Beispiel #1
0
int
get_new_coord(double *new_coord[DIM],
	      double *x,
	      const Exo_DB *exo )
{
  int p,i,j;
  int dim = exo->num_dim;
  int num_nodes = exo->num_nodes;
  int displacement_somewhere = FALSE;
  int ln;
  int *moved;
  int e_start = exo->eb_ptr[0];
  int e_end   = exo->eb_ptr[exo->num_elem_blocks];
  int ielem;
  int gnn;
  int var;
  double phi[MDE];

  for(p = 0; p < dim; p++)
    {
      new_coord[p] = (double *) calloc(num_nodes, sizeof(double));
      dcopy1( num_nodes, Coor[p], new_coord[p] );
    }

  for(p = 0; p < upd->Num_Mat; p++)
    displacement_somewhere |= ( pd_glob[p]->e[R_MESH1] );

  if ( displacement_somewhere == FALSE ) return (FALSE );

  moved = (int *) calloc( num_nodes, sizeof(int) );


  /*
   * Loop through nodes, find displacement, and add it into 
   * the coordinate
   */


  for(ielem = e_start; ielem < e_end; ielem++)
    {
      double displacement[DIM];

      load_elem_dofptr(ielem, exo, x, x, x, x, x, 1);

      for(ln = 0; ln < ei->num_local_nodes; ln++)
	{
	  double xi[3] = {0.0, 0.0, 0.0};
	  
	  find_nodal_stu(ln, ei->ielem_type, xi, xi+1, xi+2);

	  gnn = exo->elem_node_list[ exo->elem_node_pntr[ielem] + ln ] ;

	  memset(displacement, 0, sizeof(double)*DIM);
	  
	  if( moved[gnn] != 1 )
	    {
	      for(p = 0; p < DIM; p++)
		{
		  var = MESH_DISPLACEMENT1 + p;
		  
		  for(i = 0; i < ei->dof[var]; i++)
		    {
		      phi[i] = newshape(xi, 
					ei->ielem_type, 
					PSI, 
					ei->dof_list[var][i], 
					ei->ielem_shape,
					pd->i[var],
					i);
		    }

		  if( pd->v[var] )
		    {
		      for(j = 0; j < ei->dof[var]; j++)
			{
			  displacement[p] += *esp->d[p][j] * phi[j];
			}
		      moved[gnn] = 1;
		    }
		  else
		    displacement[p] = 0.0;
		}
	    }

	  for(p = 0; p < dim; p++)
	    new_coord[p][gnn] += displacement[p];
	}
    }

  safer_free((void **) &moved);
  
  return( TRUE );
}
Beispiel #2
0
int
ns_data_print(pp_Data * p, 
	      double x[], 
	      const Exo_DB * exo, 
	      const double time_value,
	      const double time_step_size)
{
  const int quantity       = p->data_type;
  int mat_num        = p->mat_num;
  const int elemBlock_id   = p->elem_blk_id;
  const int node_set_id    = p->ns_id;
  const int species_id     = p->species_number;
  const char * filenm      = p->data_filenm;
  const char * qtity_str   = p->data_type_name;
  const char * format_flag = p->format_flag;
  int * first_time         = &(p->first_time);

  static int err=0;
  int num_nodes_on_side;
  int ebIndex_first = -1;
  int local_side[2];
  int side_nodes[3];		/* Assume quad has no more than 3 per side. */
  int elem_list[4], elem_ct=0, face, ielem, node2;
  int local_node[4];
  int node = -1;
  int idx, idy, idz, id_var;
  int iprint;
  int nsp;			/* node set pointer for this node set */
  dbl x_pos, y_pos, z_pos;
  int j, wspec;
  int doPressure = 0;

#ifdef PARALLEL
  double some_time=0.0;
#endif
  double abscissa=0;
  double ordinate=0;
  double n1[3], n2[3];
  double xi[3];

  /*
   * Find an element block that has the desired material id.
   */
  if (elemBlock_id != -1) {
    for (j = 0; j < exo->num_elem_blocks; j++) {
      if (elemBlock_id == exo->eb_id[j]) {
	ebIndex_first = j;
	break;
      }
    }
    if (ebIndex_first == -1) {
      sprintf(err_msg, "Can't find an element block with the elem Block id %d\n", elemBlock_id);
    if (Num_Proc == 1) {
      EH(-1, err_msg);
    }
    }
    mat_num = Matilda[ebIndex_first];
    p->mat_num = mat_num;
    pd = pd_glob[mat_num];
  } else {
    mat_num = -1;
    p->mat_num = -1;
    pd = pd_glob[0];
  }

  nsp = match_nsid(node_set_id);  

  if( nsp != -1 )
    {
      node = Proc_NS_List[Proc_NS_Pointers[nsp]];
    }
  else
    {
      sprintf(err_msg, "Node set ID %d not found.", node_set_id);
      if( Num_Proc == 1 ) EH(-1,err_msg);
    }

  /* first right time stamp or run stamp to separate the sets */

  print_sync_start(FALSE);

  if (*first_time)
    {
      if ( format_flag[0] != '\0' ) 
	{
	  if (ProcID == 0)
	    {
	      uf = fopen(filenm,"a");
	      if (uf != NULL)
		{
		  fprintf(uf,"# %s %s @ nsid %d node (%d) \n", 
			  format_flag, qtity_str, node_set_id, node );
		  *first_time = FALSE;
		  fclose(uf);
		}
	    }
	}
    }

  if (format_flag[0] == '\0')
    {
      if (ProcID == 0)
	{
	  if ((uf = fopen(filenm,"a")) != NULL)
	    {
	      fprintf(uf,"Time/iteration = %e \n", time_value);
	      fprintf(uf,"  %s   Node_Set  %d Species %d\n", qtity_str,node_set_id,species_id);
	      fflush(uf);
	      fclose(uf);
	    }
	}
    }

  if (nsp != -1 ) {

    for (j = 0; j < Proc_NS_Count[nsp]; j++) {
      node = Proc_NS_List[Proc_NS_Pointers[nsp]+j];
      if (node < num_internal_dofs + num_boundary_dofs ) {
        idx = Index_Solution(node, MESH_DISPLACEMENT1, 0, 0, -1);
        if (idx == -1) {
          x_pos = Coor[0][node];
          WH(idx, "Mesh variable not found.  May get undeformed coords.");
        } else {
          x_pos = Coor[0][node] + x[idx];
        }
        idy = Index_Solution(node, MESH_DISPLACEMENT2, 0, 0, -1);
        if (idy == -1) {
          y_pos = Coor[1][node];
        } else {
          y_pos = Coor[1][node] + x[idy];
        }
        z_pos = 0.;
        if(pd->Num_Dim == 3) {
          idz = Index_Solution(node, MESH_DISPLACEMENT3, 0, 0, -1);
          if (idz == -1) {
	    z_pos = Coor[2][node];
          }  else{
	    z_pos = Coor[2][node] + x[idz];
          }
        }
        if (quantity == MASS_FRACTION) {
          id_var = Index_Solution(node, quantity, species_id, 0, mat_num);
        } else if (quantity < 0) {
          id_var = -1;
        } else {
          id_var = Index_Solution(node, quantity, 0, 0, mat_num);
        }

	/*
	 * In the easy case, the variable can be found somewhere in the
	 * big vector of unknowns. But sometimes we want a derived quantity
	 * that requires a little more work than an array reference.
	 *
	 * For now, save the good result if we have it.
	 */

	if ( id_var != -1 )
	  {
	    ordinate = x[id_var];
	    iprint = 1;
	  }
	else
	  {
	    /*
	     *  If we have an element based interpolation, let's calculate the interpolated value
	     */
	    if (quantity == PRESSURE) {
	      if ((pd->i[PRESSURE] == I_P1) || ( (pd->i[PRESSURE] > I_PQ1) && (pd->i[PRESSURE] < I_Q2_HVG) )) {
		doPressure = 1;
	      }
	    }
	    iprint = 0;
	  }

	/*
	 * If the quantity is "theta", an interior angle that only
	 * makes sense at a point, in 2D, we'll need to compute it.
	 */

	if ( strncasecmp(qtity_str, "theta", 5 ) == 0 || doPressure)
	  {
	    /*
	     * Look for the two sides connected to this node...?
	     *
	     * Premise:
	     *	1. The node appears in only one element(removed-RBS,6/14/06)
	     *          2. Exactly two sides emanate from the node.
	     *          3. Quadrilateral.
	     *
	     * Apologies to people who wish to relax premise 1. I know
	     * there are some obtuse angles out there that benefit from
	     * having more than one element at a vertex. With care, this
	     * procedure could be extended to cover that case as well.
	     */
	    
	    if ( ! exo->node_elem_conn_exists )
	      {
		EH(-1, "Cannot compute angle without node_elem_conn.");
	      }
	    
	    elem_list[0] = exo->node_elem_list[exo->node_elem_pntr[node]];

	    /*
	     * Find out where this node appears in the elements local
	     * node ordering scheme...
	     */

	    local_node[0] = in_list(node, exo->elem_node_pntr[elem_list[0]], 
				    exo->elem_node_pntr[elem_list[0]+1],
				    exo->elem_node_list);

	    EH(local_node[0], "Can not find node in elem node connectivity!?! ");
	    local_node[0] -= exo->elem_node_pntr[elem_list[0]];
	    /* check for neighbors*/
	    if( mat_num == find_mat_number(elem_list[0], exo))
	      {elem_ct = 1;}
	    else
	      {WH(-1,"block id doesn't match first element");}
	    for (face=0 ; face<ei->num_sides ; face++)
	      {
		ielem = exo->elem_elem_list[exo->elem_elem_pntr[elem_list[0]]+face];
		if (ielem != -1)
		  {
		    node2 = in_list(node, exo->elem_node_pntr[ielem], 
				    exo->elem_node_pntr[ielem+1],
				    exo->elem_node_list);
		    if (node2 != -1 && (mat_num == find_mat_number(ielem, exo)))
		      {
			elem_list[elem_ct] = ielem;
			local_node[elem_ct] = node2;
			local_node[elem_ct] -= exo->elem_node_pntr[ielem];
			elem_ct++;
		      }
		  }
	      }

	    /*
	     * Note that indeces are zero based!
	     */

	    ordinate = 0.0;
	    for (ielem = 0 ; ielem < elem_ct ; ielem++)
	      {
		if ( local_node[ielem] < 0 || local_node[ielem] > 3 ) 
		  {
		    if (strncasecmp(qtity_str, "theta", 5 ) == 0) {
		      EH(-1, "Node out of bounds.");
		    }
		  }

		/*
		 * Now, determine the local name of the sides adjacent to this
		 * node...this works for the exo patran convention for quads...
		 *
		 * Again, local_node and local_side are zero based...
		 */

		local_side[0] = (local_node[ielem]+3)%4;
		local_side[1] = local_node[ielem];

		/*
		 * With the side names, we can find the normal vector.
		 * Again, assume the sides live on the same element.
		 */
		load_ei(elem_list[ielem], exo, 0);

		/*
		 * We abuse the argument list under the conditions that
		 * we're going to do read-only operations and that
		 * we're not interested in old time steps, time derivatives
		 * etc.
		 */
		if (x == x_static) /* be the least disruptive possible */
		  {
		    err = load_elem_dofptr(elem_list[ielem], exo, x_static, x_old_static,
					   xdot_static, xdot_old_static, x_static, 1);
		  }
		else
		  {
		    err = load_elem_dofptr(elem_list[ielem], exo, x, x, x, x, x, 1);
		  }

		/*
		 * What are the local coordinates of the nodes in a quadrilateral?
		 */

		find_nodal_stu(local_node[ielem], ei->ielem_type, xi, xi+1, xi+2);

		err = load_basis_functions(xi, bfd);

		EH( err, "problem from load_basis_functions");
	    
		err = beer_belly();
		EH( err, "beer_belly");
	    
		err = load_fv();
		EH( err, "load_fv");
	    
		err = load_bf_grad();
		EH( err, "load_bf_grad");

		err = load_bf_mesh_derivs(); 
		EH(err, "load_bf_mesh_derivs");
		
		if (doPressure) {
		  ordinate = fv->P;
		  iprint = 1;
		} else {

		/* First, one side... */

		get_side_info(ei->ielem_type, local_side[0]+1, &num_nodes_on_side, 
			      side_nodes);

		surface_determinant_and_normal(elem_list[ielem], 
					       exo->elem_node_pntr[elem_list[ielem]],
					       ei->num_local_nodes,  
					       ei->ielem_dim-1, 
					       local_side[0]+1, 
					       num_nodes_on_side,
					       side_nodes);

		n1[0] = fv->snormal[0];
		n1[1] = fv->snormal[1];

		/* Second, the adjacent side of the quad... */

		get_side_info(ei->ielem_type, local_side[1]+1, &num_nodes_on_side, 
			      side_nodes);

		surface_determinant_and_normal(elem_list[ielem], 
					       exo->elem_node_pntr[elem_list[ielem]],
					       ei->num_local_nodes,  
					       ei->ielem_dim-1, 
					       local_side[1]+1, 
					       num_nodes_on_side,
					       side_nodes);

		n2[0] = fv->snormal[0];
		n2[1] = fv->snormal[1];

		/* cos (theta) = n1.n2 / ||n1|| ||n2|| */

		ordinate += 180. - (180./M_PI)*acos((n1[0]*n2[0] + n1[1]*n2[1])/
						    (sqrt(n1[0]*n1[0]+n1[1]*n1[1])*
						     sqrt(n2[0]*n2[0]+n2[1]*n2[1])));
		}
		iprint = 1;
	      }	/*ielem loop	*/
	  }
	else if ( strncasecmp(qtity_str, "timestepsize", 12 ) == 0 )
	  {
	    ordinate = time_step_size;
	    iprint = 1;
	  }
	else if ( strncasecmp(qtity_str, "cputime", 7 ) == 0 )
	  {
	    ordinate = ut();
	    iprint = 1;
	  }
	else if ( strncasecmp(qtity_str, "wallclocktime", 13 ) == 0 )
	  {
	    /* Get these from extern via main...*/
#ifdef PARALLEL
	    some_time = MPI_Wtime();
	    ordinate = some_time - time_goma_started;
#endif
#ifndef PARALLEL
            time_t now=0;
	    (void)time(&now);
	    ordinate = (double)(now) - time_goma_started;
#endif
	    iprint = 1;
	  }
	else if ( strncasecmp(qtity_str, "speed", 5 ) == 0 )
	  {
            id_var = Index_Solution(node, VELOCITY1, 0, 0, mat_num);
	    ordinate = SQUARE(x[id_var]);
            id_var = Index_Solution(node, VELOCITY2, 0, 0, mat_num);
	    ordinate += SQUARE(x[id_var]);
            id_var = Index_Solution(node, VELOCITY3, 0, 0, mat_num);
	    ordinate += SQUARE(x[id_var]);
	    ordinate = sqrt(ordinate);
	    iprint = 1;
	  }
        else if ( strncasecmp(qtity_str, "ac_pres", 7 ) == 0 )
          {
            id_var = Index_Solution(node, ACOUS_PREAL, 0, 0, mat_num);
            ordinate = SQUARE(x[id_var]);
            id_var = Index_Solution(node, ACOUS_PIMAG, 0, 0, mat_num);
            ordinate += SQUARE(x[id_var]);
            ordinate = sqrt(ordinate);
            iprint = 1;
          }
        else if ( strncasecmp(qtity_str, "light_comp", 10 ) == 0 )
          {
            id_var = Index_Solution(node, LIGHT_INTP, 0, 0, mat_num);
            ordinate = x[id_var];
            id_var = Index_Solution(node, LIGHT_INTM, 0, 0, mat_num);
            ordinate += x[id_var];
            iprint = 1;
          }
        else if ( strncasecmp(qtity_str, "nonvolatile", 11 ) == 0 )
          {
            ordinate = 1.0;
	    for(wspec = 0 ; wspec < pd->Num_Species_Eqn ; wspec++)
		{
            	id_var = Index_Solution(node, MASS_FRACTION, wspec, 0, mat_num);
            	ordinate -= x[id_var]*mp_glob[mat_num]->molar_volume[wspec];
		}
            iprint = 1;
          }
	else
	  {
	    WH(id_var,
	       "Requested print variable is not defined at all nodes. May get 0.");
	    if(id_var == -1) iprint = 0;
	  }

        if ((uf=fopen(filenm,"a")) != NULL)
	  {
	    if ( format_flag[0] == '\0' )
	      {
		if (iprint)
		  {
		    fprintf(uf,"  %e %e %e %e \n", x_pos, y_pos, z_pos, ordinate);
		  }
	      }
	    else
	      {
		if ( strncasecmp(format_flag, "t", 1) == 0 )
		  {
		    abscissa = time_value;
		  }
		else if (  strncasecmp(format_flag, "x", 1) == 0 )
		  {
		    abscissa = x_pos;		      
		  }
		else if (  strncasecmp(format_flag, "y", 1) == 0 )
		  {
		    abscissa = y_pos;		      
		  }
		else if (  strncasecmp(format_flag, "z", 1) == 0 )
		  {
		    abscissa = z_pos;		      
		  }
		else
		  {
		    abscissa = 0;
		  }
		if (iprint)
		  {
		    fprintf(uf, "%.16g\t%.16g\n", abscissa, ordinate);
		  }
	      }
	    fclose(uf);
	  }
      }
    }
  }
  print_sync_end(FALSE);

  return(1);
} /* END of routine ns_data_print */