Beispiel #1
0
// Design (root-)Nyquist filter from prototype
//  _type   : filter type (e.g. LIQUID_FIRFILT_RRRC)
//  _k      : samples/symbol
//  _m      : symbol delay
//  _beta   : excess bandwidth factor, _beta in [0,1]
//  _dt     : fractional sample delay
//  _h      : output coefficient buffer (length: 2*k*m+1)
void liquid_firdes_prototype(liquid_firfilt_type _type,
                             unsigned int        _k,
                             unsigned int        _m,
                             float               _beta,
                             float               _dt,
                             float *             _h)
{
    // compute filter parameters
    unsigned int h_len = 2*_k*_m + 1;   // length
    float fc = 0.5f / (float)_k;        // cut-off frequency
    float df = _beta / (float)_k;       // transition bandwidth
    float As = estimate_req_filter_As(df,h_len);   // stop-band attenuation

    // Parks-McClellan algorithm parameters
    float bands[6] = {  0.0f,       fc-0.5f*df,
                        fc,         fc,
                        fc+0.5f*df, 0.5f};
    float des[3] = { (float)_k, 0.5f*_k, 0.0f };
    float weights[3] = {1.0f, 1.0f, 1.0f};
    liquid_firdespm_wtype wtype[3] = {  LIQUID_FIRDESPM_FLATWEIGHT,
                                        LIQUID_FIRDESPM_FLATWEIGHT,
                                        LIQUID_FIRDESPM_FLATWEIGHT};

    switch (_type) {
    
    // Nyquist filter prototypes

    case LIQUID_FIRFILT_KAISER:
        liquid_firdes_kaiser(h_len, fc, As, _dt, _h);
        break;
    case LIQUID_FIRFILT_PM:
        // WARNING: input timing offset is ignored here
        firdespm_run(h_len, 3, bands, des, weights, wtype, LIQUID_FIRDESPM_BANDPASS, _h);
        break;
    case LIQUID_FIRFILT_RCOS:
        liquid_firdes_rcos(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_FEXP:
        liquid_firdes_fexp(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_FSECH:
        liquid_firdes_fsech(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_FARCSECH:
        liquid_firdes_farcsech(_k, _m, _beta, _dt, _h);
        break;

    // root-Nyquist filter prototypes

    case LIQUID_FIRFILT_ARKAISER:
        liquid_firdes_arkaiser(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_RKAISER:
        liquid_firdes_rkaiser(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_RRC:
        liquid_firdes_rrcos(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_hM3:
        liquid_firdes_hM3(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_GMSKTX:
        liquid_firdes_gmsktx(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_GMSKRX:
        liquid_firdes_gmskrx(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_RFEXP:
        liquid_firdes_rfexp(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_RFSECH:
        liquid_firdes_rfsech(_k, _m, _beta, _dt, _h);
        break;
    case LIQUID_FIRFILT_RFARCSECH:
        liquid_firdes_rfarcsech(_k, _m, _beta, _dt, _h);
        break;
    default:
        fprintf(stderr,"error: liquid_firdes_prototype(), invalid root-Nyquist filter type '%d'\n", _type);
        exit(1);
    }
}
int main(int argc, char*argv[]) {
    // options
    unsigned int k=2;                   // samples/symbol
    unsigned int m=2;                   // filter delay
    float beta = 0.5f;                  // filter excess bandwidth
    unsigned int num_data_symbols=8;    // number of data symbols

    int dopt;
    while ((dopt = getopt(argc,argv,"uhk:m:b:n:")) != EOF) {
        switch (dopt) {
        case 'u':
        case 'h': usage();                          return 0;
        case 'k': k = atoi(optarg);                 break;
        case 'm': m = atoi(optarg);                 break;
        case 'b': beta = atof(optarg);              break;
        case 'n': num_data_symbols = atoi(optarg);  break;
        default:
            usage();
            return 1;
        }
    }

    // validate options
    if (k < 2) {
        fprintf(stderr,"error: %s, interp factor must be greater than 1\n", argv[0]);
        return 1;
    } else if (m < 1) {
        fprintf(stderr,"error: %s, filter delay must be greater than 0\n", argv[0]);
        return 1;
    } else if (beta <= 0.0 || beta > 1.0f) {
        fprintf(stderr,"error: %s, beta (excess bandwidth factor) must be in (0,1]\n", argv[0]);
        return 1;
    } else if (num_data_symbols < 1) {
        fprintf(stderr,"error: %s, must have at least one data symbol\n", argv[0]);
        return 1;
    }

    // derived values
    unsigned int h_len = 2*k*m+1;
    unsigned int num_symbols = num_data_symbols + 2*m;
    unsigned int num_samples = k*num_symbols;

    // design filter and create interpolator and decimator objects
    float h[h_len];     // transmit filter
    float g[h_len];     // receive filter (reverse of h)
    liquid_firdes_rrcos(k,m,beta,0.3f,h);
    unsigned int i;
    for (i=0; i<h_len; i++)
        g[i] = h[h_len-i-1];
    firinterp_crcf interp = firinterp_crcf_create(k,h,h_len);
    firdecim_crcf  decim  = firdecim_crcf_create(k,g,h_len);

    // allocate memory for buffers
    float complex x[num_symbols];   // input symbols
    float complex y[num_samples];   // interpolated sequence
    float complex z[num_symbols];   // decimated (received) symbols

    // generate input symbols, padded with zeros at the end
    for (i=0; i<num_data_symbols; i++) {
        x[i] = (rand() % 2 ? 1.0f : -1.0f) +
               (rand() % 2 ? 1.0f : -1.0f) * _Complex_I;
    }
    for ( ; i<num_symbols; i++)
        x[i] = 0.0f;

    // run interpolator
    for (i=0; i<num_symbols; i++) {
        firinterp_crcf_execute(interp, x[i], &y[k*i]);
    }

    // run decimator
    for (i=0; i<num_symbols; i++) {
        firdecim_crcf_execute(decim, &y[k*i], &z[i]);

        // normalize output by samples/symbol
        z[i] /= k;
    }

    // destroy objects
    firinterp_crcf_destroy(interp);
    firdecim_crcf_destroy(decim);

    // print results to screen
    printf("filter impulse response :\n");
    for (i=0; i<h_len; i++)
        printf("  [%4u] : %8.4f\n", i, h[i]);

    printf("input symbols\n");
    for (i=0; i<num_symbols; i++) {
        printf("  [%4u] : %8.4f + j*%8.4f", i, crealf(x[i]), cimagf(x[i]));

        // highlight actual data symbols
        if (i < num_data_symbols) printf(" *\n");
        else                      printf("\n");
    }

    printf("interpolator output samples:\n");
    for (i=0; i<num_samples; i++) {
        printf("  [%4u] : %8.4f + j*%8.4f", i, crealf(y[i]), cimagf(y[i]));

        if ( (i >= k*m) && ((i%k)==0))  printf(" **\n");
        else                            printf("\n");
    }

    printf("output symbols:\n");
    for (i=0; i<num_symbols; i++) {
        printf("  [%4u] : %8.4f + j*%8.4f", i, crealf(z[i]), cimagf(z[i]));

        // highlight symbols (compensate for filter delay)
        if ( i < 2*m ) printf("\n");
        else           printf(" *\n");
    }

    // open output file
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s: auto-generated file\n\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n");
    fprintf(fid,"k = %u;\n", k);
    fprintf(fid,"m = %u;\n", m);
    fprintf(fid,"h_len=%u;\n",h_len);
    fprintf(fid,"num_symbols = %u;\n", num_symbols);
    fprintf(fid,"num_samples = k*num_symbols;\n");
    fprintf(fid,"h = zeros(1,h_len);\n");
    fprintf(fid,"x = zeros(1,num_symbols);\n");
    fprintf(fid,"y = zeros(1,num_samples);\n");

    for (i=0; i<h_len; i++)
        fprintf(fid,"h(%4u) = %12.4e;\n", i+1, h[i]);

    for (i=0; i<num_symbols; i++)
        fprintf(fid,"x(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));

    for (i=0; i<num_samples; i++)
        fprintf(fid,"y(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));

    for (i=0; i<num_symbols; i++)
        fprintf(fid,"z(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(z[i]), cimagf(z[i]));

    fprintf(fid,"\n\n");
    fprintf(fid,"tx = [0:(num_symbols-1)];\n");
    fprintf(fid,"ty = [0:(num_samples-1)]/k - m;\n");
    fprintf(fid,"tz = [0:(num_symbols-1)] - 2*m;\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"subplot(2,1,1);\n");
    fprintf(fid,"    plot(ty,real(y),'-',tx,real(x),'s',tz,real(z),'x');\n");
    fprintf(fid,"    xlabel('time');\n");
    fprintf(fid,"    ylabel('real');\n");
    fprintf(fid,"    grid on;\n");
    fprintf(fid,"    legend('interp','data in','data out',0);\n");
    fprintf(fid,"subplot(2,1,2);\n");
    fprintf(fid,"    plot(ty,imag(y),'-',tx,imag(x),'s',tz,imag(z),'x');\n");
    fprintf(fid,"    xlabel('time');\n");
    fprintf(fid,"    ylabel('imag');\n");
    fprintf(fid,"    grid on;\n");

    fclose(fid);
    printf("results written to %s.\n",OUTPUT_FILENAME);

    printf("done.\n");
    return 0;
}
Beispiel #3
0
// create FIR polyphase filterbank channelizer object with
// prototype root-Nyquist filter
//  _type   : channelizer type (LIQUID_ANALYZER | LIQUID_SYNTHESIZER)
//  _M      : number of channels
//  _m      : filter delay (symbols)
//  _beta   : filter excess bandwidth factor, in [0,1]
//  _ftype  : filter prototype (rrcos, rkaiser, etc.)
FIRPFBCH() FIRPFBCH(_create_rnyquist)(int          _type,
                                      unsigned int _M,
                                      unsigned int _m,
                                      float        _beta,
                                      int          _ftype)
{
    // validate input
    if (_type != LIQUID_ANALYZER && _type != LIQUID_SYNTHESIZER) {
        fprintf(stderr,"error: firpfbch_%s_create_rnyquist(), invalid type %d\n", EXTENSION_FULL, _type);
        exit(1);
    } else if (_M == 0) {
        fprintf(stderr,"error: firpfbch_%s_create_rnyquist(), number of channels must be greater than 0\n", EXTENSION_FULL);
        exit(1);
    } else if (_m == 0) {
        fprintf(stderr,"error: firpfbch_%s_create_rnyquist(), invalid filter size (must be greater than 0)\n", EXTENSION_FULL);
        exit(1);
    }

    // design filter
    unsigned int h_len = 2*_M*_m + 1;
    float h[h_len];
    // TODO : actually design based on requested filter prototype
    switch (_ftype) {
    case LIQUID_FIRFILT_ARKAISER:
        // root-Nyquist Kaiser (approximate optimum)
        liquid_firdes_arkaiser(_M, _m, _beta, 0.0f, h);
        break;
    case LIQUID_FIRFILT_RKAISER:
        // root-Nyquist Kaiser (true optimum)
        liquid_firdes_rkaiser(_M, _m, _beta, 0.0f, h);
        break;
    case LIQUID_FIRFILT_RRC:
        // root raised-cosine
        liquid_firdes_rrcos(_M, _m, _beta, 0.0f, h);
        break;
    case LIQUID_FIRFILT_hM3:
        // harris-Moerder-3 filter
        liquid_firdes_hM3(_M, _m, _beta, 0.0f, h);
        break;
    default:
        fprintf(stderr,"error: firpfbch_%s_create_rnyquist(), unknown/invalid prototype (%d)\n", EXTENSION_FULL, _ftype);
        exit(1);
    }

    // copy coefficients to type-specfic array, reversing order if
    // channelizer is an analyzer, matched filter: g(-t)
    unsigned int g_len = 2*_M*_m;
    TC gc[g_len];
    unsigned int i;
    if (_type == LIQUID_SYNTHESIZER) {
        for (i=0; i<g_len; i++)
            gc[i] = h[i];
    } else {
        for (i=0; i<g_len; i++)
            gc[i] = h[g_len-i-1];
    }

    // create filterbank object
    unsigned int p = 2*_m;
    FIRPFBCH() q = FIRPFBCH(_create)(_type, _M, p, gc);

    // return filterbank object
    return q;
}