA, tlv_data);
			set_sec_size(pieces, IWL_UCODE_INIT,
				     IWL_UCODE_SECTION_DATA, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_INIT,
				       IWL_UCODE_SECTION_DATA,
				       IWLAGN_RTC_DATA_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_BOOT:
			IWL_ERR(drv, "Found unexpected BOOT ucode\n");
			break;
		case IWL_UCODE_TLV_PROBE_MAX_LEN:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			capa->max_probe_length =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_PAN:
			if (tlv_len)
				goto invalid_tlv_len;
			capa->flags |= IWL_UCODE_TLV_FLAGS_PAN;
			break;
		case IWL_UCODE_TLV_FLAGS:
			/* must be at least one u32 */
			if (tlv_len < sizeof(u32))
				goto invalid_tlv_len;
			/* and a proper number of u32s */
			if (tlv_len % sizeof(u32))
				goto invalid_tlv_len;
			/*
			 * This driver only reads the first u32 as
			 * right now no more features are defined,
			 * if that changes then either the driver
			 * will not work with the new firmware, or
			 * it'll not take advantage of new features.
			 */
			capa->flags = le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_INIT_EVTLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->init_evtlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_INIT_EVTLOG_SIZE:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->init_evtlog_size =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_INIT_ERRLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->init_errlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_RUNT_EVTLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->inst_evtlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_RUNT_EVTLOG_SIZE:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->inst_evtlog_size =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_RUNT_ERRLOG_PTR:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			pieces->inst_errlog_ptr =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		case IWL_UCODE_TLV_ENHANCE_SENS_TBL:
			if (tlv_len)
				goto invalid_tlv_len;
			drv->fw.enhance_sensitivity_table = true;
			break;
		case IWL_UCODE_TLV_WOWLAN_INST:
			set_sec_data(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_INST, tlv_data);
			set_sec_size(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_INST, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_WOWLAN,
				       IWL_UCODE_SECTION_INST,
				       IWLAGN_RTC_INST_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_WOWLAN_DATA:
			set_sec_data(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_DATA, tlv_data);
			set_sec_size(pieces, IWL_UCODE_WOWLAN,
				     IWL_UCODE_SECTION_DATA, tlv_len);
			set_sec_offset(pieces, IWL_UCODE_WOWLAN,
				       IWL_UCODE_SECTION_DATA,
				       IWLAGN_RTC_DATA_LOWER_BOUND);
			break;
		case IWL_UCODE_TLV_PHY_CALIBRATION_SIZE:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			capa->standard_phy_calibration_size =
					le32_to_cpup((__le32 *)tlv_data);
			break;
		 case IWL_UCODE_TLV_SEC_RT:
			iwl_store_ucode_sec(pieces, tlv_data, IWL_UCODE_REGULAR,
					    tlv_len);
			drv->fw.mvm_fw = true;
			break;
		case IWL_UCODE_TLV_SEC_INIT:
			iwl_store_ucode_sec(pieces, tlv_data, IWL_UCODE_INIT,
					    tlv_len);
			drv->fw.mvm_fw = true;
			break;
		case IWL_UCODE_TLV_SEC_WOWLAN:
			iwl_store_ucode_sec(pieces, tlv_data, IWL_UCODE_WOWLAN,
					    tlv_len);
			drv->fw.mvm_fw = true;
			break;
		case IWL_UCODE_TLV_DEF_CALIB:
			if (tlv_len != sizeof(struct iwl_tlv_calib_data))
				goto invalid_tlv_len;
			if (iwl_set_default_calib(drv, tlv_data))
				goto tlv_error;
			break;
		case IWL_UCODE_TLV_PHY_SKU:
			if (tlv_len != sizeof(u32))
				goto invalid_tlv_len;
			drv->fw.phy_config = le32_to_cpup((__le32 *)tlv_data);
			break;
		default:
			IWL_DEBUG_INFO(drv, "unknown TLV: %d\n", tlv_type);
			break;
		}
	}

	if (len) {
		IWL_ERR(drv, "invalid TLV after parsing: %zd\n", len);
		iwl_print_hex_dump(drv, IWL_DL_FW, (u8 *)data, len);
		return -EINVAL;
	}

	return 0;

 invalid_tlv_len:
	IWL_ERR(drv, "TLV %d has invalid size: %u\n", tlv_type, tlv_len);
 tlv_error:
	iwl_print_hex_dump(drv, IWL_DL_FW, tlv_data, tlv_len);

	return -EINVAL;
}
Beispiel #27
0
static int uvc_get_video_ctrl(struct uvc_streaming *stream,
	struct uvc_streaming_control *ctrl, int probe, __u8 query)
{
	__u8 *data;
	__u16 size;
	int ret;

	size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
			query == UVC_GET_DEF)
		return -EIO;

	data = kmalloc(size, GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
		size, uvc_timeout_param);

	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
		/* Some cameras, mostly based on Bison Electronics chipsets,
		 * answer a GET_MIN or GET_MAX request with the wCompQuality
		 * field only.
		 */
		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
			"compliance - GET_MIN/MAX(PROBE) incorrectly "
			"supported. Enabling workaround.\n");
		memset(ctrl, 0, sizeof *ctrl);
		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
		ret = 0;
		goto out;
	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
		/* Many cameras don't support the GET_DEF request on their
		 * video probe control. Warn once and return, the caller will
		 * fall back to GET_CUR.
		 */
		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
			"compliance - GET_DEF(PROBE) not supported. "
			"Enabling workaround.\n");
		ret = -EIO;
		goto out;
	} else if (ret != size) {
		uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
			"%d (exp. %u).\n", query, probe ? "probe" : "commit",
			ret, size);
		ret = -EIO;
		goto out;
	}

	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
	ctrl->bFormatIndex = data[2];
	ctrl->bFrameIndex = data[3];
	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);

	if (size == 34) {
		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
		ctrl->bmFramingInfo = data[30];
		ctrl->bPreferedVersion = data[31];
		ctrl->bMinVersion = data[32];
		ctrl->bMaxVersion = data[33];
	} else {
		ctrl->dwClockFrequency = stream->dev->clock_frequency;
		ctrl->bmFramingInfo = 0;
		ctrl->bPreferedVersion = 0;
		ctrl->bMinVersion = 0;
		ctrl->bMaxVersion = 0;
	}

	/* Some broken devices return null or wrong dwMaxVideoFrameSize and
	 * dwMaxPayloadTransferSize fields. Try to get the value from the
	 * format and frame descriptors.
	 */
	uvc_fixup_video_ctrl(stream, ctrl);
	ret = 0;

out:
	kfree(data);
	return ret;
}
Beispiel #28
0
static int ath10k_core_fetch_firmware_api_n(struct ath10k *ar, const char *name)
{
	size_t magic_len, len, ie_len;
	int ie_id, i, index, bit, ret;
	struct ath10k_fw_ie *hdr;
	const u8 *data;
	__le32 *timestamp, *version;

	/* first fetch the firmware file (firmware-*.bin) */
	ar->firmware = ath10k_fetch_fw_file(ar, ar->hw_params.fw.dir, name);
	if (IS_ERR(ar->firmware)) {
		ath10k_err(ar, "could not fetch firmware file '%s/%s': %ld\n",
			   ar->hw_params.fw.dir, name, PTR_ERR(ar->firmware));
		return PTR_ERR(ar->firmware);
	}

	data = ar->firmware->data;
	len = ar->firmware->size;

	/* magic also includes the null byte, check that as well */
	magic_len = strlen(ATH10K_FIRMWARE_MAGIC) + 1;

	if (len < magic_len) {
		ath10k_err(ar, "firmware file '%s/%s' too small to contain magic: %zu\n",
			   ar->hw_params.fw.dir, name, len);
		ret = -EINVAL;
		goto err;
	}

	if (memcmp(data, ATH10K_FIRMWARE_MAGIC, magic_len) != 0) {
		ath10k_err(ar, "invalid firmware magic\n");
		ret = -EINVAL;
		goto err;
	}

	/* jump over the padding */
	magic_len = ALIGN(magic_len, 4);

	len -= magic_len;
	data += magic_len;

	/* loop elements */
	while (len > sizeof(struct ath10k_fw_ie)) {
		hdr = (struct ath10k_fw_ie *)data;

		ie_id = le32_to_cpu(hdr->id);
		ie_len = le32_to_cpu(hdr->len);

		len -= sizeof(*hdr);
		data += sizeof(*hdr);

		if (len < ie_len) {
			ath10k_err(ar, "invalid length for FW IE %d (%zu < %zu)\n",
				   ie_id, len, ie_len);
			ret = -EINVAL;
			goto err;
		}

		switch (ie_id) {
		case ATH10K_FW_IE_FW_VERSION:
			if (ie_len > sizeof(ar->hw->wiphy->fw_version) - 1)
				break;

			memcpy(ar->hw->wiphy->fw_version, data, ie_len);
			ar->hw->wiphy->fw_version[ie_len] = '\0';

			ath10k_dbg(ar, ATH10K_DBG_BOOT,
				   "found fw version %s\n",
				    ar->hw->wiphy->fw_version);
			break;
		case ATH10K_FW_IE_TIMESTAMP:
			if (ie_len != sizeof(u32))
				break;

			timestamp = (__le32 *)data;

			ath10k_dbg(ar, ATH10K_DBG_BOOT, "found fw timestamp %d\n",
				   le32_to_cpup(timestamp));
			break;
		case ATH10K_FW_IE_FEATURES:
			ath10k_dbg(ar, ATH10K_DBG_BOOT,
				   "found firmware features ie (%zd B)\n",
				   ie_len);

			for (i = 0; i < ATH10K_FW_FEATURE_COUNT; i++) {
				index = i / 8;
				bit = i % 8;

				if (index == ie_len)
					break;

				if (data[index] & (1 << bit)) {
					ath10k_dbg(ar, ATH10K_DBG_BOOT,
						   "Enabling feature bit: %i\n",
						   i);
					__set_bit(i, ar->fw_features);
				}
			}

			ath10k_dbg_dump(ar, ATH10K_DBG_BOOT, "features", "",
					ar->fw_features,
					sizeof(ar->fw_features));
			break;
		case ATH10K_FW_IE_FW_IMAGE:
			ath10k_dbg(ar, ATH10K_DBG_BOOT,
				   "found fw image ie (%zd B)\n",
				   ie_len);

			ar->firmware_data = data;
			ar->firmware_len = ie_len;

			break;
		case ATH10K_FW_IE_OTP_IMAGE:
			ath10k_dbg(ar, ATH10K_DBG_BOOT,
				   "found otp image ie (%zd B)\n",
				   ie_len);

			ar->otp_data = data;
			ar->otp_len = ie_len;

			break;
		case ATH10K_FW_IE_WMI_OP_VERSION:
			if (ie_len != sizeof(u32))
				break;

			version = (__le32 *)data;

			ar->wmi.op_version = le32_to_cpup(version);

			ath10k_dbg(ar, ATH10K_DBG_BOOT, "found fw ie wmi op version %d\n",
				   ar->wmi.op_version);
			break;
		case ATH10K_FW_IE_HTT_OP_VERSION:
			if (ie_len != sizeof(u32))
				break;

			version = (__le32 *)data;

			ar->htt.op_version = le32_to_cpup(version);

			ath10k_dbg(ar, ATH10K_DBG_BOOT, "found fw ie htt op version %d\n",
				   ar->htt.op_version);
			break;
		case ATH10K_FW_IE_FW_CODE_SWAP_IMAGE:
			ath10k_dbg(ar, ATH10K_DBG_BOOT,
				   "found fw code swap image ie (%zd B)\n",
				   ie_len);
			ar->swap.firmware_codeswap_data = data;
			ar->swap.firmware_codeswap_len = ie_len;
			break;
		default:
			ath10k_warn(ar, "Unknown FW IE: %u\n",
				    le32_to_cpu(hdr->id));
			break;
		}

		/* jump over the padding */
		ie_len = ALIGN(ie_len, 4);

		len -= ie_len;
		data += ie_len;
	}

	if (!ar->firmware_data || !ar->firmware_len) {
		ath10k_warn(ar, "No ATH10K_FW_IE_FW_IMAGE found from '%s/%s', skipping\n",
			    ar->hw_params.fw.dir, name);
		ret = -ENOMEDIUM;
		goto err;
	}

	return 0;

err:
	ath10k_core_free_firmware_files(ar);
	return ret;
}
Beispiel #29
0
/**
 * ntfs_fek_import_from_raw
 */
static ntfs_fek *ntfs_fek_import_from_raw(u8 *fek_buf, unsigned fek_size)
{
    ntfs_fek *fek;
    u32 key_size, wanted_key_size, gcry_algo;
    int gcry_mode;
    gcry_error_t err;
    ntfs_desx_ctx *ctx;

    key_size = le32_to_cpup(fek_buf);
    ntfs_log_debug("key_size 0x%x\n", key_size);
    if (key_size + 16 > fek_size) {
        ntfs_log_debug("Invalid FEK.  It was probably decrypted with "
                       "the incorrect RSA key.");
        errno = EINVAL;
        return NULL;
    }
    fek = malloc(((((sizeof(*fek) + 7) & ~7) + key_size + 7) & ~7) +
                 sizeof(gcry_cipher_hd_t));
    if (!fek) {
        errno = ENOMEM;
        return NULL;
    }
    ctx = &fek->desx_ctx;
    fek->alg_id = *(le32*)(fek_buf + 8);
    //ntfs_log_debug("alg_id 0x%x\n", le32_to_cpu(fek->alg_id));
    fek->key_data = (u8*)fek + ((sizeof(*fek) + 7) & ~7);
    memcpy(fek->key_data, fek_buf + 16, key_size);
    fek->des_gcry_cipher_hd_ptr = NULL;
    *(gcry_cipher_hd_t***)(fek->key_data + ((key_size + 7) & ~7)) =
        &fek->des_gcry_cipher_hd_ptr;
    switch (fek->alg_id) {
    case CALG_DESX:
        wanted_key_size = 16;
        gcry_algo = GCRY_CIPHER_DES;
        gcry_mode = GCRY_CIPHER_MODE_ECB;
        break;
    case CALG_3DES:
        wanted_key_size = 24;
        gcry_algo = GCRY_CIPHER_3DES;
        gcry_mode = GCRY_CIPHER_MODE_CBC;
        break;
    case CALG_AES_256:
        wanted_key_size = 32;
        gcry_algo = GCRY_CIPHER_AES256;
        gcry_mode = GCRY_CIPHER_MODE_CBC;
        break;
    default:
        wanted_key_size = 8;
        gcry_algo = GCRY_CIPHER_DES;
        gcry_mode = GCRY_CIPHER_MODE_CBC;
        if (fek->alg_id == CALG_DES)
            ntfs_log_error("DES is not supported at present\n");
        else
            ntfs_log_error("Unknown crypto algorithm 0x%x\n",
                           le32_to_cpu(fek->alg_id));
        ntfs_log_error(".  Please email %s and say that you saw this "
                       "message.  We will then try to implement "
                       "support for this algorithm.\n", NTFS_DEV_LIST);
        err = EOPNOTSUPP;
        goto out;
    }
    if (key_size != wanted_key_size) {
        ntfs_log_error("%s key of %u bytes but needed size is %u "
                       "bytes, assuming corrupt or incorrect key.  "
                       "Aborting.\n",
                       gcry_cipher_algo_name(gcry_algo),
                       (unsigned)key_size, (unsigned)wanted_key_size);
        err = EIO;
        goto out;
    }
    err = gcry_cipher_open(&fek->gcry_cipher_hd, gcry_algo,
                           gcry_mode, 0);

    if (err != GPG_ERR_NO_ERROR) {
        ntfs_log_error("gcry_cipher_open() failed: %s\n",
                       gcry_strerror(err));
        err = EINVAL;
        goto out;
    }
    if (fek->alg_id == CALG_DESX) {
        err = ntfs_desx_key_expand(fek->key_data, (u32*)ctx->des_key,
                                   &ctx->out_whitening, &ctx->in_whitening);
        if (err == GPG_ERR_NO_ERROR)
            err = gcry_cipher_setkey(fek->gcry_cipher_hd,
                                     ctx->des_key, 8);
    } else {
        err = gcry_cipher_setkey(fek->gcry_cipher_hd, fek->key_data,
                                 key_size);
    }
    if (err != GPG_ERR_NO_ERROR) {
        ntfs_log_error("gcry_cipher_setkey() failed: %s\n",
                       gcry_strerror(err));
        gcry_cipher_close(fek->gcry_cipher_hd);
        err = EINVAL;
        goto out;
    }
    return fek;
out:
    free(fek);
    errno = err;
    return NULL;
}
Beispiel #30
0
int msdos_partition(struct parsed_partitions *state)
{
	sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
	Sector sect;
	unsigned char *data;
	struct partition *p;
	struct fat_boot_sector *fb;
	int slot;
	u32 disksig;

	data = read_part_sector(state, 0, &sect);
	if (!data)
		return -1;

	/*
	 * Note order! (some AIX disks, e.g. unbootable kind,
	 * have no MSDOS 55aa)
	 */
	if (aix_magic_present(state, data)) {
		put_dev_sector(sect);
#ifdef CONFIG_AIX_PARTITION
		return aix_partition(state);
#else
		strlcat(state->pp_buf, " [AIX]", PAGE_SIZE);
		return 0;
#endif
	}

	if (!msdos_magic_present(data + 510)) {
		put_dev_sector(sect);
		return 0;
	}

	/*
	 * Now that the 55aa signature is present, this is probably
	 * either the boot sector of a FAT filesystem or a DOS-type
	 * partition table. Reject this in case the boot indicator
	 * is not 0 or 0x80.
	 */
	p = (struct partition *) (data + 0x1be);
	for (slot = 1; slot <= 4; slot++, p++) {
		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
			/*
			 * Even without a valid boot inidicator value
			 * its still possible this is valid FAT filesystem
			 * without a partition table.
			 */
			fb = (struct fat_boot_sector *) data;
			if (slot == 1 && fb->reserved && fb->fats
				&& fat_valid_media(fb->media)) {
				strlcat(state->pp_buf, "\n", PAGE_SIZE);
				put_dev_sector(sect);
				return 1;
			} else {
				put_dev_sector(sect);
				return 0;
			}
		}
	}

#ifdef CONFIG_EFI_PARTITION
	p = (struct partition *) (data + 0x1be);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		/* If this is an EFI GPT disk, msdos should ignore it. */
		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
			put_dev_sector(sect);
			return 0;
		}
	}
#endif
	p = (struct partition *) (data + 0x1be);

	disksig = le32_to_cpup((__le32 *)(data + 0x1b8));

	/*
	 * Look for partitions in two passes:
	 * First find the primary and DOS-type extended partitions.
	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
	 */

	state->next = 5;
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		sector_t start = start_sect(p)*sector_size;
		sector_t size = nr_sects(p)*sector_size;

		if (!size)
			continue;
		if (is_extended_partition(p)) {
			/*
			 * prevent someone doing mkfs or mkswap on an
			 * extended partition, but leave room for LILO
			 * FIXME: this uses one logical sector for > 512b
			 * sector, although it may not be enough/proper.
			 */
			sector_t n = 2;

			n = min(size, max(sector_size, n));
			put_partition(state, slot, start, n);

			strlcat(state->pp_buf, " <", PAGE_SIZE);
			parse_extended(state, start, size, disksig);
			strlcat(state->pp_buf, " >", PAGE_SIZE);
			continue;
		}
		put_partition(state, slot, start, size);
		set_info(state, slot, disksig);
		if (SYS_IND(p) == LINUX_RAID_PARTITION)
			state->parts[slot].flags = ADDPART_FLAG_RAID;
		if (SYS_IND(p) == DM6_PARTITION)
			strlcat(state->pp_buf, "[DM]", PAGE_SIZE);
		if (SYS_IND(p) == EZD_PARTITION)
			strlcat(state->pp_buf, "[EZD]", PAGE_SIZE);
	}

	strlcat(state->pp_buf, "\n", PAGE_SIZE);

	/* second pass - output for each on a separate line */
	p = (struct partition *) (0x1be + data);
	for (slot = 1 ; slot <= 4 ; slot++, p++) {
		unsigned char id = SYS_IND(p);
		int n;

		if (!nr_sects(p))
			continue;

		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
			;

		if (!subtypes[n].parse)
			continue;
		subtypes[n].parse(state, start_sect(p) * sector_size,
				  nr_sects(p) * sector_size, slot);
	}
	put_dev_sector(sect);
	return 1;
}