Beispiel #1
0
static TRef crec_tv_ct(jit_State *J, CType *s, CTypeID sid, TRef sp)
{
  CTState *cts = ctype_ctsG(J2G(J));
  CTInfo sinfo = s->info;
  lua_assert(!ctype_isenum(sinfo));
  if (ctype_isnum(sinfo)) {
    IRType t = crec_ct2irt(s);
    TRef tr;
    if (t == IRT_CDATA)
      goto err_nyi;  /* NYI: copyval of >64 bit integers. */
    tr = emitir(IRT(IR_XLOAD, t), sp, 0);
    if (t == IRT_FLOAT || t == IRT_U32) {  /* Keep uint32_t/float as numbers. */
      return emitconv(tr, IRT_NUM, t, 0);
    } else if (t == IRT_I64 || t == IRT_U64) {  /* Box 64 bit integer. */
      sp = tr;
      lj_needsplit(J);
    } else if ((sinfo & CTF_BOOL)) {
      /* Assume not equal to zero. Fixup and emit pending guard later. */
      lj_ir_set(J, IRTGI(IR_NE), tr, lj_ir_kint(J, 0));
      J->postproc = LJ_POST_FIXGUARD;
      return TREF_TRUE;
    } else {
      return tr;
    }
  } else if (ctype_isptr(sinfo)) {
    IRType t = (LJ_64 && s->size == 8) ? IRT_P64 : IRT_P32;
    sp = emitir(IRT(IR_XLOAD, t), sp, 0);
  } else if (ctype_isrefarray(sinfo) || ctype_isstruct(sinfo)) {
    cts->L = J->L;
    sid = lj_ctype_intern(cts, CTINFO_REF(sid), CTSIZE_PTR);  /* Create ref. */
  } else if (ctype_iscomplex(sinfo)) {  /* Unbox/box complex. */
    IRType t = s->size == 2*sizeof(double) ? IRT_NUM : IRT_FLOAT;
    ptrdiff_t esz = (ptrdiff_t)(s->size >> 1);
    TRef ptr, tr1, tr2, dp;
    dp = emitir(IRTG(IR_CNEW, IRT_CDATA), lj_ir_kint(J, sid), TREF_NIL);
    tr1 = emitir(IRT(IR_XLOAD, t), sp, 0);
    ptr = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, esz));
    tr2 = emitir(IRT(IR_XLOAD, t), ptr, 0);
    ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, sizeof(GCcdata)));
    emitir(IRT(IR_XSTORE, t), ptr, tr1);
    ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, sizeof(GCcdata)+esz));
    emitir(IRT(IR_XSTORE, t), ptr, tr2);
    return dp;
  } else {
Beispiel #2
0
/* Replay snapshot state to setup side trace. */
void lj_snap_replay(jit_State *J, GCtrace *T)
{
  SnapShot *snap = &T->snap[J->exitno];
  SnapEntry *map = &T->snapmap[snap->mapofs];
  MSize n, nent = snap->nent;
  BloomFilter seen = 0;
  int pass23 = 0;
  J->framedepth = 0;
  /* Emit IR for slots inherited from parent snapshot. */
  for (n = 0; n < nent; n++) {
    SnapEntry sn = map[n];
    BCReg s = snap_slot(sn);
    IRRef ref = snap_ref(sn);
    IRIns *ir = &T->ir[ref];
    TRef tr;
    /* The bloom filter avoids O(nent^2) overhead for de-duping slots. */
    if (bloomtest(seen, ref) && (tr = snap_dedup(J, map, n, ref)) != 0)
      goto setslot;
    bloomset(seen, ref);
    if (irref_isk(ref)) {
      tr = snap_replay_const(J, ir);
    } else if (!regsp_used(ir->prev)) {
      pass23 = 1;
      lua_assert(s != 0);
      tr = s;
    } else {
      IRType t = irt_type(ir->t);
      uint32_t mode = IRSLOAD_INHERIT|IRSLOAD_PARENT;
      if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM)) t = IRT_NUM;
      if (ir->o == IR_SLOAD) mode |= (ir->op2 & IRSLOAD_READONLY);
      tr = emitir_raw(IRT(IR_SLOAD, t), s, mode);
    }
  setslot:
    J->slot[s] = tr | (sn&(SNAP_CONT|SNAP_FRAME));  /* Same as TREF_* flags. */
    J->framedepth += ((sn & (SNAP_CONT|SNAP_FRAME)) && s);
    if ((sn & SNAP_FRAME))
      J->baseslot = s+1;
  }
  if (pass23) {
    IRIns *irlast = &T->ir[snap->ref];
    pass23 = 0;
    /* Emit dependent PVALs. */
    for (n = 0; n < nent; n++) {
      SnapEntry sn = map[n];
      IRRef refp = snap_ref(sn);
      IRIns *ir = &T->ir[refp];
      if (regsp_reg(ir->r) == RID_SUNK) {
	if (J->slot[snap_slot(sn)] != snap_slot(sn)) continue;
	pass23 = 1;
	lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP ||
		   ir->o == IR_CNEW || ir->o == IR_CNEWI);
	if (ir->op1 >= T->nk) snap_pref(J, T, map, nent, seen, ir->op1);
	if (ir->op2 >= T->nk) snap_pref(J, T, map, nent, seen, ir->op2);
	if (LJ_HASFFI && ir->o == IR_CNEWI) {
	  if (LJ_32 && refp+1 < T->nins && (ir+1)->o == IR_HIOP)
	    snap_pref(J, T, map, nent, seen, (ir+1)->op2);
	} else {
	  IRIns *irs;
	  for (irs = ir+1; irs < irlast; irs++)
	    if (irs->r == RID_SINK && snap_sunk_store(T, ir, irs)) {
	      if (snap_pref(J, T, map, nent, seen, irs->op2) == 0)
		snap_pref(J, T, map, nent, seen, T->ir[irs->op2].op1);
	      else if ((LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) &&
		       irs+1 < irlast && (irs+1)->o == IR_HIOP)
		snap_pref(J, T, map, nent, seen, (irs+1)->op2);
	    }
	}
      } else if (!irref_isk(refp) && !regsp_used(ir->prev)) {
	lua_assert(ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT);
	J->slot[snap_slot(sn)] = snap_pref(J, T, map, nent, seen, ir->op1);
      }
    }
    /* Replay sunk instructions. */
    for (n = 0; pass23 && n < nent; n++) {
      SnapEntry sn = map[n];
      IRRef refp = snap_ref(sn);
      IRIns *ir = &T->ir[refp];
      if (regsp_reg(ir->r) == RID_SUNK) {
	TRef op1, op2;
	if (J->slot[snap_slot(sn)] != snap_slot(sn)) {  /* De-dup allocs. */
	  J->slot[snap_slot(sn)] = J->slot[J->slot[snap_slot(sn)]];
	  continue;
	}
	op1 = ir->op1;
	if (op1 >= T->nk) op1 = snap_pref(J, T, map, nent, seen, op1);
	op2 = ir->op2;
	if (op2 >= T->nk) op2 = snap_pref(J, T, map, nent, seen, op2);
	if (LJ_HASFFI && ir->o == IR_CNEWI) {
	  if (LJ_32 && refp+1 < T->nins && (ir+1)->o == IR_HIOP) {
	    lj_needsplit(J);  /* Emit joining HIOP. */
	    op2 = emitir_raw(IRT(IR_HIOP, IRT_I64), op2,
			     snap_pref(J, T, map, nent, seen, (ir+1)->op2));
	  }
	  J->slot[snap_slot(sn)] = emitir(ir->ot & ~(IRT_MARK|IRT_ISPHI), op1, op2);
	} else {
	  IRIns *irs;
	  TRef tr = emitir(ir->ot, op1, op2);
	  J->slot[snap_slot(sn)] = tr;
	  for (irs = ir+1; irs < irlast; irs++)
	    if (irs->r == RID_SINK && snap_sunk_store(T, ir, irs)) {
	      IRIns *irr = &T->ir[irs->op1];
	      TRef val, key = irr->op2, tmp = tr;
	      if (irr->o != IR_FREF) {
		IRIns *irk = &T->ir[key];
		if (irr->o == IR_HREFK)
		  key = lj_ir_kslot(J, snap_replay_const(J, &T->ir[irk->op1]),
				    irk->op2);
		else
		  key = snap_replay_const(J, irk);
		if (irr->o == IR_HREFK || irr->o == IR_AREF) {
		  IRIns *irf = &T->ir[irr->op1];
		  tmp = emitir(irf->ot, tmp, irf->op2);
		}
	      }
	      tmp = emitir(irr->ot, tmp, key);
	      val = snap_pref(J, T, map, nent, seen, irs->op2);
	      if (val == 0) {
		IRIns *irc = &T->ir[irs->op2];
		lua_assert(irc->o == IR_CONV && irc->op2 == IRCONV_NUM_INT);
		val = snap_pref(J, T, map, nent, seen, irc->op1);
		val = emitir(IRTN(IR_CONV), val, IRCONV_NUM_INT);
	      } else if ((LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) &&
			 irs+1 < irlast && (irs+1)->o == IR_HIOP) {
		IRType t = IRT_I64;
		if (LJ_SOFTFP && irt_type((irs+1)->t) == IRT_SOFTFP)
		  t = IRT_NUM;
		lj_needsplit(J);
		if (irref_isk(irs->op2) && irref_isk((irs+1)->op2)) {
		  uint64_t k = (uint32_t)T->ir[irs->op2].i +
			       ((uint64_t)T->ir[(irs+1)->op2].i << 32);
		  val = lj_ir_k64(J, t == IRT_I64 ? IR_KINT64 : IR_KNUM,
				  lj_ir_k64_find(J, k));
		} else {
		  val = emitir_raw(IRT(IR_HIOP, t), val,
			  snap_pref(J, T, map, nent, seen, (irs+1)->op2));
		}
		tmp = emitir(IRT(irs->o, t), tmp, val);
		continue;
	      }
	      tmp = emitir(irs->ot, tmp, val);
	    } else if (LJ_HASFFI && irs->o == IR_XBAR && ir->o == IR_CNEW) {
	      emitir(IRT(IR_XBAR, IRT_NIL), 0, 0);
	    }
	}
      }
    }
  }
  J->base = J->slot + J->baseslot;
  J->maxslot = snap->nslots - J->baseslot;
  lj_snap_add(J);
  if (pass23)  /* Need explicit GC step _after_ initial snapshot. */
    emitir_raw(IRTG(IR_GCSTEP, IRT_NIL), 0, 0);
}
Beispiel #3
0
static TRef crec_ct_ct(jit_State *J, CType *d, CType *s, TRef dp, TRef sp,
		       void *svisnz)
{
  CTSize dsize = d->size, ssize = s->size;
  CTInfo dinfo = d->info, sinfo = s->info;
  IRType dt = crec_ct2irt(d);
  IRType st = crec_ct2irt(s);

  if (ctype_type(dinfo) > CT_MAYCONVERT || ctype_type(sinfo) > CT_MAYCONVERT)
    goto err_conv;

  /*
  ** Note: Unlike lj_cconv_ct_ct(), sp holds the _value_ of pointers and
  ** numbers up to 8 bytes. Otherwise sp holds a pointer.
  */

  switch (cconv_idx2(dinfo, sinfo)) {
  /* Destination is a bool. */
  case CCX(B, B):
    goto xstore;  /* Source operand is already normalized. */
  case CCX(B, I):
  case CCX(B, F):
    if (st != IRT_CDATA) {
      /* Specialize to the result of a comparison against 0. */
      TRef zero = (st == IRT_NUM  || st == IRT_FLOAT) ? lj_ir_knum(J, 0) :
		  (st == IRT_I64 || st == IRT_U64) ? lj_ir_kint64(J, 0) :
		  lj_ir_kint(J, 0);
      int isnz = crec_isnonzero(s, svisnz);
      emitir(IRTG(isnz ? IR_NE : IR_EQ, st), sp, zero);
      sp = lj_ir_kint(J, isnz);
      goto xstore;
    }
    goto err_nyi;

  /* Destination is an integer. */
  case CCX(I, B):
  case CCX(I, I):
  conv_I_I:
    if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi;
    /* Extend 32 to 64 bit integer. */
    if (dsize == 8 && ssize < 8 && !(LJ_64 && (sinfo & CTF_UNSIGNED)))
      sp = emitconv(sp, dt, ssize < 4 ? IRT_INT : st,
		    (sinfo & CTF_UNSIGNED) ? 0 : IRCONV_SEXT);
    else if (dsize < 8 && ssize == 8)  /* Truncate from 64 bit integer. */
      sp = emitconv(sp, dsize < 4 ? IRT_INT : dt, st, 0);
    else if (st == IRT_INT)
      sp = lj_opt_narrow_toint(J, sp);
  xstore:
    if (dt == IRT_I64 || dt == IRT_U64) lj_needsplit(J);
    if (dp == 0) return sp;
    emitir(IRT(IR_XSTORE, dt), dp, sp);
    break;
  case CCX(I, C):
    sp = emitir(IRT(IR_XLOAD, st), sp, 0);  /* Load re. */
    /* fallthrough */
  case CCX(I, F):
    if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi;
    sp = emitconv(sp, dsize < 4 ? IRT_INT : dt, st, IRCONV_TRUNC|IRCONV_ANY);
    goto xstore;
  case CCX(I, P):
  case CCX(I, A):
    sinfo = CTINFO(CT_NUM, CTF_UNSIGNED);
    ssize = CTSIZE_PTR;
    st = IRT_UINTP;
    goto conv_I_I;

  /* Destination is a floating-point number. */
  case CCX(F, B):
  case CCX(F, I):
  conv_F_I:
    if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi;
    sp = emitconv(sp, dt, ssize < 4 ? IRT_INT : st, 0);
    goto xstore;
  case CCX(F, C):
    sp = emitir(IRT(IR_XLOAD, st), sp, 0);  /* Load re. */
    /* fallthrough */
  case CCX(F, F):
  conv_F_F:
    if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi;
    if (dt != st) sp = emitconv(sp, dt, st, 0);
    goto xstore;

  /* Destination is a complex number. */
  case CCX(C, I):
  case CCX(C, F):
    {  /* Clear im. */
      TRef ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, (dsize >> 1)));
      emitir(IRT(IR_XSTORE, dt), ptr, lj_ir_knum(J, 0));
    }
    /* Convert to re. */
    if ((sinfo & CTF_FP)) goto conv_F_F; else goto conv_F_I;

  case CCX(C, C):
    if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi;
    {
      TRef re, im, ptr;
      re = emitir(IRT(IR_XLOAD, st), sp, 0);
      ptr = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, (ssize >> 1)));
      im = emitir(IRT(IR_XLOAD, st), ptr, 0);
      if (dt != st) {
	re = emitconv(re, dt, st, 0);
	im = emitconv(im, dt, st, 0);
      }
      emitir(IRT(IR_XSTORE, dt), dp, re);
      ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, (dsize >> 1)));
      emitir(IRT(IR_XSTORE, dt), ptr, im);
    }
    break;

  /* Destination is a vector. */
  case CCX(V, I):
  case CCX(V, F):
  case CCX(V, C):
  case CCX(V, V):
    goto err_nyi;

  /* Destination is a pointer. */
  case CCX(P, P):
  case CCX(P, A):
  case CCX(P, S):
    /* There are only 32 bit pointers/addresses on 32 bit machines.
    ** Also ok on x64, since all 32 bit ops clear the upper part of the reg.
    */
    goto xstore;
  case CCX(P, I):
    if (st == IRT_CDATA) goto err_nyi;
    if (!LJ_64 && ssize == 8)  /* Truncate from 64 bit integer. */
      sp = emitconv(sp, IRT_U32, st, 0);
    goto xstore;
  case CCX(P, F):
    if (st == IRT_CDATA) goto err_nyi;
    /* The signed conversion is cheaper. x64 really has 47 bit pointers. */
    sp = emitconv(sp, (LJ_64 && dsize == 8) ? IRT_I64 : IRT_U32,
		  st, IRCONV_TRUNC|IRCONV_ANY);
    goto xstore;

  /* Destination is an array. */
  case CCX(A, A):
    goto err_nyi;

  /* Destination is a struct/union. */
  case CCX(S, S):
    goto err_nyi;

  default:
  err_conv:
  err_nyi:
    lj_trace_err(J, LJ_TRERR_NYICONV);
    break;
  }
  return 0;
}