Beispiel #1
0
void
lp_build_alpha_test(struct gallivm_state *gallivm,
                    unsigned func,
                    struct lp_type type,
                    const struct util_format_description *cbuf_format_desc,
                    struct lp_build_mask_context *mask,
                    LLVMValueRef alpha,
                    LLVMValueRef ref,
                    boolean do_branch)
{
    struct lp_build_context bld;
    LLVMValueRef test;

    lp_build_context_init(&bld, gallivm, type);

    /*
     * Alpha testing needs to be done in the color buffer precision.
     *
     * TODO: Ideally, instead of duplicating the color conversion code, we would do
     * alpha testing after converting the output colors, but that's not very
     * convenient, because it needs to be done before depth testing.  Hopefully
     * LLVM will detect and remove the duplicate expression.
     *
     * FIXME: This should be generalized to formats other than rgba8 variants.
     */
    if (type.floating &&
            util_format_is_rgba8_variant(cbuf_format_desc)) {
        const unsigned dst_width = 8;

        alpha = lp_build_clamp(&bld, alpha, bld.zero, bld.one);
        ref   = lp_build_clamp(&bld, ref,   bld.zero, bld.one);

        alpha = lp_build_clamped_float_to_unsigned_norm(gallivm, type, dst_width, alpha);
        ref   = lp_build_clamped_float_to_unsigned_norm(gallivm, type, dst_width, ref);

        type.floating = 0;
        lp_build_context_init(&bld, gallivm, type);
    }

    test = lp_build_cmp(&bld, func, alpha, ref);

    lp_build_name(test, "alpha_mask");

    lp_build_mask_update(mask, test);

    if (do_branch)
        lp_build_mask_check(mask);
}
/**
 * Generate color blending and color output.
 * \param rt  the render target index (to index blend, colormask state)
 * \param type  the pixel color type
 * \param context_ptr  pointer to the runtime JIT context
 * \param mask  execution mask (active fragment/pixel mask)
 * \param src  colors from the fragment shader
 * \param dst_ptr  the destination color buffer pointer
 */
static void
generate_blend(const struct pipe_blend_state *blend,
               unsigned rt,
               LLVMBuilderRef builder,
               struct lp_type type,
               LLVMValueRef context_ptr,
               LLVMValueRef mask,
               LLVMValueRef *src,
               LLVMValueRef dst_ptr)
{
   struct lp_build_context bld;
   struct lp_build_flow_context *flow;
   struct lp_build_mask_context mask_ctx;
   LLVMTypeRef vec_type;
   LLVMValueRef const_ptr;
   LLVMValueRef con[4];
   LLVMValueRef dst[4];
   LLVMValueRef res[4];
   unsigned chan;

   lp_build_context_init(&bld, builder, type);

   flow = lp_build_flow_create(builder);

   /* we'll use this mask context to skip blending if all pixels are dead */
   lp_build_mask_begin(&mask_ctx, flow, type, mask);

   vec_type = lp_build_vec_type(type);

   const_ptr = lp_jit_context_blend_color(builder, context_ptr);
   const_ptr = LLVMBuildBitCast(builder, const_ptr,
                                LLVMPointerType(vec_type, 0), "");

   /* load constant blend color and colors from the dest color buffer */
   for(chan = 0; chan < 4; ++chan) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");

      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");

      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
   }

   /* do blend */
   lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);

   /* store results to color buffer */
   for(chan = 0; chan < 4; ++chan) {
      if(blend->rt[rt].colormask & (1 << chan)) {
         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
      }
   }

   lp_build_mask_end(&mask_ctx);
   lp_build_flow_destroy(flow);
}
/**
 * Extract Y, U, V channels from packed YUYV.
 * @param packed  is a <n x i32> vector with the packed YUYV blocks
 * @param i  is a <n x i32> vector with the x pixel coordinate (0 or 1)
 */
static void
yuyv_to_yuv_soa(struct gallivm_state *gallivm,
                unsigned n,
                LLVMValueRef packed,
                LLVMValueRef i,
                LLVMValueRef *y,
                LLVMValueRef *u,
                LLVMValueRef *v)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type type;
   LLVMValueRef mask;

   memset(&type, 0, sizeof type);
   type.width = 32;
   type.length = n;

   assert(lp_check_value(type, packed));
   assert(lp_check_value(type, i));

   /*
    * y = (yuyv >> 16*i) & 0xff
    * u = (yuyv >> 8   ) & 0xff
    * v = (yuyv >> 24  ) & 0xff
    */

#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   /*
    * Avoid shift with per-element count.
    * No support on x86, gets translated to roughly 5 instructions
    * per element. Didn't measure performance but cuts shader size
    * by quite a bit (less difference if cpu has no sse4.1 support).
    */
   if (util_cpu_caps.has_sse2 && n == 4) {
      LLVMValueRef sel, tmp;
      struct lp_build_context bld32;

      lp_build_context_init(&bld32, gallivm, type);

      tmp = LLVMBuildLShr(builder, packed, lp_build_const_int_vec(gallivm, type, 16), "");
      sel = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL, i, lp_build_const_int_vec(gallivm, type, 0));
       *y = lp_build_select(&bld32, sel, packed, tmp);
   } else
#endif
   {
      LLVMValueRef shift;
      shift = LLVMBuildMul(builder, i, lp_build_const_int_vec(gallivm, type, 16), "");
      *y = LLVMBuildLShr(builder, packed, shift, "");
   }

   *u = LLVMBuildLShr(builder, packed, lp_build_const_int_vec(gallivm, type, 8), "");
   *v = LLVMBuildLShr(builder, packed, lp_build_const_int_vec(gallivm, type, 24), "");

   mask = lp_build_const_int_vec(gallivm, type, 0xff);

   *y = LLVMBuildAnd(builder, *y, mask, "y");
   *u = LLVMBuildAnd(builder, *u, mask, "u");
   *v = LLVMBuildAnd(builder, *v, mask, "v");
}
Beispiel #4
0
/**
 * Generate color blending and color output.
 */
static void
generate_blend(const struct pipe_blend_state *blend,
               LLVMBuilderRef builder,
               struct lp_type type,
               LLVMValueRef context_ptr,
               LLVMValueRef mask,
               LLVMValueRef *src,
               LLVMValueRef dst_ptr)
{
   struct lp_build_context bld;
   struct lp_build_flow_context *flow;
   struct lp_build_mask_context mask_ctx;
   LLVMTypeRef vec_type;
   LLVMTypeRef int_vec_type;
   LLVMValueRef const_ptr;
   LLVMValueRef con[4];
   LLVMValueRef dst[4];
   LLVMValueRef res[4];
   unsigned chan;

   lp_build_context_init(&bld, builder, type);

   flow = lp_build_flow_create(builder);
   lp_build_mask_begin(&mask_ctx, flow, type, mask);

   vec_type = lp_build_vec_type(type);
   int_vec_type = lp_build_int_vec_type(type);

   const_ptr = lp_jit_context_blend_color(builder, context_ptr);
   const_ptr = LLVMBuildBitCast(builder, const_ptr,
                                LLVMPointerType(vec_type, 0), "");

   for(chan = 0; chan < 4; ++chan) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");

      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");

      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
   }

   lp_build_blend_soa(builder, blend, type, src, dst, con, res);

   for(chan = 0; chan < 4; ++chan) {
      if(blend->colormask & (1 << chan)) {
         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
      }
   }

   lp_build_mask_end(&mask_ctx);
   lp_build_flow_destroy(flow);
}
Beispiel #5
0
/**
 * @brief lp_build_fetch_rgba_aos_array
 *
 * \param format_desc   describes format of the image we're fetching from
 * \param dst_type      output type
 * \param base_ptr      address of the pixel block (or the texel if uncompressed)
 * \param offset        ptr offset
 */
LLVMValueRef
lp_build_fetch_rgba_aos_array(struct gallivm_state *gallivm,
                              const struct util_format_description *format_desc,
                              struct lp_type dst_type,
                              LLVMValueRef base_ptr,
                              LLVMValueRef offset)
{
    struct lp_build_context bld;
    LLVMBuilderRef builder = gallivm->builder;
    LLVMTypeRef src_elem_type, src_vec_type;
    LLVMValueRef ptr, res = NULL;
    struct lp_type src_type;

    memset(&src_type, 0, sizeof src_type);
    src_type.floating = format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT;
    src_type.fixed    = format_desc->channel[0].type == UTIL_FORMAT_TYPE_FIXED;
    src_type.sign     = format_desc->channel[0].type != UTIL_FORMAT_TYPE_UNSIGNED;
    src_type.norm     = format_desc->channel[0].normalized;
    src_type.width    = format_desc->channel[0].size;
    src_type.length   = format_desc->nr_channels;

    assert(src_type.length <= dst_type.length);

    src_elem_type = lp_build_elem_type(gallivm, src_type);
    src_vec_type  = lp_build_vec_type(gallivm,  src_type);

    /* Read whole vector from memory, unaligned */
    if (!res) {
        ptr = LLVMBuildGEP(builder, base_ptr, &offset, 1, "");
        ptr = LLVMBuildPointerCast(builder, ptr, LLVMPointerType(src_vec_type, 0), "");
        res = LLVMBuildLoad(builder, ptr, "");
        lp_set_load_alignment(res, src_type.width / 8);
    }

    /* Truncate doubles to float */
    if (src_type.floating && src_type.width == 64) {
        src_type.width = 32;
        src_vec_type  = lp_build_vec_type(gallivm,  src_type);

        res = LLVMBuildFPTrunc(builder, res, src_vec_type, "");
    }

    /* Expand to correct length */
    if (src_type.length < dst_type.length) {
        res = lp_build_pad_vector(gallivm, res, src_type, dst_type.length);
        src_type.length = dst_type.length;
    }

    /* Convert to correct format */
    lp_build_conv(gallivm, src_type, dst_type, &res, 1, &res, 1);

    /* Swizzle it */
    lp_build_context_init(&bld, gallivm, dst_type);
    return lp_build_format_swizzle_aos(format_desc, &bld, res);
}
/**
 * Convert srgb int values to linear float values.
 * Several possibilities how to do this, e.g.
 * - table
 * - doing the pow() with int-to-float and float-to-int tricks
 *   (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
 * - just using standard polynomial approximation
 *   (3rd order polynomial is required for crappy but just sufficient accuracy)
 *
 * @param src   integer (vector) value(s) to convert
 *              (chan_bits bit values unpacked to 32 bit already).
 */
LLVMValueRef
lp_build_srgb_to_linear(struct gallivm_state *gallivm,
                        struct lp_type src_type,
                        unsigned chan_bits,
                        LLVMValueRef src)
{
   struct lp_type f32_type = lp_type_float_vec(32, src_type.length * 32);
   struct lp_build_context f32_bld;
   LLVMValueRef srcf, part_lin, part_pow, is_linear, lin_const, lin_thresh;
   double coeffs[4] = {0.0023f,
                       0.0030f / 255.0f,
                       0.6935f / (255.0f * 255.0f),
                       0.3012f / (255.0f * 255.0f * 255.0f)
   };

   assert(src_type.width == 32);
   /* Technically this would work with more bits too but would be inaccurate. */
   assert(chan_bits <= 8);

   lp_build_context_init(&f32_bld, gallivm, f32_type);

   /*
    * using polynomial: (src * (src * (src * 0.3012 + 0.6935) + 0.0030) + 0.0023)
    * ( poly =  0.3012*x^3 + 0.6935*x^2 + 0.0030*x + 0.0023)
    * (found with octave polyfit and some magic as I couldn't get the error
    * function right). Using the above mentioned error function, the values stay
    * within +-0.35, except for the lowest values - hence tweaking linear segment
    * to cover the first 16 instead of the first 11 values (the error stays
    * just about acceptable there too).
    * Hence: lin = src > 15 ? poly : src / 12.6
    * This function really only makes sense for vectors, should use LUT otherwise.
    * All in all (including float conversion) 11 instructions (with sse4.1),
    * 6 constants (polynomial could be done with 1 instruction less at the cost
    * of slightly worse dependency chain, fma should also help).
    */
   /* doing the 1/255 mul as part of the approximation */
   srcf = lp_build_int_to_float(&f32_bld, src);
   if (chan_bits != 8) {
      /* could adjust all the constants instead */
      LLVMValueRef rescale_const = lp_build_const_vec(gallivm, f32_type,
                                                      255.0f / ((1 << chan_bits) - 1));
      srcf = lp_build_mul(&f32_bld, srcf, rescale_const);
   }
   lin_const = lp_build_const_vec(gallivm, f32_type, 1.0f / (12.6f * 255.0f));
   part_lin = lp_build_mul(&f32_bld, srcf, lin_const);

   part_pow = lp_build_polynomial(&f32_bld, srcf, coeffs, 4);

   lin_thresh = lp_build_const_vec(gallivm, f32_type, 15.0f);
   is_linear = lp_build_compare(gallivm, f32_type, PIPE_FUNC_LEQUAL, srcf, lin_thresh);
   return lp_build_select(&f32_bld, is_linear, part_lin, part_pow);
}
/**
 * Convert linear float soa values to packed srgb AoS values.
 * This only handles packed formats which are 4x8bit in size
 * (rgba and rgbx plus swizzles), and 16bit 565-style formats
 * with no alpha. (In the latter case the return values won't be
 * fully packed, it will look like r5g6b5x16r5g6b5x16...)
 *
 * @param src   float SoA (vector) values to convert.
 */
LLVMValueRef
lp_build_float_to_srgb_packed(struct gallivm_state *gallivm,
                              const struct util_format_description *dst_fmt,
                              struct lp_type src_type,
                              LLVMValueRef *src)
{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned chan;
   struct lp_build_context f32_bld;
   struct lp_type int32_type = lp_int_type(src_type);
   LLVMValueRef tmpsrgb[4], alpha, dst;

   lp_build_context_init(&f32_bld, gallivm, src_type);

   /* rgb is subject to linear->srgb conversion, alpha is not */
   for (chan = 0; chan < 3; chan++) {
      unsigned chan_bits = dst_fmt->channel[dst_fmt->swizzle[chan]].size;
      tmpsrgb[chan] = lp_build_linear_to_srgb(gallivm, src_type, chan_bits, src[chan]);
   }
   /*
    * can't use lp_build_conv since we want to keep values as 32bit
    * here so we can interleave with rgb to go from SoA->AoS.
    */
   alpha = lp_build_clamp_zero_one_nanzero(&f32_bld, src[3]);
   alpha = lp_build_mul(&f32_bld, alpha,
                        lp_build_const_vec(gallivm, src_type, 255.0f));
   tmpsrgb[3] = lp_build_iround(&f32_bld, alpha);

   dst = lp_build_zero(gallivm, int32_type);
   for (chan = 0; chan < dst_fmt->nr_channels; chan++) {
      if (dst_fmt->swizzle[chan] <= PIPE_SWIZZLE_W) {
         unsigned ls;
         LLVMValueRef shifted, shift_val;
         ls = dst_fmt->channel[dst_fmt->swizzle[chan]].shift;
         shift_val = lp_build_const_int_vec(gallivm, int32_type, ls);
         shifted = LLVMBuildShl(builder, tmpsrgb[chan], shift_val, "");
         dst = LLVMBuildOr(builder, dst, shifted, "");
      }
   }
   return dst;
}
/**
 * Unpack several pixels in SoA.
 *
 * It takes a vector of packed pixels:
 *
 *   packed = {P0, P1, P2, P3, ..., Pn}
 *
 * And will produce four vectors:
 *
 *   red    = {R0, R1, R2, R3, ..., Rn}
 *   green  = {G0, G1, G2, G3, ..., Gn}
 *   blue   = {B0, B1, B2, B3, ..., Bn}
 *   alpha  = {A0, A1, A2, A3, ..., An}
 *
 * It requires that a packed pixel fits into an element of the output
 * channels. The common case is when converting pixel with a depth of 32 bit or
 * less into floats.
 *
 * \param format_desc  the format of the 'packed' incoming pixel vector
 * \param type  the desired type for rgba_out (type.length = n, above)
 * \param packed  the incoming vector of packed pixels
 * \param rgba_out  returns the SoA R,G,B,A vectors
 */
void
lp_build_unpack_rgba_soa(struct gallivm_state *gallivm,
                         const struct util_format_description *format_desc,
                         struct lp_type type,
                         LLVMValueRef packed,
                         LLVMValueRef rgba_out[4])
{
   struct lp_build_context bld;
   LLVMValueRef inputs[4];
   unsigned chan;

   assert(format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(format_desc->block.width == 1);
   assert(format_desc->block.height == 1);
   assert(format_desc->block.bits <= type.width);
   /* FIXME: Support more output types */
   assert(type.width == 32);

   lp_build_context_init(&bld, gallivm, type);

   /* Decode the input vector components */
   for (chan = 0; chan < format_desc->nr_channels; ++chan) {
      struct util_format_channel_description chan_desc = format_desc->channel[chan];
      boolean srgb_chan = FALSE;

      if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB &&
          format_desc->swizzle[3] != chan) {
         srgb_chan = TRUE;
      }

      inputs[chan] = lp_build_extract_soa_chan(&bld,
                                               format_desc->block.bits,
                                               srgb_chan,
                                               chan_desc,
                                               packed);
   }

   lp_build_format_swizzle_soa(format_desc, &bld, inputs, rgba_out);
}
/*
 * Build LLVM function that exercises the unary operator builder.
 */
static LLVMValueRef
build_unary_test_func(struct gallivm_state *gallivm,
                      const struct unary_test_t *test)
{
   struct lp_type type = lp_type_float_vec(32, lp_native_vector_width);
   LLVMContextRef context = gallivm->context;
   LLVMModuleRef module = gallivm->module;
   LLVMTypeRef vf32t = lp_build_vec_type(gallivm, type);
   LLVMTypeRef args[2] = { LLVMPointerType(vf32t, 0), LLVMPointerType(vf32t, 0) };
   LLVMValueRef func = LLVMAddFunction(module, test->name,
                                       LLVMFunctionType(LLVMVoidTypeInContext(context),
                                                        args, Elements(args), 0));
   LLVMValueRef arg0 = LLVMGetParam(func, 0);
   LLVMValueRef arg1 = LLVMGetParam(func, 1);
   LLVMBuilderRef builder = gallivm->builder;
   LLVMBasicBlockRef block = LLVMAppendBasicBlockInContext(context, func, "entry");
   LLVMValueRef ret;

   struct lp_build_context bld;

   lp_build_context_init(&bld, gallivm, type);

   LLVMSetFunctionCallConv(func, LLVMCCallConv);

   LLVMPositionBuilderAtEnd(builder, block);
   
   arg1 = LLVMBuildLoad(builder, arg1, "");

   ret = test->builder(&bld, arg1);
   
   LLVMBuildStore(builder, ret, arg0);

   LLVMBuildRetVoid(builder);

   gallivm_verify_function(gallivm, func);

   return func;
}
/**
 * Non-interleaved pack and saturate.
 *
 * Same as lp_build_pack2 but will saturate values so that they fit into the
 * destination type.
 */
LLVMValueRef
lp_build_packs2(struct gallivm_state *gallivm,
                struct lp_type src_type,
                struct lp_type dst_type,
                LLVMValueRef lo,
                LLVMValueRef hi)
{
   boolean clamp;

   assert(!src_type.floating);
   assert(!dst_type.floating);
   assert(src_type.sign == dst_type.sign);
   assert(src_type.width == dst_type.width * 2);
   assert(src_type.length * 2 == dst_type.length);

   clamp = TRUE;

   /* All X86 SSE non-interleaved pack instructions take signed inputs and
    * saturate them, so no need to clamp for those cases. */
   if(util_cpu_caps.has_sse2 &&
      src_type.width * src_type.length >= 128 &&
      src_type.sign &&
      (src_type.width == 32 || src_type.width == 16))
      clamp = FALSE;

   if(clamp) {
      struct lp_build_context bld;
      unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width;
      LLVMValueRef dst_max = lp_build_const_int_vec(gallivm, src_type, ((unsigned long long)1 << dst_bits) - 1);
      lp_build_context_init(&bld, gallivm, src_type);
      lo = lp_build_min(&bld, lo, dst_max);
      hi = lp_build_min(&bld, hi, dst_max);
      /* FIXME: What about lower bound? */
   }

   return lp_build_pack2(gallivm, src_type, dst_type, lo, hi);
}
Beispiel #11
0
void
lp_build_alpha_to_coverage(struct gallivm_state *gallivm,
                           struct lp_type type,
                           struct lp_build_mask_context *mask,
                           LLVMValueRef alpha,
                           boolean do_branch)
{
   struct lp_build_context bld;
   LLVMValueRef test;
   LLVMValueRef alpha_ref_value;

   lp_build_context_init(&bld, gallivm, type);

   alpha_ref_value = lp_build_const_vec(gallivm, type, 0.5);

   test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);

   lp_build_name(test, "alpha_to_coverage");

   lp_build_mask_update(mask, test);

   if (do_branch)
      lp_build_mask_check(mask);
}
void
lp_build_tgsi_aos(struct gallivm_state *gallivm,
                  const struct tgsi_token *tokens,
                  struct lp_type type,
                  const unsigned char swizzles[4],
                  LLVMValueRef consts_ptr,
                  const LLVMValueRef *inputs,
                  LLVMValueRef *outputs,
                  struct lp_build_sampler_aos *sampler,
                  const struct tgsi_shader_info *info)
{
   struct lp_build_tgsi_aos_context bld;
   struct tgsi_parse_context parse;
   uint num_immediates = 0;
   unsigned chan;
   int pc = 0;

   /* Setup build context */
   memset(&bld, 0, sizeof bld);
   lp_build_context_init(&bld.bld_base.base, gallivm, type);
   lp_build_context_init(&bld.bld_base.uint_bld, gallivm, lp_uint_type(type));
   lp_build_context_init(&bld.bld_base.int_bld, gallivm, lp_int_type(type));
   lp_build_context_init(&bld.int_bld, gallivm, lp_int_type(type));

   for (chan = 0; chan < 4; ++chan) {
      bld.swizzles[chan] = swizzles[chan];
      bld.inv_swizzles[swizzles[chan]] = chan;
   }

   bld.inputs = inputs;
   bld.outputs = outputs;
   bld.consts_ptr = consts_ptr;
   bld.sampler = sampler;
   bld.indirect_files = info->indirect_files;
   bld.bld_base.emit_swizzle = swizzle_aos;
   bld.bld_base.info = info;

   bld.bld_base.emit_fetch_funcs[TGSI_FILE_CONSTANT] = emit_fetch_constant;
   bld.bld_base.emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = emit_fetch_immediate;
   bld.bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = emit_fetch_input;
   bld.bld_base.emit_fetch_funcs[TGSI_FILE_TEMPORARY] = emit_fetch_temporary;

   /* Set opcode actions */
   lp_set_default_actions_cpu(&bld.bld_base);

   if (!lp_bld_tgsi_list_init(&bld.bld_base)) {
      return;
   }

   tgsi_parse_init(&parse, tokens);

   while (!tgsi_parse_end_of_tokens(&parse)) {
      tgsi_parse_token(&parse);

      switch(parse.FullToken.Token.Type) {
      case TGSI_TOKEN_TYPE_DECLARATION:
         /* Inputs already interpolated */
         lp_emit_declaration_aos(&bld, &parse.FullToken.FullDeclaration);
         break;

      case TGSI_TOKEN_TYPE_INSTRUCTION:
         /* save expanded instruction */
         lp_bld_tgsi_add_instruction(&bld.bld_base,
                                     &parse.FullToken.FullInstruction);
         break;

      case TGSI_TOKEN_TYPE_IMMEDIATE:
         /* simply copy the immediate values into the next immediates[] slot */
         {
            const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
            float imm[4];
            assert(size <= 4);
            assert(num_immediates < LP_MAX_TGSI_IMMEDIATES);
            for (chan = 0; chan < 4; ++chan) {
               imm[chan] = 0.0f;
            }
            for (chan = 0; chan < size; ++chan) {
               unsigned swizzle = bld.swizzles[chan];
               imm[swizzle] = parse.FullToken.FullImmediate.u[chan].Float;
            }
            bld.immediates[num_immediates] =
                     lp_build_const_aos(gallivm, type,
                                        imm[0], imm[1], imm[2], imm[3],
                                        NULL);
            num_immediates++;
         }
         break;

      case TGSI_TOKEN_TYPE_PROPERTY:
         break;

      default:
         assert(0);
      }
   }

   while (pc != -1) {
      struct tgsi_full_instruction *instr = bld.bld_base.instructions + pc;
      const struct tgsi_opcode_info *opcode_info =
         tgsi_get_opcode_info(instr->Instruction.Opcode);
      if (!lp_emit_instruction_aos(&bld, instr, opcode_info, &pc))
         _debug_printf("warning: failed to translate tgsi opcode %s to LLVM\n",
                       opcode_info->mnemonic);
   }

   if (0) {
      LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
      LLVMValueRef function = LLVMGetBasicBlockParent(block);
      debug_printf("11111111111111111111111111111 \n");
      tgsi_dump(tokens, 0);
      lp_debug_dump_value(function);
      debug_printf("2222222222222222222222222222 \n");
   }
   tgsi_parse_free(&parse);
   FREE(bld.bld_base.instructions);

   if (0) {
      LLVMModuleRef module = LLVMGetGlobalParent(
         LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
      LLVMDumpModule(module);
   }

}
Beispiel #13
0
/**
 * Initialize fragment shader input attribute info.
 */
void
lp_build_interp_soa_init(struct lp_build_interp_soa_context *bld,
                         struct gallivm_state *gallivm,
                         unsigned num_inputs,
                         const struct lp_shader_input *inputs,
                         boolean pixel_center_integer,
                         LLVMBuilderRef builder,
                         struct lp_type type,
                         LLVMValueRef a0_ptr,
                         LLVMValueRef dadx_ptr,
                         LLVMValueRef dady_ptr,
                         LLVMValueRef x0,
                         LLVMValueRef y0)
{
   struct lp_type coeff_type;
   struct lp_type setup_type;
   unsigned attrib;
   unsigned chan;

   memset(bld, 0, sizeof *bld);

   memset(&coeff_type, 0, sizeof coeff_type);
   coeff_type.floating = TRUE;
   coeff_type.sign = TRUE;
   coeff_type.width = 32;
   coeff_type.length = type.length;

   memset(&setup_type, 0, sizeof setup_type);
   setup_type.floating = TRUE;
   setup_type.sign = TRUE;
   setup_type.width = 32;
   setup_type.length = TGSI_NUM_CHANNELS;


   /* XXX: we don't support interpolating into any other types */
   assert(memcmp(&coeff_type, &type, sizeof coeff_type) == 0);

   lp_build_context_init(&bld->coeff_bld, gallivm, coeff_type);
   lp_build_context_init(&bld->setup_bld, gallivm, setup_type);

   /* For convenience */
   bld->pos = bld->attribs[0];
   bld->inputs = (const LLVMValueRef (*)[TGSI_NUM_CHANNELS]) bld->attribs[1];

   /* Position */
   bld->mask[0] = TGSI_WRITEMASK_XYZW;
   bld->interp[0] = LP_INTERP_LINEAR;

   /* Inputs */
   for (attrib = 0; attrib < num_inputs; ++attrib) {
      bld->mask[1 + attrib] = inputs[attrib].usage_mask;
      bld->interp[1 + attrib] = inputs[attrib].interp;
   }
   bld->num_attribs = 1 + num_inputs;

   /* Ensure all masked out input channels have a valid value */
   for (attrib = 0; attrib < bld->num_attribs; ++attrib) {
      for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
         bld->attribs[attrib][chan] = bld->coeff_bld.undef;
      }
   }

   if (pixel_center_integer) {
      bld->pos_offset = 0.0;
   } else {
      bld->pos_offset = 0.5;
   }

   pos_init(bld, x0, y0);

   /*
    * Simple method (single step interpolation) may be slower if vector length
    * is just 4, but the results are different (generally less accurate) with
    * the other method, so always use more accurate version.
    */
   if (1) {
      bld->simple_interp = TRUE;
      {
         /* XXX this should use a global static table */
         unsigned i;
         unsigned num_loops = 16 / type.length;
         LLVMValueRef pixoffx, pixoffy, index;
         LLVMValueRef ptr;

         bld->xoffset_store = lp_build_array_alloca(gallivm,
                                                    lp_build_vec_type(gallivm, type),
                                                    lp_build_const_int32(gallivm, num_loops),
                                                    "");
         bld->yoffset_store = lp_build_array_alloca(gallivm,
                                                    lp_build_vec_type(gallivm, type),
                                                    lp_build_const_int32(gallivm, num_loops),
                                                    "");
         for (i = 0; i < num_loops; i++) {
            index = lp_build_const_int32(gallivm, i);
            calc_offsets(&bld->coeff_bld, i*type.length/4, &pixoffx, &pixoffy);
            ptr = LLVMBuildGEP(builder, bld->xoffset_store, &index, 1, "");
            LLVMBuildStore(builder, pixoffx, ptr);
            ptr = LLVMBuildGEP(builder, bld->yoffset_store, &index, 1, "");
            LLVMBuildStore(builder, pixoffy, ptr);
         }
      }
      coeffs_init_simple(bld, a0_ptr, dadx_ptr, dady_ptr);
   }
   else {
      bld->simple_interp = FALSE;
      coeffs_init(bld, a0_ptr, dadx_ptr, dady_ptr);
   }

}
/**
 * Generate blend code in SOA mode.
 * \param src  src/fragment color
 * \param dst  dst/framebuffer color
 * \param con  constant blend color
 * \param res  the result/output
 */
void
lp_build_blend_soa(LLVMBuilderRef builder,
                   const struct pipe_blend_state *blend,
                   struct lp_type type,
                   LLVMValueRef src[4],
                   LLVMValueRef dst[4],
                   LLVMValueRef con[4],
                   LLVMValueRef res[4])
{
   struct lp_build_blend_soa_context bld;
   unsigned i, j, k;

   /* Setup build context */
   memset(&bld, 0, sizeof bld);
   lp_build_context_init(&bld.base, builder, type);
   for (i = 0; i < 4; ++i) {
      bld.src[i] = src[i];
      bld.dst[i] = dst[i];
      bld.con[i] = con[i];
   }

   for (i = 0; i < 4; ++i) {
      if (blend->colormask & (1 << i)) {
         if (blend->logicop_enable) {
            if(!type.floating) {
               res[i] = lp_build_logicop(builder, blend->logicop_func, src[i], dst[i]);
            }
            else
               res[i] = dst[i];
         }
         else if (blend->blend_enable) {
            unsigned src_factor = i < 3 ? blend->rgb_src_factor : blend->alpha_src_factor;
            unsigned dst_factor = i < 3 ? blend->rgb_dst_factor : blend->alpha_dst_factor;
            unsigned func = i < 3 ? blend->rgb_func : blend->alpha_func;
            boolean func_commutative = lp_build_blend_func_commutative(func);

            /* It makes no sense to blend unless values are normalized */
            assert(type.norm);

            /*
             * Compute src/dst factors.
             */

            bld.factor[0][0][i] = src[i];
            bld.factor[0][1][i] = lp_build_blend_soa_factor(&bld, src_factor, i);
            bld.factor[1][0][i] = dst[i];
            bld.factor[1][1][i] = lp_build_blend_soa_factor(&bld, dst_factor, i);

            /*
             * Compute src/dst terms
             */

            for(k = 0; k < 2; ++k) {
               /* See if this multiplication has been previously computed */
               for(j = 0; j < i; ++j) {
                  if((bld.factor[k][0][j] == bld.factor[k][0][i] &&
                      bld.factor[k][1][j] == bld.factor[k][1][i]) ||
                     (bld.factor[k][0][j] == bld.factor[k][1][i] &&
                      bld.factor[k][1][j] == bld.factor[k][0][i]))
                     break;
               }

               if(j < i)
                  bld.term[k][i] = bld.term[k][j];
               else
                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i], bld.factor[k][1][i]);
            }

            /*
             * Combine terms
             */

            /* See if this function has been previously applied */
            for(j = 0; j < i; ++j) {
               unsigned prev_func = j < 3 ? blend->rgb_func : blend->alpha_func;
               unsigned func_reverse = lp_build_blend_func_reverse(func, prev_func);

               if((!func_reverse &&
                   bld.term[0][j] == bld.term[0][i] &&
                   bld.term[1][j] == bld.term[1][i]) ||
                  ((func_commutative || func_reverse) &&
                   bld.term[0][j] == bld.term[1][i] &&
                   bld.term[1][j] == bld.term[0][i]))
                  break;
            }

            if(j < i)
               res[i] = res[j];
            else
               res[i] = lp_build_blend_func(&bld.base, func, bld.term[0][i], bld.term[1][i]);
         }
         else {
            res[i] = src[i];
         }
      }
      else {
         res[i] = dst[i];
      }
   }
}
Beispiel #15
0
/**
 * @brief lp_build_fetch_rgba_aos_array
 *
 * \param format_desc   describes format of the image we're fetching from
 * \param dst_type      output type
 * \param base_ptr      address of the pixel block (or the texel if uncompressed)
 * \param offset        ptr offset
 */
LLVMValueRef
lp_build_fetch_rgba_aos_array(struct gallivm_state *gallivm,
                              const struct util_format_description *format_desc,
                              struct lp_type dst_type,
                              LLVMValueRef base_ptr,
                              LLVMValueRef offset)
{
   struct lp_build_context bld;
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef src_vec_type;
   LLVMValueRef ptr, res = NULL;
   struct lp_type src_type;
   boolean pure_integer = format_desc->channel[0].pure_integer;
   struct lp_type tmp_type;

   lp_type_from_format_desc(&src_type, format_desc);

   assert(src_type.length <= dst_type.length);

   src_vec_type  = lp_build_vec_type(gallivm,  src_type);

   /* Read whole vector from memory, unaligned */
   ptr = LLVMBuildGEP(builder, base_ptr, &offset, 1, "");
   ptr = LLVMBuildPointerCast(builder, ptr, LLVMPointerType(src_vec_type, 0), "");
   res = LLVMBuildLoad(builder, ptr, "");
   LLVMSetAlignment(res, src_type.width / 8);

   /* Truncate doubles to float */
   if (src_type.floating && src_type.width == 64) {
      src_type.width = 32;
      src_vec_type  = lp_build_vec_type(gallivm,  src_type);

      res = LLVMBuildFPTrunc(builder, res, src_vec_type, "");
   }

   /* Expand to correct length */
   if (src_type.length < dst_type.length) {
      res = lp_build_pad_vector(gallivm, res, dst_type.length);
      src_type.length = dst_type.length;
   }

   tmp_type = dst_type;
   if (pure_integer) {
       /* some callers expect (fake) floats other real ints. */
      tmp_type.floating = 0;
      tmp_type.sign = src_type.sign;
   }

   /* Convert to correct format */
   lp_build_conv(gallivm, src_type, tmp_type, &res, 1, &res, 1);

   /* Swizzle it */
   lp_build_context_init(&bld, gallivm, tmp_type);
   res = lp_build_format_swizzle_aos(format_desc, &bld, res);

   /* Bitcast to floats (for pure integers) when requested */
   if (pure_integer && dst_type.floating) {
      res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, dst_type), "");
   }

   return res;
}
Beispiel #16
0
/**
 * Generate blend code in SOA mode.
 * \param rt  render target index (to index the blend / colormask state)
 * \param src  src/fragment color
 * \param dst  dst/framebuffer color
 * \param con  constant blend color
 * \param res  the result/output
 */
void
lp_build_blend_soa(struct gallivm_state *gallivm,
                   const struct pipe_blend_state *blend,
                   struct lp_type type,
                   unsigned rt,
                   LLVMValueRef src[4],
                   LLVMValueRef dst[4],
                   LLVMValueRef con[4],
                   LLVMValueRef res[4])
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_build_blend_soa_context bld;
   unsigned i, j, k;

   assert(rt < PIPE_MAX_COLOR_BUFS);

   /* Setup build context */
   memset(&bld, 0, sizeof bld);
   lp_build_context_init(&bld.base, gallivm, type);
   for (i = 0; i < 4; ++i) {
      bld.src[i] = src[i];
      bld.dst[i] = dst[i];
      bld.con[i] = con[i];
   }

   for (i = 0; i < 4; ++i) {
      /* only compute blending for the color channels enabled for writing */
      if (blend->rt[rt].colormask & (1 << i)) {
         if (blend->logicop_enable) {
            if(!type.floating) {
               res[i] = lp_build_logicop(builder, blend->logicop_func, src[i], dst[i]);
            }
            else
               res[i] = dst[i];
         }
         else if (blend->rt[rt].blend_enable) {
            unsigned src_factor = i < 3 ? blend->rt[rt].rgb_src_factor : blend->rt[rt].alpha_src_factor;
            unsigned dst_factor = i < 3 ? blend->rt[rt].rgb_dst_factor : blend->rt[rt].alpha_dst_factor;
            unsigned func = i < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
            boolean func_commutative = lp_build_blend_func_commutative(func);

            /*
             * Compute src/dst factors.
             */

            bld.factor[0][0][i] = src[i];
            bld.factor[0][1][i] = lp_build_blend_soa_factor(&bld, src_factor, i);
            bld.factor[1][0][i] = dst[i];
            bld.factor[1][1][i] = lp_build_blend_soa_factor(&bld, dst_factor, i);

            /*
             * Check if lp_build_blend can perform any optimisations
             */
            res[i] = lp_build_blend(&bld.base,
                                    func,
                                    src_factor,
                                    dst_factor,
                                    bld.factor[0][0][i],
                                    bld.factor[1][0][i],
                                    bld.factor[0][1][i],
                                    bld.factor[1][1][i],
                                    true,
                                    true);

            if (res[i]) {
               continue;
            }

            /*
             * Compute src/dst terms
             */

            for(k = 0; k < 2; ++k) {
               /* See if this multiplication has been previously computed */
               for(j = 0; j < i; ++j) {
                  if((bld.factor[k][0][j] == bld.factor[k][0][i] &&
                      bld.factor[k][1][j] == bld.factor[k][1][i]) ||
                     (bld.factor[k][0][j] == bld.factor[k][1][i] &&
                      bld.factor[k][1][j] == bld.factor[k][0][i]))
                     break;
               }

               if(j < i && bld.term[k][j])
                  bld.term[k][i] = bld.term[k][j];
               else
                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i], bld.factor[k][1][i]);

               if (src_factor == PIPE_BLENDFACTOR_ZERO &&
                   (dst_factor == PIPE_BLENDFACTOR_DST_ALPHA ||
                    dst_factor == PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
                  /* XXX special case these combos to work around an apparent
                   * bug in LLVM.
                   * This hack disables the check for multiplication by zero
                   * in lp_bld_mul().  When we optimize away the
                   * multiplication, something goes wrong during code
                   * generation and we segfault at runtime.
                   */
                  LLVMValueRef zeroSave = bld.base.zero;
                  bld.base.zero = NULL;
                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i],
                                                bld.factor[k][1][i]);
                  bld.base.zero = zeroSave;
               }
            }

            /*
             * Combine terms
             */

            /* See if this function has been previously applied */
            for(j = 0; j < i; ++j) {
               unsigned prev_func = j < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
               unsigned func_reverse = lp_build_blend_func_reverse(func, prev_func);

               if((!func_reverse &&
                   bld.term[0][j] == bld.term[0][i] &&
                   bld.term[1][j] == bld.term[1][i]) ||
                  ((func_commutative || func_reverse) &&
                   bld.term[0][j] == bld.term[1][i] &&
                   bld.term[1][j] == bld.term[0][i]))
                  break;
            }

            if(j < i)
               res[i] = res[j];
            else
               res[i] = lp_build_blend_func(&bld.base, func, bld.term[0][i], bld.term[1][i]);
         }
         else {
            res[i] = src[i];
         }
      }
      else {
         res[i] = dst[i];
      }
   }
}
Beispiel #17
0
/**
 * Performs blending of src and dst pixels
 *
 * @param blend         the blend state of the shader variant
 * @param cbuf_format   format of the colour buffer
 * @param type          data type of the pixel vector
 * @param rt            render target index
 * @param src           blend src
 * @param src_alpha     blend src alpha (if not included in src)
 * @param src1          second blend src (for dual source blend)
 * @param src1_alpha    second blend src alpha (if not included in src1)
 * @param dst           blend dst
 * @param mask          optional mask to apply to the blending result
 * @param const_        const blend color
 * @param const_alpha   const blend color alpha (if not included in const_)
 * @param swizzle       swizzle values for RGBA
 *
 * @return the result of blending src and dst
 */
LLVMValueRef
lp_build_blend_aos(struct gallivm_state *gallivm,
                   const struct pipe_blend_state *blend,
                   enum pipe_format cbuf_format,
                   struct lp_type type,
                   unsigned rt,
                   LLVMValueRef src,
                   LLVMValueRef src_alpha,
                   LLVMValueRef src1,
                   LLVMValueRef src1_alpha,
                   LLVMValueRef dst,
                   LLVMValueRef mask,
                   LLVMValueRef const_,
                   LLVMValueRef const_alpha,
                   const unsigned char swizzle[4],
                   int nr_channels)
{
   const struct pipe_rt_blend_state * state = &blend->rt[rt];
   const struct util_format_description * desc;
   struct lp_build_blend_aos_context bld;
   LLVMValueRef src_factor, dst_factor;
   LLVMValueRef result;
   unsigned alpha_swizzle = UTIL_FORMAT_SWIZZLE_NONE;
   unsigned i;

   desc = util_format_description(cbuf_format);

   /* Setup build context */
   memset(&bld, 0, sizeof bld);
   lp_build_context_init(&bld.base, gallivm, type);
   bld.src = src;
   bld.src1 = src1;
   bld.dst = dst;
   bld.const_ = const_;
   bld.src_alpha = src_alpha;
   bld.src1_alpha = src1_alpha;
   bld.const_alpha = const_alpha;

   /* Find the alpha channel if not provided seperately */
   if (!src_alpha) {
      for (i = 0; i < 4; ++i) {
         if (swizzle[i] == 3) {
            alpha_swizzle = i;
         }
      }
   }

   if (blend->logicop_enable) {
      if(!type.floating) {
         result = lp_build_logicop(gallivm->builder, blend->logicop_func, src, dst);
      }
      else {
         result = src;
      }
   } else if (!state->blend_enable) {
      result = src;
   } else {
      boolean rgb_alpha_same = (state->rgb_src_factor == state->rgb_dst_factor && state->alpha_src_factor == state->alpha_dst_factor) || nr_channels == 1;

      src_factor = lp_build_blend_factor(&bld, state->rgb_src_factor,
                                         state->alpha_src_factor,
                                         alpha_swizzle,
                                         nr_channels);

      dst_factor = lp_build_blend_factor(&bld, state->rgb_dst_factor,
                                         state->alpha_dst_factor,
                                         alpha_swizzle,
                                         nr_channels);

      result = lp_build_blend(&bld.base,
                              state->rgb_func,
                              state->rgb_src_factor,
                              state->rgb_dst_factor,
                              src,
                              dst,
                              src_factor,
                              dst_factor,
                              rgb_alpha_same,
                              false);

      if(state->rgb_func != state->alpha_func && nr_channels > 1 && alpha_swizzle != UTIL_FORMAT_SWIZZLE_NONE) {
         LLVMValueRef alpha;

         alpha = lp_build_blend(&bld.base,
                                state->alpha_func,
                                state->alpha_src_factor,
                                state->alpha_dst_factor,
                                src,
                                dst,
                                src_factor,
                                dst_factor,
                                rgb_alpha_same,
                                false);

         result = lp_build_blend_swizzle(&bld,
                                         result,
                                         alpha,
                                         LP_BUILD_BLEND_SWIZZLE_RGBA,
                                         alpha_swizzle,
                                         nr_channels);
      }
   }

   /* Check if color mask is necessary */
   if (!util_format_colormask_full(desc, state->colormask)) {
      LLVMValueRef color_mask;

      color_mask = lp_build_const_mask_aos_swizzled(gallivm, bld.base.type, state->colormask, nr_channels, swizzle);
      lp_build_name(color_mask, "color_mask");

      /* Combine with input mask if necessary */
      if (mask) {
         /* We can be blending floating values but masks are always integer... */
         unsigned floating = bld.base.type.floating;
         bld.base.type.floating = 0;

         mask = lp_build_and(&bld.base, color_mask, mask);

         bld.base.type.floating = floating;
      } else {
         mask = color_mask;
      }
   }

   /* Apply mask, if one exists */
   if (mask) {
      result = lp_build_select(&bld.base, mask, result, dst);
   }

   return result;
}
/*
 * Do a cached lookup.
 *
 * Returns (vectors of) 4x8 rgba aos value
 */
LLVMValueRef
lp_build_fetch_cached_texels(struct gallivm_state *gallivm,
                             const struct util_format_description *format_desc,
                             unsigned n,
                             LLVMValueRef base_ptr,
                             LLVMValueRef offset,
                             LLVMValueRef i,
                             LLVMValueRef j,
                             LLVMValueRef cache)

{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned count, low_bit, log2size;
   LLVMValueRef color, offset_stored, addr, ptr_addrtrunc, tmp;
   LLVMValueRef ij_index, hash_index, hash_mask, block_index;
   LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMTypeRef i64t = LLVMInt64TypeInContext(gallivm->context);
   struct lp_type type;
   struct lp_build_context bld32;
   memset(&type, 0, sizeof type);
   type.width = 32;
   type.length = n;

   assert(format_desc->block.width == 4);
   assert(format_desc->block.height == 4);

   lp_build_context_init(&bld32, gallivm, type);

   /*
    * compute hash - we use direct mapped cache, the hash function could
    *                be better but it needs to be simple
    * per-element:
    *    compare offset with offset stored at tag (hash)
    *    if not equal decode/store block, update tag
    *    extract color from cache
    *    assemble result vector
    */

   /* TODO: not ideal with 32bit pointers... */

   low_bit = util_logbase2(format_desc->block.bits / 8);
   log2size = util_logbase2(LP_BUILD_FORMAT_CACHE_SIZE);
   addr = LLVMBuildPtrToInt(builder, base_ptr, i64t, "");
   ptr_addrtrunc = LLVMBuildPtrToInt(builder, base_ptr, i32t, "");
   ptr_addrtrunc = lp_build_broadcast_scalar(&bld32, ptr_addrtrunc);
   /* For the hash function, first mask off the unused lowest bits. Then just
      do some xor with address bits - only use lower 32bits */
   ptr_addrtrunc = LLVMBuildAdd(builder, offset, ptr_addrtrunc, "");
   ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
                                 lp_build_const_int_vec(gallivm, type, low_bit), "");
   /* This only really makes sense for size 64,128,256 */
   hash_index = ptr_addrtrunc;
   ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
                                 lp_build_const_int_vec(gallivm, type, 2*log2size), "");
   hash_index = LLVMBuildXor(builder, ptr_addrtrunc, hash_index, "");
   tmp = LLVMBuildLShr(builder, hash_index,
                       lp_build_const_int_vec(gallivm, type, log2size), "");
   hash_index = LLVMBuildXor(builder, hash_index, tmp, "");

   hash_mask = lp_build_const_int_vec(gallivm, type, LP_BUILD_FORMAT_CACHE_SIZE - 1);
   hash_index = LLVMBuildAnd(builder, hash_index, hash_mask, "");
   ij_index = LLVMBuildShl(builder, i, lp_build_const_int_vec(gallivm, type, 2), "");
   ij_index = LLVMBuildAdd(builder, ij_index, j, "");
   block_index = LLVMBuildShl(builder, hash_index,
                              lp_build_const_int_vec(gallivm, type, 4), "");
   block_index = LLVMBuildAdd(builder, ij_index, block_index, "");

   if (n > 1) {
      color = LLVMGetUndef(LLVMVectorType(i32t, n));
      for (count = 0; count < n; count++) {
         LLVMValueRef index, cond, colorx;
         LLVMValueRef block_indexx, hash_indexx, addrx, offsetx, ptr_addrx;
         struct lp_build_if_state if_ctx;

         index = lp_build_const_int32(gallivm, count);
         offsetx = LLVMBuildExtractElement(builder, offset, index, "");
         addrx = LLVMBuildZExt(builder, offsetx, i64t, "");
         addrx = LLVMBuildAdd(builder, addrx, addr, "");
         block_indexx = LLVMBuildExtractElement(builder, block_index, index, "");
         hash_indexx = LLVMBuildLShr(builder, block_indexx,
                                     lp_build_const_int32(gallivm, 4), "");
         offset_stored = lookup_tag_data(gallivm, cache, hash_indexx);
         cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addrx, "");

         lp_build_if(&if_ctx, gallivm, cond);
         {
            ptr_addrx = LLVMBuildIntToPtr(builder, addrx,
                                          LLVMPointerType(i8t, 0), "");
            update_cached_block(gallivm, format_desc, ptr_addrx, hash_indexx, cache);
#if LP_BUILD_FORMAT_CACHE_DEBUG
            update_cache_access(gallivm, cache, 1,
                                LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
#endif
         }
         lp_build_endif(&if_ctx);

         colorx = lookup_cached_pixel(gallivm, cache, block_indexx);

         color = LLVMBuildInsertElement(builder, color, colorx,
                                        lp_build_const_int32(gallivm, count), "");
      }
   }
   else {
      LLVMValueRef cond;
      struct lp_build_if_state if_ctx;

      tmp = LLVMBuildZExt(builder, offset, i64t, "");
      addr = LLVMBuildAdd(builder, tmp, addr, "");
      offset_stored = lookup_tag_data(gallivm, cache, hash_index);
      cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addr, "");

      lp_build_if(&if_ctx, gallivm, cond);
      {
         tmp = LLVMBuildIntToPtr(builder, addr, LLVMPointerType(i8t, 0), "");
         update_cached_block(gallivm, format_desc, tmp, hash_index, cache);
#if LP_BUILD_FORMAT_CACHE_DEBUG
         update_cache_access(gallivm, cache, 1,
                             LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
#endif
      }
      lp_build_endif(&if_ctx);

      color = lookup_cached_pixel(gallivm, cache, block_index);
   }
#if LP_BUILD_FORMAT_CACHE_DEBUG
   update_cache_access(gallivm, cache, n,
                       LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_TOTAL);
#endif
   return LLVMBuildBitCast(builder, color, LLVMVectorType(i8t, n * 4), "");
}
Beispiel #19
0
/**
 * Sample a single texture image with (bi-)(tri-)linear sampling.
 * Return filtered color as two vectors of 16-bit fixed point values.
 */
static void
lp_build_sample_image_linear(struct lp_build_sample_context *bld,
                             LLVMValueRef int_size,
                             LLVMValueRef row_stride_vec,
                             LLVMValueRef img_stride_vec,
                             LLVMValueRef data_ptr,
                             LLVMValueRef s,
                             LLVMValueRef t,
                             LLVMValueRef r,
                             LLVMValueRef *colors_lo,
                             LLVMValueRef *colors_hi)
{
   const unsigned dims = bld->dims;
   LLVMBuilderRef builder = bld->gallivm->builder;
   struct lp_build_context i32, h16, u8n;
   LLVMTypeRef i32_vec_type, h16_vec_type, u8n_vec_type;
   LLVMValueRef i32_c8, i32_c128, i32_c255;
   LLVMValueRef width_vec, height_vec, depth_vec;
   LLVMValueRef s_ipart, s_fpart, s_fpart_lo, s_fpart_hi;
   LLVMValueRef t_ipart = NULL, t_fpart = NULL, t_fpart_lo = NULL, t_fpart_hi = NULL;
   LLVMValueRef r_ipart = NULL, r_fpart = NULL, r_fpart_lo = NULL, r_fpart_hi = NULL;
   LLVMValueRef x_stride, y_stride, z_stride;
   LLVMValueRef x_offset0, x_offset1;
   LLVMValueRef y_offset0, y_offset1;
   LLVMValueRef z_offset0, z_offset1;
   LLVMValueRef offset[2][2][2]; /* [z][y][x] */
   LLVMValueRef x_subcoord[2], y_subcoord[2], z_subcoord[2];
   LLVMValueRef neighbors_lo[2][2][2]; /* [z][y][x] */
   LLVMValueRef neighbors_hi[2][2][2]; /* [z][y][x] */
   LLVMValueRef packed_lo, packed_hi;
   unsigned x, y, z;
   unsigned i, j, k;
   unsigned numj, numk;

   lp_build_context_init(&i32, bld->gallivm, lp_type_int_vec(32));
   lp_build_context_init(&h16, bld->gallivm, lp_type_ufixed(16));
   lp_build_context_init(&u8n, bld->gallivm, lp_type_unorm(8));

   i32_vec_type = lp_build_vec_type(bld->gallivm, i32.type);
   h16_vec_type = lp_build_vec_type(bld->gallivm, h16.type);
   u8n_vec_type = lp_build_vec_type(bld->gallivm, u8n.type);

   lp_build_extract_image_sizes(bld,
                                bld->int_size_type,
                                bld->int_coord_type,
                                int_size,
                                &width_vec,
                                &height_vec,
                                &depth_vec);

   if (bld->static_state->normalized_coords) {
      LLVMValueRef scaled_size;
      LLVMValueRef flt_size;

      /* scale size by 256 (8 fractional bits) */
      scaled_size = lp_build_shl_imm(&bld->int_size_bld, int_size, 8);

      flt_size = lp_build_int_to_float(&bld->float_size_bld, scaled_size);

      lp_build_unnormalized_coords(bld, flt_size, &s, &t, &r);
   }
   else {
      /* scale coords by 256 (8 fractional bits) */
      s = lp_build_mul_imm(&bld->coord_bld, s, 256);
      if (dims >= 2)
         t = lp_build_mul_imm(&bld->coord_bld, t, 256);
      if (dims >= 3)
         r = lp_build_mul_imm(&bld->coord_bld, r, 256);
   }

   /* convert float to int */
   s = LLVMBuildFPToSI(builder, s, i32_vec_type, "");
   if (dims >= 2)
      t = LLVMBuildFPToSI(builder, t, i32_vec_type, "");
   if (dims >= 3)
      r = LLVMBuildFPToSI(builder, r, i32_vec_type, "");

   /* subtract 0.5 (add -128) */
   i32_c128 = lp_build_const_int_vec(bld->gallivm, i32.type, -128);
   s = LLVMBuildAdd(builder, s, i32_c128, "");
   if (dims >= 2) {
      t = LLVMBuildAdd(builder, t, i32_c128, "");
   }
   if (dims >= 3) {
      r = LLVMBuildAdd(builder, r, i32_c128, "");
   }

   /* compute floor (shift right 8) */
   i32_c8 = lp_build_const_int_vec(bld->gallivm, i32.type, 8);
   s_ipart = LLVMBuildAShr(builder, s, i32_c8, "");
   if (dims >= 2)
      t_ipart = LLVMBuildAShr(builder, t, i32_c8, "");
   if (dims >= 3)
      r_ipart = LLVMBuildAShr(builder, r, i32_c8, "");

   /* compute fractional part (AND with 0xff) */
   i32_c255 = lp_build_const_int_vec(bld->gallivm, i32.type, 255);
   s_fpart = LLVMBuildAnd(builder, s, i32_c255, "");
   if (dims >= 2)
      t_fpart = LLVMBuildAnd(builder, t, i32_c255, "");
   if (dims >= 3)
      r_fpart = LLVMBuildAnd(builder, r, i32_c255, "");

   /* get pixel, row and image strides */
   x_stride = lp_build_const_vec(bld->gallivm, bld->int_coord_bld.type,
                                 bld->format_desc->block.bits/8);
   y_stride = row_stride_vec;
   z_stride = img_stride_vec;

   /* do texcoord wrapping and compute texel offsets */
   lp_build_sample_wrap_linear_int(bld,
                                   bld->format_desc->block.width,
                                   s_ipart, width_vec, x_stride,
                                   bld->static_state->pot_width,
                                   bld->static_state->wrap_s,
                                   &x_offset0, &x_offset1,
                                   &x_subcoord[0], &x_subcoord[1]);
   for (z = 0; z < 2; z++) {
      for (y = 0; y < 2; y++) {
         offset[z][y][0] = x_offset0;
         offset[z][y][1] = x_offset1;
      }
   }

   if (dims >= 2) {
      lp_build_sample_wrap_linear_int(bld,
                                      bld->format_desc->block.height,
                                      t_ipart, height_vec, y_stride,
                                      bld->static_state->pot_height,
                                      bld->static_state->wrap_t,
                                      &y_offset0, &y_offset1,
                                      &y_subcoord[0], &y_subcoord[1]);

      for (z = 0; z < 2; z++) {
         for (x = 0; x < 2; x++) {
            offset[z][0][x] = lp_build_add(&bld->int_coord_bld,
                                           offset[z][0][x], y_offset0);
            offset[z][1][x] = lp_build_add(&bld->int_coord_bld,
                                           offset[z][1][x], y_offset1);
         }
      }
   }

   if (dims >= 3) {
      lp_build_sample_wrap_linear_int(bld,
                                      bld->format_desc->block.height,
                                      r_ipart, depth_vec, z_stride,
                                      bld->static_state->pot_depth,
                                      bld->static_state->wrap_r,
                                      &z_offset0, &z_offset1,
                                      &z_subcoord[0], &z_subcoord[1]);
      for (y = 0; y < 2; y++) {
         for (x = 0; x < 2; x++) {
            offset[0][y][x] = lp_build_add(&bld->int_coord_bld,
                                           offset[0][y][x], z_offset0);
            offset[1][y][x] = lp_build_add(&bld->int_coord_bld,
                                           offset[1][y][x], z_offset1);
         }
      }
   }
   else if (bld->static_state->target == PIPE_TEXTURE_CUBE) {
      LLVMValueRef z_offset;
      z_offset = lp_build_mul(&bld->int_coord_bld, r, img_stride_vec);
      for (y = 0; y < 2; y++) {
         for (x = 0; x < 2; x++) {
            /* The r coord is the cube face in [0,5] */
            offset[0][y][x] = lp_build_add(&bld->int_coord_bld,
                                           offset[0][y][x], z_offset);
         }
      }
   }

   /*
    * Transform 4 x i32 in
    *
    *   s_fpart = {s0, s1, s2, s3}
    *
    * into 8 x i16
    *
    *   s_fpart = {00, s0, 00, s1, 00, s2, 00, s3}
    *
    * into two 8 x i16
    *
    *   s_fpart_lo = {s0, s0, s0, s0, s1, s1, s1, s1}
    *   s_fpart_hi = {s2, s2, s2, s2, s3, s3, s3, s3}
    *
    * and likewise for t_fpart. There is no risk of loosing precision here
    * since the fractional parts only use the lower 8bits.
    */
   s_fpart = LLVMBuildBitCast(builder, s_fpart, h16_vec_type, "");
   if (dims >= 2)
      t_fpart = LLVMBuildBitCast(builder, t_fpart, h16_vec_type, "");
   if (dims >= 3)
      r_fpart = LLVMBuildBitCast(builder, r_fpart, h16_vec_type, "");

   {
      LLVMTypeRef elem_type = LLVMInt32TypeInContext(bld->gallivm->context);
      LLVMValueRef shuffles_lo[LP_MAX_VECTOR_LENGTH];
      LLVMValueRef shuffles_hi[LP_MAX_VECTOR_LENGTH];
      LLVMValueRef shuffle_lo;
      LLVMValueRef shuffle_hi;

      for (j = 0; j < h16.type.length; j += 4) {
#ifdef PIPE_ARCH_LITTLE_ENDIAN
         unsigned subindex = 0;
#else
         unsigned subindex = 1;
#endif
         LLVMValueRef index;

         index = LLVMConstInt(elem_type, j/2 + subindex, 0);
         for (i = 0; i < 4; ++i)
            shuffles_lo[j + i] = index;

         index = LLVMConstInt(elem_type, h16.type.length/2 + j/2 + subindex, 0);
         for (i = 0; i < 4; ++i)
            shuffles_hi[j + i] = index;
      }

      shuffle_lo = LLVMConstVector(shuffles_lo, h16.type.length);
      shuffle_hi = LLVMConstVector(shuffles_hi, h16.type.length);

      s_fpart_lo = LLVMBuildShuffleVector(builder, s_fpart, h16.undef,
                                          shuffle_lo, "");
      s_fpart_hi = LLVMBuildShuffleVector(builder, s_fpart, h16.undef,
                                          shuffle_hi, "");
      if (dims >= 2) {
         t_fpart_lo = LLVMBuildShuffleVector(builder, t_fpart, h16.undef,
                                             shuffle_lo, "");
         t_fpart_hi = LLVMBuildShuffleVector(builder, t_fpart, h16.undef,
                                             shuffle_hi, "");
      }
      if (dims >= 3) {
         r_fpart_lo = LLVMBuildShuffleVector(builder, r_fpart, h16.undef,
                                             shuffle_lo, "");
         r_fpart_hi = LLVMBuildShuffleVector(builder, r_fpart, h16.undef,
                                             shuffle_hi, "");
      }
   }

   /*
    * Fetch the pixels as 4 x 32bit (rgba order might differ):
    *
    *   rgba0 rgba1 rgba2 rgba3
    *
    * bit cast them into 16 x u8
    *
    *   r0 g0 b0 a0 r1 g1 b1 a1 r2 g2 b2 a2 r3 g3 b3 a3
    *
    * unpack them into two 8 x i16:
    *
    *   r0 g0 b0 a0 r1 g1 b1 a1
    *   r2 g2 b2 a2 r3 g3 b3 a3
    *
    * The higher 8 bits of the resulting elements will be zero.
    */
   numj = 1 + (dims >= 2);
   numk = 1 + (dims >= 3);

   for (k = 0; k < numk; k++) {
      for (j = 0; j < numj; j++) {
         for (i = 0; i < 2; i++) {
            LLVMValueRef rgba8;

            if (util_format_is_rgba8_variant(bld->format_desc)) {
               /*
                * Given the format is a rgba8, just read the pixels as is,
                * without any swizzling. Swizzling will be done later.
                */
               rgba8 = lp_build_gather(bld->gallivm,
                                       bld->texel_type.length,
                                       bld->format_desc->block.bits,
                                       bld->texel_type.width,
                                       data_ptr, offset[k][j][i]);

               rgba8 = LLVMBuildBitCast(builder, rgba8, u8n_vec_type, "");
            }
            else {
               rgba8 = lp_build_fetch_rgba_aos(bld->gallivm,
                                               bld->format_desc,
                                               u8n.type,
                                               data_ptr, offset[k][j][i],
                                               x_subcoord[i],
                                               y_subcoord[j]);
            }

            /* Expand one 4*rgba8 to two 2*rgba16 */
            lp_build_unpack2(bld->gallivm, u8n.type, h16.type,
                             rgba8,
                             &neighbors_lo[k][j][i], &neighbors_hi[k][j][i]);
         }
      }
   }

   /*
    * Linear interpolation with 8.8 fixed point.
    */
   if (dims == 1) {
      /* 1-D lerp */
      packed_lo = lp_build_lerp(&h16,
				s_fpart_lo,
				neighbors_lo[0][0][0],
				neighbors_lo[0][0][1]);

      packed_hi = lp_build_lerp(&h16,
				s_fpart_hi,
				neighbors_hi[0][0][0],
				neighbors_hi[0][0][1]);
   }
   else {
      /* 2-D lerp */
      packed_lo = lp_build_lerp_2d(&h16,
				   s_fpart_lo, t_fpart_lo,
				   neighbors_lo[0][0][0],
				   neighbors_lo[0][0][1],
				   neighbors_lo[0][1][0],
				   neighbors_lo[0][1][1]);

      packed_hi = lp_build_lerp_2d(&h16,
				   s_fpart_hi, t_fpart_hi,
				   neighbors_hi[0][0][0],
				   neighbors_hi[0][0][1],
				   neighbors_hi[0][1][0],
				   neighbors_hi[0][1][1]);

      if (dims >= 3) {
	 LLVMValueRef packed_lo2, packed_hi2;

	 /* lerp in the second z slice */
	 packed_lo2 = lp_build_lerp_2d(&h16,
				       s_fpart_lo, t_fpart_lo,
				       neighbors_lo[1][0][0],
				       neighbors_lo[1][0][1],
				       neighbors_lo[1][1][0],
				       neighbors_lo[1][1][1]);

	 packed_hi2 = lp_build_lerp_2d(&h16,
				       s_fpart_hi, t_fpart_hi,
				       neighbors_hi[1][0][0],
				       neighbors_hi[1][0][1],
				       neighbors_hi[1][1][0],
				       neighbors_hi[1][1][1]);
	 /* interp between two z slices */
	 packed_lo = lp_build_lerp(&h16, r_fpart_lo,
				   packed_lo, packed_lo2);
	 packed_hi = lp_build_lerp(&h16, r_fpart_hi,
				   packed_hi, packed_hi2);
      }
   }

   *colors_lo = packed_lo;
   *colors_hi = packed_hi;
}
Beispiel #20
0
/**
 * Sample the texture/mipmap using given image filter and mip filter.
 * data0_ptr and data1_ptr point to the two mipmap levels to sample
 * from.  width0/1_vec, height0/1_vec, depth0/1_vec indicate their sizes.
 * If we're using nearest miplevel sampling the '1' values will be null/unused.
 */
static void
lp_build_sample_mipmap(struct lp_build_sample_context *bld,
                       unsigned img_filter,
                       unsigned mip_filter,
                       LLVMValueRef s,
                       LLVMValueRef t,
                       LLVMValueRef r,
                       LLVMValueRef ilevel0,
                       LLVMValueRef ilevel1,
                       LLVMValueRef lod_fpart,
                       LLVMValueRef colors_lo_var,
                       LLVMValueRef colors_hi_var)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMValueRef size0;
   LLVMValueRef size1;
   LLVMValueRef row_stride0_vec;
   LLVMValueRef row_stride1_vec;
   LLVMValueRef img_stride0_vec;
   LLVMValueRef img_stride1_vec;
   LLVMValueRef data_ptr0;
   LLVMValueRef data_ptr1;
   LLVMValueRef colors0_lo, colors0_hi;
   LLVMValueRef colors1_lo, colors1_hi;

   /* sample the first mipmap level */
   lp_build_mipmap_level_sizes(bld, ilevel0,
                               &size0,
                               &row_stride0_vec, &img_stride0_vec);
   data_ptr0 = lp_build_get_mipmap_level(bld, ilevel0);
   if (img_filter == PIPE_TEX_FILTER_NEAREST) {
      lp_build_sample_image_nearest(bld,
                                    size0,
                                    row_stride0_vec, img_stride0_vec,
                                    data_ptr0, s, t, r,
                                    &colors0_lo, &colors0_hi);
   }
   else {
      assert(img_filter == PIPE_TEX_FILTER_LINEAR);
      lp_build_sample_image_linear(bld,
                                   size0,
                                   row_stride0_vec, img_stride0_vec,
                                   data_ptr0, s, t, r,
                                   &colors0_lo, &colors0_hi);
   }

   /* Store the first level's colors in the output variables */
   LLVMBuildStore(builder, colors0_lo, colors_lo_var);
   LLVMBuildStore(builder, colors0_hi, colors_hi_var);

   if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
      LLVMValueRef h16_scale = lp_build_const_float(bld->gallivm, 256.0);
      LLVMTypeRef i32_type = LLVMIntTypeInContext(bld->gallivm->context, 32);
      struct lp_build_if_state if_ctx;
      LLVMValueRef need_lerp;

      lod_fpart = LLVMBuildFMul(builder, lod_fpart, h16_scale, "");
      lod_fpart = LLVMBuildFPToSI(builder, lod_fpart, i32_type, "lod_fpart.fixed16");

      /* need_lerp = lod_fpart > 0 */
      need_lerp = LLVMBuildICmp(builder, LLVMIntSGT,
                                lod_fpart, LLVMConstNull(i32_type),
                                "need_lerp");

      lp_build_if(&if_ctx, bld->gallivm, need_lerp);
      {
         struct lp_build_context h16_bld;

         lp_build_context_init(&h16_bld, bld->gallivm, lp_type_ufixed(16));

         /* sample the second mipmap level */
         lp_build_mipmap_level_sizes(bld, ilevel1,
                                     &size1,
                                     &row_stride1_vec, &img_stride1_vec);
         data_ptr1 = lp_build_get_mipmap_level(bld, ilevel1);
         if (img_filter == PIPE_TEX_FILTER_NEAREST) {
            lp_build_sample_image_nearest(bld,
                                          size1,
                                          row_stride1_vec, img_stride1_vec,
                                          data_ptr1, s, t, r,
                                          &colors1_lo, &colors1_hi);
         }
         else {
            lp_build_sample_image_linear(bld,
                                         size1,
                                         row_stride1_vec, img_stride1_vec,
                                         data_ptr1, s, t, r,
                                         &colors1_lo, &colors1_hi);
         }

         /* interpolate samples from the two mipmap levels */

         lod_fpart = LLVMBuildTrunc(builder, lod_fpart, h16_bld.elem_type, "");
         lod_fpart = lp_build_broadcast_scalar(&h16_bld, lod_fpart);

#if HAVE_LLVM == 0x208
         /* This is a work-around for a bug in LLVM 2.8.
          * Evidently, something goes wrong in the construction of the
          * lod_fpart short[8] vector.  Adding this no-effect shuffle seems
          * to force the vector to be properly constructed.
          * Tested with mesa-demos/src/tests/mipmap_limits.c (press t, f).
          */
         {
            LLVMValueRef shuffles[8], shuffle;
            int i;
            assert(h16_bld.type.length <= Elements(shuffles));
            for (i = 0; i < h16_bld.type.length; i++)
               shuffles[i] = lp_build_const_int32(bld->gallivm, 2 * (i & 1));
            shuffle = LLVMConstVector(shuffles, h16_bld.type.length);
            lod_fpart = LLVMBuildShuffleVector(builder,
                                               lod_fpart, lod_fpart,
                                               shuffle, "");
         }
#endif

         colors0_lo = lp_build_lerp(&h16_bld, lod_fpart,
                                    colors0_lo, colors1_lo);
         colors0_hi = lp_build_lerp(&h16_bld, lod_fpart,
                                    colors0_hi, colors1_hi);

         LLVMBuildStore(builder, colors0_lo, colors_lo_var);
         LLVMBuildStore(builder, colors0_hi, colors_hi_var);
      }
      lp_build_endif(&if_ctx);
   }
}
/**
 * Fetch a pixel into a 4 float AoS.
 *
 * \param format_desc  describes format of the image we're fetching from
 * \param ptr  address of the pixel block (or the texel if uncompressed)
 * \param i, j  the sub-block pixel coordinates.  For non-compressed formats
 *              these will always be (0, 0).
 * \return  a 4 element vector with the pixel's RGBA values.
 */
LLVMValueRef
lp_build_fetch_rgba_aos(struct gallivm_state *gallivm,
                        const struct util_format_description *format_desc,
                        struct lp_type type,
                        LLVMValueRef base_ptr,
                        LLVMValueRef offset,
                        LLVMValueRef i,
                        LLVMValueRef j)
{
   LLVMBuilderRef builder = gallivm->builder;
   unsigned num_pixels = type.length / 4;
   struct lp_build_context bld;

   assert(type.length <= LP_MAX_VECTOR_LENGTH);
   assert(type.length % 4 == 0);

   lp_build_context_init(&bld, gallivm, type);

   /*
    * Trivial case
    *
    * The format matches the type (apart of a swizzle) so no need for
    * scaling or converting.
    */

   if (format_matches_type(format_desc, type) &&
       format_desc->block.bits <= type.width * 4 &&
       util_is_power_of_two(format_desc->block.bits)) {
      LLVMValueRef packed;

      /*
       * The format matches the type (apart of a swizzle) so no need for
       * scaling or converting.
       */

      packed = lp_build_gather(gallivm, type.length/4,
                               format_desc->block.bits, type.width*4,
                               base_ptr, offset);

      assert(format_desc->block.bits <= type.width * type.length);

      packed = LLVMBuildBitCast(gallivm->builder, packed,
                                lp_build_vec_type(gallivm, type), "");

      return lp_build_format_swizzle_aos(format_desc, &bld, packed);
   }

   /*
    * Bit arithmetic
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN &&
       (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) &&
       format_desc->block.width == 1 &&
       format_desc->block.height == 1 &&
       util_is_power_of_two(format_desc->block.bits) &&
       format_desc->block.bits <= 32 &&
       format_desc->is_bitmask &&
       !format_desc->is_mixed &&
       (format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED ||
        format_desc->channel[1].type == UTIL_FORMAT_TYPE_UNSIGNED)) {

      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      unsigned k;

      /*
       * Unpack a pixel at a time into a <4 x float> RGBA vector
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef packed;

         packed = lp_build_gather_elem(gallivm, num_pixels,
                                       format_desc->block.bits, 32,
                                       base_ptr, offset, k);

         tmps[k] = lp_build_unpack_arith_rgba_aos(gallivm,
                                                  format_desc,
                                                  packed);
      }

      /*
       * Type conversion.
       *
       * TODO: We could avoid floating conversion for integer to
       * integer conversions.
       */

      if (gallivm_debug & GALLIVM_DEBUG_PERF && !type.floating) {
         debug_printf("%s: unpacking %s with floating point\n",
                      __FUNCTION__, format_desc->short_name);
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return lp_build_format_swizzle_aos(format_desc, &bld, res);
   }

   /*
    * YUV / subsampled formats
    */

   if (format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) {
      struct lp_type tmp_type;
      LLVMValueRef tmp;

      memset(&tmp_type, 0, sizeof tmp_type);
      tmp_type.width = 8;
      tmp_type.length = num_pixels * 4;
      tmp_type.norm = TRUE;

      tmp = lp_build_fetch_subsampled_rgba_aos(gallivm,
                                               format_desc,
                                               num_pixels,
                                               base_ptr,
                                               offset,
                                               i, j);

      lp_build_conv(gallivm,
                    tmp_type, type,
                    &tmp, 1, &tmp, 1);

      return tmp;
   }

   /*
    * Fallback to util_format_description::fetch_rgba_8unorm().
    */

   if (format_desc->fetch_rgba_8unorm &&
       !type.floating && type.width == 8 && !type.sign && type.norm) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_8unorm.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder)));
      char name[256];
      LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
      LLVMTypeRef pi8t = LLVMPointerType(i8t, 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmp;
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_8unorm",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_8unorm().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(uint8_t *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pi8t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_8unorm));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");

      tmp_ptr = lp_build_alloca(gallivm, i32t, "");

      res = LLVMGetUndef(LLVMVectorType(i32t, num_pixels));

      /*
       * Invoke format_desc->fetch_rgba_8unorm() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef index = lp_build_const_int32(gallivm, k);
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pi8t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmp = LLVMBuildLoad(builder, tmp_ptr, "");

         if (num_pixels == 1) {
            res = tmp;
         }
         else {
            res = LLVMBuildInsertElement(builder, res, tmp, index, "");
         }
      }

      /* Bitcast from <n x i32> to <4n x i8> */
      res = LLVMBuildBitCast(builder, res, bld.vec_type, "");

      return res;
   }


   /*
    * Fallback to util_format_description::fetch_rgba_float().
    */

   if (format_desc->fetch_rgba_float) {
      /*
       * Fallback to calling util_format_description::fetch_rgba_float.
       *
       * This is definitely not the most efficient way of fetching pixels, as
       * we miss the opportunity to do vectorization, but this it is a
       * convenient for formats or scenarios for which there was no opportunity
       * or incentive to optimize.
       */

      LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
      char name[256];
      LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
      LLVMTypeRef f32x4t = LLVMVectorType(f32t, 4);
      LLVMTypeRef pf32t = LLVMPointerType(f32t, 0);
      LLVMTypeRef pi8t = LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0);
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      LLVMValueRef function;
      LLVMValueRef tmp_ptr;
      LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4];
      LLVMValueRef res;
      LLVMValueRef callee;
      unsigned k;

      util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_float",
                    format_desc->short_name);

      if (gallivm_debug & GALLIVM_DEBUG_PERF) {
         debug_printf("%s: falling back to %s\n", __FUNCTION__, name);
      }

      /*
       * Declare and bind format_desc->fetch_rgba_float().
       */

      function = LLVMGetNamedFunction(module, name);
      if (!function) {
         /*
          * Function to call looks like:
          *   fetch(float *dst, const uint8_t *src, unsigned i, unsigned j)
          */
         LLVMTypeRef ret_type;
         LLVMTypeRef arg_types[4];
         LLVMTypeRef function_type;

         ret_type = LLVMVoidTypeInContext(gallivm->context);
         arg_types[0] = pf32t;
         arg_types[1] = pi8t;
         arg_types[2] = i32t;
         arg_types[3] = i32t;
         function_type = LLVMFunctionType(ret_type, arg_types,
                                          Elements(arg_types), 0);
         function = LLVMAddFunction(module, name, function_type);

         LLVMSetFunctionCallConv(function, LLVMCCallConv);
         LLVMSetLinkage(function, LLVMExternalLinkage);

         assert(LLVMIsDeclaration(function));
      }

      /* Note: we're using this casting here instead of LLVMAddGlobalMapping()
       * to work around a bug in LLVM 2.6.
       */

      /* make const pointer for the C fetch_rgba_float function */
      callee = lp_build_const_int_pointer(gallivm,
         func_to_pointer((func_pointer) format_desc->fetch_rgba_float));

      /* cast the callee pointer to the function's type */
      function = LLVMBuildBitCast(builder, callee,
                                  LLVMTypeOf(function), "cast callee");


      tmp_ptr = lp_build_alloca(gallivm, f32x4t, "");

      /*
       * Invoke format_desc->fetch_rgba_float() for each pixel and insert the result
       * in the SoA vectors.
       */

      for (k = 0; k < num_pixels; ++k) {
         LLVMValueRef args[4];

         args[0] = LLVMBuildBitCast(builder, tmp_ptr, pf32t, "");
         args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels,
                                            base_ptr, offset, k);

         if (num_pixels == 1) {
            args[2] = i;
            args[3] = j;
         }
         else {
            LLVMValueRef index = lp_build_const_int32(gallivm, k);
            args[2] = LLVMBuildExtractElement(builder, i, index, "");
            args[3] = LLVMBuildExtractElement(builder, j, index, "");
         }

         LLVMBuildCall(builder, function, args, Elements(args), "");

         tmps[k] = LLVMBuildLoad(builder, tmp_ptr, "");
      }

      lp_build_conv(gallivm,
                    lp_float32_vec4_type(),
                    type,
                    tmps, num_pixels, &res, 1);

      return res;
   }

   assert(0);
   return lp_build_undef(gallivm, type);
}
Beispiel #22
0
/**
 * Texture sampling in AoS format.  Used when sampling common 32-bit/texel
 * formats.  1D/2D/3D/cube texture supported.  All mipmap sampling modes
 * but only limited texture coord wrap modes.
 */
void
lp_build_sample_aos(struct lp_build_sample_context *bld,
                    unsigned unit,
                    LLVMValueRef s,
                    LLVMValueRef t,
                    LLVMValueRef r,
                    const LLVMValueRef *ddx,
                    const LLVMValueRef *ddy,
                    LLVMValueRef lod_bias, /* optional */
                    LLVMValueRef explicit_lod, /* optional */
                    LLVMValueRef texel_out[4])
{
   struct lp_build_context *int_bld = &bld->int_bld;
   LLVMBuilderRef builder = bld->gallivm->builder;
   const unsigned mip_filter = bld->static_state->min_mip_filter;
   const unsigned min_filter = bld->static_state->min_img_filter;
   const unsigned mag_filter = bld->static_state->mag_img_filter;
   const unsigned dims = bld->dims;
   LLVMValueRef lod_ipart = NULL, lod_fpart = NULL;
   LLVMValueRef ilevel0, ilevel1 = NULL;
   LLVMValueRef packed, packed_lo, packed_hi;
   LLVMValueRef unswizzled[4];
   LLVMValueRef face_ddx[4], face_ddy[4];
   struct lp_build_context h16_bld;
   LLVMValueRef first_level;
   LLVMValueRef i32t_zero = lp_build_const_int32(bld->gallivm, 0);

   /* we only support the common/simple wrap modes at this time */
   assert(lp_is_simple_wrap_mode(bld->static_state->wrap_s));
   if (dims >= 2)
      assert(lp_is_simple_wrap_mode(bld->static_state->wrap_t));
   if (dims >= 3)
      assert(lp_is_simple_wrap_mode(bld->static_state->wrap_r));


   /* make 16-bit fixed-pt builder context */
   lp_build_context_init(&h16_bld, bld->gallivm, lp_type_ufixed(16));

   /* cube face selection, compute pre-face coords, etc. */
   if (bld->static_state->target == PIPE_TEXTURE_CUBE) {
      LLVMValueRef face, face_s, face_t;
      lp_build_cube_lookup(bld, s, t, r, &face, &face_s, &face_t);
      s = face_s; /* vec */
      t = face_t; /* vec */
      /* use 'r' to indicate cube face */
      r = lp_build_broadcast_scalar(&bld->int_coord_bld, face); /* vec */

      /* recompute ddx, ddy using the new (s,t) face texcoords */
      face_ddx[0] = lp_build_scalar_ddx(&bld->coord_bld, s);
      face_ddx[1] = lp_build_scalar_ddx(&bld->coord_bld, t);
      face_ddx[2] = NULL;
      face_ddx[3] = NULL;
      face_ddy[0] = lp_build_scalar_ddy(&bld->coord_bld, s);
      face_ddy[1] = lp_build_scalar_ddy(&bld->coord_bld, t);
      face_ddy[2] = NULL;
      face_ddy[3] = NULL;
      ddx = face_ddx;
      ddy = face_ddy;
   }

   /*
    * Compute the level of detail (float).
    */
   if (min_filter != mag_filter ||
       mip_filter != PIPE_TEX_MIPFILTER_NONE) {
      /* Need to compute lod either to choose mipmap levels or to
       * distinguish between minification/magnification with one mipmap level.
       */
      lp_build_lod_selector(bld, unit, ddx, ddy,
                            lod_bias, explicit_lod,
                            mip_filter,
                            &lod_ipart, &lod_fpart);
   } else {
      lod_ipart = i32t_zero;
   }

   /*
    * Compute integer mipmap level(s) to fetch texels from: ilevel0, ilevel1
    */
   switch (mip_filter) {
   default:
      assert(0 && "bad mip_filter value in lp_build_sample_aos()");
      /* fall-through */
   case PIPE_TEX_MIPFILTER_NONE:
      /* always use mip level 0 */
      if (bld->static_state->target == PIPE_TEXTURE_CUBE) {
         /* XXX this is a work-around for an apparent bug in LLVM 2.7.
          * We should be able to set ilevel0 = const(0) but that causes
          * bad x86 code to be emitted.
          */
         assert(lod_ipart);
         lp_build_nearest_mip_level(bld, unit, lod_ipart, &ilevel0);
      }
      else {
         first_level = bld->dynamic_state->first_level(bld->dynamic_state,
                                                       bld->gallivm, unit);
         ilevel0 = first_level;
      }
      break;
   case PIPE_TEX_MIPFILTER_NEAREST:
      assert(lod_ipart);
      lp_build_nearest_mip_level(bld, unit, lod_ipart, &ilevel0);
      break;
   case PIPE_TEX_MIPFILTER_LINEAR:
      assert(lod_ipart);
      assert(lod_fpart);
      lp_build_linear_mip_levels(bld, unit,
                                 lod_ipart, &lod_fpart,
                                 &ilevel0, &ilevel1);
      break;
   }

   /*
    * Get/interpolate texture colors.
    */

   packed_lo = lp_build_alloca(bld->gallivm, h16_bld.vec_type, "packed_lo");
   packed_hi = lp_build_alloca(bld->gallivm, h16_bld.vec_type, "packed_hi");

   if (min_filter == mag_filter) {
      /* no need to distinquish between minification and magnification */
      lp_build_sample_mipmap(bld,
                             min_filter, mip_filter,
                             s, t, r,
                             ilevel0, ilevel1, lod_fpart,
                             packed_lo, packed_hi);
   }
   else {
      /* Emit conditional to choose min image filter or mag image filter
       * depending on the lod being > 0 or <= 0, respectively.
       */
      struct lp_build_if_state if_ctx;
      LLVMValueRef minify;

      /* minify = lod >= 0.0 */
      minify = LLVMBuildICmp(builder, LLVMIntSGE,
                             lod_ipart, int_bld->zero, "");

      lp_build_if(&if_ctx, bld->gallivm, minify);
      {
         /* Use the minification filter */
         lp_build_sample_mipmap(bld,
                                min_filter, mip_filter,
                                s, t, r,
                                ilevel0, ilevel1, lod_fpart,
                                packed_lo, packed_hi);
      }
      lp_build_else(&if_ctx);
      {
         /* Use the magnification filter */
         lp_build_sample_mipmap(bld, 
                                mag_filter, PIPE_TEX_MIPFILTER_NONE,
                                s, t, r,
                                ilevel0, NULL, NULL,
                                packed_lo, packed_hi);
      }
      lp_build_endif(&if_ctx);
   }

   /*
    * combine the values stored in 'packed_lo' and 'packed_hi' variables
    * into 'packed'
    */
   packed = lp_build_pack2(bld->gallivm,
                           h16_bld.type, lp_type_unorm(8),
                           LLVMBuildLoad(builder, packed_lo, ""),
                           LLVMBuildLoad(builder, packed_hi, ""));

   /*
    * Convert to SoA and swizzle.
    */
   lp_build_rgba8_to_f32_soa(bld->gallivm,
                             bld->texel_type,
                             packed, unswizzled);

   if (util_format_is_rgba8_variant(bld->format_desc)) {
      lp_build_format_swizzle_soa(bld->format_desc,
                                  &bld->texel_bld,
                                  unswizzled, texel_out);
   }
   else {
      texel_out[0] = unswizzled[0];
      texel_out[1] = unswizzled[1];
      texel_out[2] = unswizzled[2];
      texel_out[3] = unswizzled[3];
   }
}
Beispiel #23
0
/**
 * Performs blending of src and dst pixels
 *
 * @param blend         the blend state of the shader variant
 * @param cbuf_format   format of the colour buffer
 * @param type          data type of the pixel vector
 * @param rt            rt number
 * @param src           blend src
 * @param dst           blend dst
 * @param mask          optional mask to apply to the blending result
 * @param const_        const blend color
 * @param swizzle       swizzle values for RGBA
 *
 * @return the result of blending src and dst
 */
LLVMValueRef
lp_build_blend_aos(struct gallivm_state *gallivm,
                   const struct pipe_blend_state *blend,
                   const enum pipe_format *cbuf_format,
                   struct lp_type type,
                   unsigned rt,
                   LLVMValueRef src,
                   LLVMValueRef dst,
                   LLVMValueRef mask,
                   LLVMValueRef const_,
                   const unsigned char swizzle[4])
{
   const struct pipe_rt_blend_state * state = &blend->rt[rt];
   struct lp_build_blend_aos_context bld;
   LLVMValueRef src_factor, dst_factor;
   LLVMValueRef result;
   unsigned alpha_swizzle = swizzle[3];
   boolean fullcolormask;

   /* Setup build context */
   memset(&bld, 0, sizeof bld);
   lp_build_context_init(&bld.base, gallivm, type);
   bld.src = src;
   bld.dst = dst;
   bld.const_ = const_;

   if (swizzle[3] > UTIL_FORMAT_SWIZZLE_W || swizzle[3] == swizzle[0])
      alpha_swizzle = UTIL_FORMAT_SWIZZLE_NONE;

   if (!state->blend_enable) {
      result = src;
   } else {
      boolean rgb_alpha_same = state->rgb_src_factor == state->rgb_dst_factor && state->alpha_src_factor == state->alpha_dst_factor;
      assert(rgb_alpha_same || alpha_swizzle != UTIL_FORMAT_SWIZZLE_NONE);

      src_factor = lp_build_blend_factor(&bld, state->rgb_src_factor,
                                         state->alpha_src_factor, alpha_swizzle);
      dst_factor = lp_build_blend_factor(&bld, state->rgb_dst_factor,
                                         state->alpha_dst_factor, alpha_swizzle);

      result = lp_build_blend(&bld.base,
                              state->rgb_func,
                              state->rgb_src_factor,
                              state->rgb_dst_factor,
                              src,
                              dst,
                              src_factor,
                              dst_factor,
                              rgb_alpha_same,
                              false);

      if(state->rgb_func != state->alpha_func && alpha_swizzle != UTIL_FORMAT_SWIZZLE_NONE) {
         LLVMValueRef alpha;

         alpha = lp_build_blend(&bld.base,
                                state->alpha_func,
                                state->alpha_src_factor,
                                state->alpha_dst_factor,
                                src,
                                dst,
                                src_factor,
                                dst_factor,
                                rgb_alpha_same,
                                false);

         result = lp_build_blend_swizzle(&bld,
                                         result,
                                         alpha,
                                         LP_BUILD_BLEND_SWIZZLE_RGBA,
                                         alpha_swizzle);
      }
   }

   /* Check if color mask is necessary */
   fullcolormask = util_format_colormask_full(util_format_description(cbuf_format[rt]), state->colormask);

   if (!fullcolormask) {
      LLVMValueRef color_mask;

      color_mask = lp_build_const_mask_aos_swizzled(gallivm, bld.base.type, state->colormask, swizzle);
      lp_build_name(color_mask, "color_mask");

      /* Combine with input mask if necessary */
      if (mask) {
         mask = lp_build_and(&bld.base, color_mask, mask);
      } else {
         mask = color_mask;
      }
   }

   /* Apply mask, if one exists */
   if (mask) {
      result = lp_build_select(&bld.base, mask, result, dst);
   }

   return result;
}
/**
 * Generic type conversion.
 *
 * TODO: Take a precision argument, or even better, add a new precision member
 * to the lp_type union.
 */
void
lp_build_conv(LLVMBuilderRef builder,
              struct lp_type src_type,
              struct lp_type dst_type,
              const LLVMValueRef *src, unsigned num_srcs,
              LLVMValueRef *dst, unsigned num_dsts)
{
   struct lp_type tmp_type;
   LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
   unsigned num_tmps;
   unsigned i;

   /* We must not loose or gain channels. Only precision */
   assert(src_type.length * num_srcs == dst_type.length * num_dsts);

   assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
   assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
   assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

   tmp_type = src_type;
   for(i = 0; i < num_srcs; ++i) {
      assert(lp_check_value(src_type, src[i]));
      tmp[i] = src[i];
   }
   num_tmps = num_srcs;

   /*
    * Clamp if necessary
    */

   if(memcmp(&src_type, &dst_type, sizeof src_type) != 0) {
      struct lp_build_context bld;
      double src_min = lp_const_min(src_type);
      double dst_min = lp_const_min(dst_type);
      double src_max = lp_const_max(src_type);
      double dst_max = lp_const_max(dst_type);
      LLVMValueRef thres;

      lp_build_context_init(&bld, builder, tmp_type);

      if(src_min < dst_min) {
         if(dst_min == 0.0)
            thres = bld.zero;
         else
            thres = lp_build_const_vec(src_type, dst_min);
         for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_max(&bld, tmp[i], thres);
      }

      if(src_max > dst_max) {
         if(dst_max == 1.0)
            thres = bld.one;
         else
            thres = lp_build_const_vec(src_type, dst_max);
         for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_min(&bld, tmp[i], thres);
      }
   }

   /*
    * Scale to the narrowest range
    */

   if(dst_type.floating) {
      /* Nothing to do */
   }
   else if(tmp_type.floating) {
      if(!dst_type.fixed && !dst_type.sign && dst_type.norm) {
         for(i = 0; i < num_tmps; ++i) {
            tmp[i] = lp_build_clamped_float_to_unsigned_norm(builder,
                                                             tmp_type,
                                                             dst_type.width,
                                                             tmp[i]);
         }
         tmp_type.floating = FALSE;
      }
      else {
         double dst_scale = lp_const_scale(dst_type);
         LLVMTypeRef tmp_vec_type;

         if (dst_scale != 1.0) {
            LLVMValueRef scale = lp_build_const_vec(tmp_type, dst_scale);
            for(i = 0; i < num_tmps; ++i)
               tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
         }

         /* Use an equally sized integer for intermediate computations */
         tmp_type.floating = FALSE;
         tmp_vec_type = lp_build_vec_type(tmp_type);
         for(i = 0; i < num_tmps; ++i) {
#if 0
            if(dst_type.sign)
               tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
            else
               tmp[i] = LLVMBuildFPToUI(builder, tmp[i], tmp_vec_type, "");
#else
           /* FIXME: there is no SSE counterpart for LLVMBuildFPToUI */
            tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
#endif
         }
      }
   }
   else {
      unsigned src_shift = lp_const_shift(src_type);
      unsigned dst_shift = lp_const_shift(dst_type);

      /* FIXME: compensate different offsets too */
      if(src_shift > dst_shift) {
         LLVMValueRef shift = lp_build_const_int_vec(tmp_type, src_shift - dst_shift);
         for(i = 0; i < num_tmps; ++i)
            if(src_type.sign)
               tmp[i] = LLVMBuildAShr(builder, tmp[i], shift, "");
            else
               tmp[i] = LLVMBuildLShr(builder, tmp[i], shift, "");
      }
   }

   /*
    * Truncate or expand bit width
    *
    * No data conversion should happen here, although the sign bits are
    * crucial to avoid bad clamping.
    */

   {
      struct lp_type new_type;

      new_type = tmp_type;
      new_type.sign   = dst_type.sign;
      new_type.width  = dst_type.width;
      new_type.length = dst_type.length;

      lp_build_resize(builder, tmp_type, new_type, tmp, num_srcs, tmp, num_dsts);

      tmp_type = new_type;
      num_tmps = num_dsts;
   }

   /*
    * Scale to the widest range
    */

   if(src_type.floating) {
      /* Nothing to do */
   }
   else if(!src_type.floating && dst_type.floating) {
      if(!src_type.fixed && !src_type.sign && src_type.norm) {
         for(i = 0; i < num_tmps; ++i) {
            tmp[i] = lp_build_unsigned_norm_to_float(builder,
                                                     src_type.width,
                                                     dst_type,
                                                     tmp[i]);
         }
         tmp_type.floating = TRUE;
      }
      else {
         double src_scale = lp_const_scale(src_type);
         LLVMTypeRef tmp_vec_type;

         /* Use an equally sized integer for intermediate computations */
         tmp_type.floating = TRUE;
         tmp_type.sign = TRUE;
         tmp_vec_type = lp_build_vec_type(tmp_type);
         for(i = 0; i < num_tmps; ++i) {
#if 0
            if(dst_type.sign)
               tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
            else
               tmp[i] = LLVMBuildUIToFP(builder, tmp[i], tmp_vec_type, "");
#else
            /* FIXME: there is no SSE counterpart for LLVMBuildUIToFP */
            tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
#endif
          }

          if (src_scale != 1.0) {
             LLVMValueRef scale = lp_build_const_vec(tmp_type, 1.0/src_scale);
             for(i = 0; i < num_tmps; ++i)
                tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
          }
      }
    }
    else {
       unsigned src_shift = lp_const_shift(src_type);
       unsigned dst_shift = lp_const_shift(dst_type);

       /* FIXME: compensate different offsets too */
       if(src_shift < dst_shift) {
          LLVMValueRef shift = lp_build_const_int_vec(tmp_type, dst_shift - src_shift);
          for(i = 0; i < num_tmps; ++i)
             tmp[i] = LLVMBuildShl(builder, tmp[i], shift, "");
       }
    }

   for(i = 0; i < num_dsts; ++i) {
      dst[i] = tmp[i];
      assert(lp_check_value(dst_type, dst[i]));
   }
}
Beispiel #25
0
/**
 * Generic type conversion.
 *
 * TODO: Take a precision argument, or even better, add a new precision member
 * to the lp_type union.
 */
void
lp_build_conv(struct gallivm_state *gallivm,
              struct lp_type src_type,
              struct lp_type dst_type,
              const LLVMValueRef *src, unsigned num_srcs,
              LLVMValueRef *dst, unsigned num_dsts)
{
    LLVMBuilderRef builder = gallivm->builder;
    struct lp_type tmp_type;
    LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
    unsigned num_tmps;
    unsigned i;

    /* We must not loose or gain channels. Only precision */
    assert(src_type.length * num_srcs == dst_type.length * num_dsts);

    assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
    assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
    assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
    assert(num_dsts <= LP_MAX_VECTOR_LENGTH);

    tmp_type = src_type;
    for(i = 0; i < num_srcs; ++i) {
        assert(lp_check_value(src_type, src[i]));
        tmp[i] = src[i];
    }
    num_tmps = num_srcs;


    /* Special case 4x4f --> 1x16ub
     */
    if (src_type.floating == 1 &&
            src_type.fixed    == 0 &&
            src_type.sign     == 1 &&
            src_type.norm     == 0 &&
            src_type.width    == 32 &&
            src_type.length   == 4 &&

            dst_type.floating == 0 &&
            dst_type.fixed    == 0 &&
            dst_type.sign     == 0 &&
            dst_type.norm     == 1 &&
            dst_type.width    == 8 &&
            dst_type.length   == 16 &&

            4 * num_dsts      == num_srcs &&

            util_cpu_caps.has_sse2)
    {
        struct lp_build_context bld;
        struct lp_type int16_type = dst_type;
        struct lp_type int32_type = dst_type;
        LLVMValueRef const_255f;
        unsigned i, j;

        lp_build_context_init(&bld, gallivm, src_type);

        int16_type.width *= 2;
        int16_type.length /= 2;
        int16_type.sign = 1;

        int32_type.width *= 4;
        int32_type.length /= 4;
        int32_type.sign = 1;

        const_255f = lp_build_const_vec(gallivm, src_type, 255.0f);

        for (i = 0; i < num_dsts; ++i, src += 4) {
            LLVMValueRef lo, hi;

            for (j = 0; j < 4; ++j) {
                tmp[j] = LLVMBuildFMul(builder, src[j], const_255f, "");
                tmp[j] = lp_build_iround(&bld, tmp[j]);
            }

            /* relying on clamping behavior of sse2 intrinsics here */
            lo = lp_build_pack2(gallivm, int32_type, int16_type, tmp[0], tmp[1]);
            hi = lp_build_pack2(gallivm, int32_type, int16_type, tmp[2], tmp[3]);
            dst[i] = lp_build_pack2(gallivm, int16_type, dst_type, lo, hi);
        }

        return;
    }

    /* Special case 2x8f --> 1x16ub
     */
    else if (src_type.floating == 1 &&
             src_type.fixed    == 0 &&
             src_type.sign     == 1 &&
             src_type.norm     == 0 &&
             src_type.width    == 32 &&
             src_type.length   == 8 &&

             dst_type.floating == 0 &&
             dst_type.fixed    == 0 &&
             dst_type.sign     == 0 &&
             dst_type.norm     == 1 &&
             dst_type.width    == 8 &&
             dst_type.length   == 16 &&

             2 * num_dsts      == num_srcs &&

             util_cpu_caps.has_avx) {

        struct lp_build_context bld;
        struct lp_type int16_type = dst_type;
        struct lp_type int32_type = dst_type;
        LLVMValueRef const_255f;
        unsigned i;

        lp_build_context_init(&bld, gallivm, src_type);

        int16_type.width *= 2;
        int16_type.length /= 2;
        int16_type.sign = 1;

        int32_type.width *= 4;
        int32_type.length /= 4;
        int32_type.sign = 1;

        const_255f = lp_build_const_vec(gallivm, src_type, 255.0f);

        for (i = 0; i < num_dsts; ++i, src += 2) {
            LLVMValueRef lo, hi, a, b;

            a = LLVMBuildFMul(builder, src[0], const_255f, "");
            b = LLVMBuildFMul(builder, src[1], const_255f, "");

            a = lp_build_iround(&bld, a);
            b = lp_build_iround(&bld, b);

            tmp[0] = lp_build_extract_range(gallivm, a, 0, 4);
            tmp[1] = lp_build_extract_range(gallivm, a, 4, 4);
            tmp[2] = lp_build_extract_range(gallivm, b, 0, 4);
            tmp[3] = lp_build_extract_range(gallivm, b, 4, 4);

            /* relying on clamping behavior of sse2 intrinsics here */
            lo = lp_build_pack2(gallivm, int32_type, int16_type, tmp[0], tmp[1]);
            hi = lp_build_pack2(gallivm, int32_type, int16_type, tmp[2], tmp[3]);
            dst[i] = lp_build_pack2(gallivm, int16_type, dst_type, lo, hi);
        }
        return;
    }

    /* Pre convert half-floats to floats
     */
    else if (src_type.floating && src_type.width == 16)
    {
        for(i = 0; i < num_tmps; ++i)
            tmp[i] = lp_build_half_to_float(gallivm, src_type, tmp[i]);

        tmp_type.width = 32;
    }

    /*
     * Clamp if necessary
     */

    if(memcmp(&src_type, &dst_type, sizeof src_type) != 0) {
        struct lp_build_context bld;
        double src_min = lp_const_min(src_type);
        double dst_min = lp_const_min(dst_type);
        double src_max = lp_const_max(src_type);
        double dst_max = lp_const_max(dst_type);
        LLVMValueRef thres;

        lp_build_context_init(&bld, gallivm, tmp_type);

        if(src_min < dst_min) {
            if(dst_min == 0.0)
                thres = bld.zero;
            else
                thres = lp_build_const_vec(gallivm, src_type, dst_min);
            for(i = 0; i < num_tmps; ++i)
                tmp[i] = lp_build_max(&bld, tmp[i], thres);
        }

        if(src_max > dst_max) {
            if(dst_max == 1.0)
                thres = bld.one;
            else
                thres = lp_build_const_vec(gallivm, src_type, dst_max);
            for(i = 0; i < num_tmps; ++i)
                tmp[i] = lp_build_min(&bld, tmp[i], thres);
        }
    }

    /*
     * Scale to the narrowest range
     */

    if(dst_type.floating) {
        /* Nothing to do */
    }
    else if(tmp_type.floating) {
        if(!dst_type.fixed && !dst_type.sign && dst_type.norm) {
            for(i = 0; i < num_tmps; ++i) {
                tmp[i] = lp_build_clamped_float_to_unsigned_norm(gallivm,
                         tmp_type,
                         dst_type.width,
                         tmp[i]);
            }
            tmp_type.floating = FALSE;
        }
        else {
            double dst_scale = lp_const_scale(dst_type);
            LLVMTypeRef tmp_vec_type;

            if (dst_scale != 1.0) {
                LLVMValueRef scale = lp_build_const_vec(gallivm, tmp_type, dst_scale);
                for(i = 0; i < num_tmps; ++i)
                    tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
            }

            /* Use an equally sized integer for intermediate computations */
            tmp_type.floating = FALSE;
            tmp_vec_type = lp_build_vec_type(gallivm, tmp_type);
            for(i = 0; i < num_tmps; ++i) {
#if 0
                if(dst_type.sign)
                    tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
                else
                    tmp[i] = LLVMBuildFPToUI(builder, tmp[i], tmp_vec_type, "");
#else
                /* FIXME: there is no SSE counterpart for LLVMBuildFPToUI */
                tmp[i] = LLVMBuildFPToSI(builder, tmp[i], tmp_vec_type, "");
#endif
            }
        }
    }
    else {
        unsigned src_shift = lp_const_shift(src_type);
        unsigned dst_shift = lp_const_shift(dst_type);
        unsigned src_offset = lp_const_offset(src_type);
        unsigned dst_offset = lp_const_offset(dst_type);

        /* Compensate for different offsets */
        if (dst_offset > src_offset && src_type.width > dst_type.width) {
            for (i = 0; i < num_tmps; ++i) {
                LLVMValueRef shifted;
                LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type, src_shift - 1);
                if(src_type.sign)
                    shifted = LLVMBuildAShr(builder, tmp[i], shift, "");
                else
                    shifted = LLVMBuildLShr(builder, tmp[i], shift, "");

                tmp[i] = LLVMBuildSub(builder, tmp[i], shifted, "");
            }
        }

        if(src_shift > dst_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type,
                                 src_shift - dst_shift);
            for(i = 0; i < num_tmps; ++i)
                if(src_type.sign)
                    tmp[i] = LLVMBuildAShr(builder, tmp[i], shift, "");
                else
                    tmp[i] = LLVMBuildLShr(builder, tmp[i], shift, "");
        }
    }

    /*
     * Truncate or expand bit width
     *
     * No data conversion should happen here, although the sign bits are
     * crucial to avoid bad clamping.
     */

    {
        struct lp_type new_type;

        new_type = tmp_type;
        new_type.sign   = dst_type.sign;
        new_type.width  = dst_type.width;
        new_type.length = dst_type.length;

        lp_build_resize(gallivm, tmp_type, new_type, tmp, num_srcs, tmp, num_dsts);

        tmp_type = new_type;
        num_tmps = num_dsts;
    }

    /*
     * Scale to the widest range
     */

    if(src_type.floating) {
        /* Nothing to do */
    }
    else if(!src_type.floating && dst_type.floating) {
        if(!src_type.fixed && !src_type.sign && src_type.norm) {
            for(i = 0; i < num_tmps; ++i) {
                tmp[i] = lp_build_unsigned_norm_to_float(gallivm,
                         src_type.width,
                         dst_type,
                         tmp[i]);
            }
            tmp_type.floating = TRUE;
        }
        else {
            double src_scale = lp_const_scale(src_type);
            LLVMTypeRef tmp_vec_type;

            /* Use an equally sized integer for intermediate computations */
            tmp_type.floating = TRUE;
            tmp_type.sign = TRUE;
            tmp_vec_type = lp_build_vec_type(gallivm, tmp_type);
            for(i = 0; i < num_tmps; ++i) {
#if 0
                if(dst_type.sign)
                    tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
                else
                    tmp[i] = LLVMBuildUIToFP(builder, tmp[i], tmp_vec_type, "");
#else
                /* FIXME: there is no SSE counterpart for LLVMBuildUIToFP */
                tmp[i] = LLVMBuildSIToFP(builder, tmp[i], tmp_vec_type, "");
#endif
            }

            if (src_scale != 1.0) {
                LLVMValueRef scale = lp_build_const_vec(gallivm, tmp_type, 1.0/src_scale);
                for(i = 0; i < num_tmps; ++i)
                    tmp[i] = LLVMBuildFMul(builder, tmp[i], scale, "");
            }
        }
    }
    else {
        unsigned src_shift = lp_const_shift(src_type);
        unsigned dst_shift = lp_const_shift(dst_type);
        unsigned src_offset = lp_const_offset(src_type);
        unsigned dst_offset = lp_const_offset(dst_type);

        if (src_shift < dst_shift) {
            LLVMValueRef pre_shift[LP_MAX_VECTOR_LENGTH];
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, tmp_type, dst_shift - src_shift);

            for (i = 0; i < num_tmps; ++i) {
                pre_shift[i] = tmp[i];
                tmp[i] = LLVMBuildShl(builder, tmp[i], shift, "");
            }

            /* Compensate for different offsets */
            if (dst_offset > src_offset) {
                for (i = 0; i < num_tmps; ++i) {
                    tmp[i] = LLVMBuildSub(builder, tmp[i], pre_shift[i], "");
                }
            }
        }
    }

    for(i = 0; i < num_dsts; ++i) {
        dst[i] = tmp[i];
        assert(lp_check_value(dst_type, dst[i]));
    }
}
/**
 * Generate code for performing depth and/or stencil tests.
 * We operate on a vector of values (typically a 2x2 quad).
 *
 * \param depth  the depth test state
 * \param stencil  the front/back stencil state
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param stencil_refs  the front/back stencil ref values (scalar)
 * \param z_src  the incoming depth/stencil values (a 2x2 quad)
 * \param zs_dst_ptr  pointer to depth/stencil values in framebuffer
 * \param facing  contains float value indicating front/back facing polygon
 */
void
lp_build_depth_stencil_test(LLVMBuilderRef builder,
                            const struct pipe_depth_state *depth,
                            const struct pipe_stencil_state stencil[2],
                            struct lp_type type,
                            const struct util_format_description *format_desc,
                            struct lp_build_mask_context *mask,
                            LLVMValueRef stencil_refs[2],
                            LLVMValueRef z_src,
                            LLVMValueRef zs_dst_ptr,
                            LLVMValueRef face,
                            LLVMValueRef counter)
{
   struct lp_build_context bld;
   struct lp_build_context sbld;
   struct lp_type s_type;
   LLVMValueRef zs_dst, z_dst = NULL;
   LLVMValueRef stencil_vals = NULL;
   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
   LLVMValueRef orig_mask = mask->value;

   /* Sanity checking */
   {
      const unsigned z_swizzle = format_desc->swizzle[0];
      const unsigned s_swizzle = format_desc->swizzle[1];

      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);

      assert(depth->enabled || stencil[0].enabled);

      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
      assert(format_desc->block.width == 1);
      assert(format_desc->block.height == 1);

      if (stencil[0].enabled) {
         assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_USCALED ||
                format_desc->format == PIPE_FORMAT_S8_USCALED_Z24_UNORM);
      }

      assert(z_swizzle < 4);
      assert(format_desc->block.bits == type.width);
      if (type.floating) {
         assert(z_swizzle == 0);
         assert(format_desc->channel[z_swizzle].type ==
                UTIL_FORMAT_TYPE_FLOAT);
         assert(format_desc->channel[z_swizzle].size ==
                format_desc->block.bits);
      }
      else {
         assert(format_desc->channel[z_swizzle].type ==
                UTIL_FORMAT_TYPE_UNSIGNED);
         assert(format_desc->channel[z_swizzle].normalized);
         assert(!type.fixed);
         assert(!type.sign);
         assert(type.norm);
      }
   }


   /* Setup build context for Z vals */
   lp_build_context_init(&bld, builder, type);

   /* Setup build context for stencil vals */
   s_type = lp_type_int_vec(type.width);
   lp_build_context_init(&sbld, builder, s_type);

   /* Load current z/stencil value from z/stencil buffer */
   zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");

   lp_build_name(zs_dst, "zsbufval");


   /* Compute and apply the Z/stencil bitmasks and shifts.
    */
   {
      unsigned z_shift, z_mask;
      unsigned s_shift, s_mask;

      if (get_z_shift_and_mask(format_desc, &z_shift, &z_mask)) {
         if (z_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(type, z_shift);
            z_src = LLVMBuildLShr(builder, z_src, shift, "");
         }

         if (z_mask != 0xffffffff) {
            LLVMValueRef mask = lp_build_const_int_vec(type, z_mask);
            z_src = LLVMBuildAnd(builder, z_src, mask, "");
            z_dst = LLVMBuildAnd(builder, zs_dst, mask, "");
            z_bitmask = mask;  /* used below */
         }
         else {
            z_dst = zs_dst;
         }

         lp_build_name(z_dst, "zsbuf.z");
      }

      if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
         if (s_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(type, s_shift);
            stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
            stencil_shift = shift;  /* used below */
         }
         else {
            stencil_vals = zs_dst;
         }

         if (s_mask != 0xffffffff) {
            LLVMValueRef mask = lp_build_const_int_vec(type, s_mask);
            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
         }

         lp_build_name(stencil_vals, "stencil");
      }
   }


   if (stencil[0].enabled) {
      /* convert scalar stencil refs into vectors */
      stencil_refs[0] = lp_build_broadcast_scalar(&bld, stencil_refs[0]);
      stencil_refs[1] = lp_build_broadcast_scalar(&bld, stencil_refs[1]);

      s_pass_mask = lp_build_stencil_test(&sbld, stencil,
                                          stencil_refs, stencil_vals, face);

      /* apply stencil-fail operator */
      {
         LLVMValueRef s_fail_mask = lp_build_andc(&bld, orig_mask, s_pass_mask);
         stencil_vals = lp_build_stencil_op(&sbld, stencil, S_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            s_fail_mask, face);
      }
   }

   if (depth->enabled) {
      /* compare src Z to dst Z, returning 'pass' mask */
      z_pass = lp_build_cmp(&bld, depth->func, z_src, z_dst);

      if (!stencil[0].enabled) {
         /* We can potentially skip all remaining operations here, but only
          * if stencil is disabled because we still need to update the stencil
          * buffer values.  Don't need to update Z buffer values.
          */
         lp_build_mask_update(mask, z_pass);
      }

      if (depth->writemask) {
         LLVMValueRef zselectmask = mask->value;

         /* mask off bits that failed Z test */
         zselectmask = LLVMBuildAnd(builder, zselectmask, z_pass, "");

         /* mask off bits that failed stencil test */
         if (s_pass_mask) {
            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
         }

         /* if combined Z/stencil format, mask off the stencil bits */
         if (z_bitmask) {
            zselectmask = LLVMBuildAnd(builder, zselectmask, z_bitmask, "");
         }

         /* Mix the old and new Z buffer values.
          * z_dst[i] = (zselectmask[i] & z_src[i]) | (~zselectmask[i] & z_dst[i])
          */
         z_dst = lp_build_select_bitwise(&bld, zselectmask, z_src, z_dst);
      }

      if (stencil[0].enabled) {
         /* update stencil buffer values according to z pass/fail result */
         LLVMValueRef z_fail_mask, z_pass_mask;

         /* apply Z-fail operator */
         z_fail_mask = lp_build_andc(&bld, orig_mask, z_pass);
         stencil_vals = lp_build_stencil_op(&sbld, stencil, Z_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            z_fail_mask, face);

         /* apply Z-pass operator */
         z_pass_mask = LLVMBuildAnd(bld.builder, orig_mask, z_pass, "");
         stencil_vals = lp_build_stencil_op(&sbld, stencil, Z_PASS_OP,
                                            stencil_refs, stencil_vals,
                                            z_pass_mask, face);
      }
   }
   else {
      /* No depth test: apply Z-pass operator to stencil buffer values which
       * passed the stencil test.
       */
      s_pass_mask = LLVMBuildAnd(bld.builder, orig_mask, s_pass_mask, "");
      stencil_vals = lp_build_stencil_op(&sbld, stencil, Z_PASS_OP,
                                         stencil_refs, stencil_vals,
                                         s_pass_mask, face);
   }

   /* The Z bits are already in the right place but we may need to shift the
    * stencil bits before ORing Z with Stencil to make the final pixel value.
    */
   if (stencil_vals && stencil_shift)
      stencil_vals = LLVMBuildShl(bld.builder, stencil_vals,
                                  stencil_shift, "");

   /* Finally, merge/store the z/stencil values */
   if ((depth->enabled && depth->writemask) ||
       (stencil[0].enabled && stencil[0].writemask)) {

      if (z_dst && stencil_vals)
         zs_dst = LLVMBuildOr(bld.builder, z_dst, stencil_vals, "");
      else if (z_dst)
         zs_dst = z_dst;
      else
         zs_dst = stencil_vals;

      LLVMBuildStore(builder, zs_dst, zs_dst_ptr);
   }

   if (s_pass_mask)
      lp_build_mask_update(mask, s_pass_mask);

   if (depth->enabled && stencil[0].enabled)
      lp_build_mask_update(mask, z_pass);

   if (counter)
      lp_build_occlusion_count(builder, type, mask->value, counter);
}
Beispiel #27
0
/**
 * Unpack several pixels in SoA.
 *
 * It takes a vector of packed pixels:
 *
 *   packed = {P0, P1, P2, P3, ..., Pn}
 *
 * And will produce four vectors:
 *
 *   red    = {R0, R1, R2, R3, ..., Rn}
 *   green  = {G0, G1, G2, G3, ..., Gn}
 *   blue   = {B0, B1, B2, B3, ..., Bn}
 *   alpha  = {A0, A1, A2, A3, ..., An}
 *
 * It requires that a packed pixel fits into an element of the output
 * channels. The common case is when converting pixel with a depth of 32 bit or
 * less into floats.
 *
 * \param format_desc  the format of the 'packed' incoming pixel vector
 * \param type  the desired type for rgba_out (type.length = n, above)
 * \param packed  the incoming vector of packed pixels
 * \param rgba_out  returns the SoA R,G,B,A vectors
 */
void
lp_build_unpack_rgba_soa(struct gallivm_state *gallivm,
                         const struct util_format_description *format_desc,
                         struct lp_type type,
                         LLVMValueRef packed,
                         LLVMValueRef rgba_out[4])
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_build_context bld;
   LLVMValueRef inputs[4];
   unsigned chan;

   assert(format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(format_desc->block.width == 1);
   assert(format_desc->block.height == 1);
   assert(format_desc->block.bits <= type.width);
   /* FIXME: Support more output types */
   assert(type.width == 32);

   lp_build_context_init(&bld, gallivm, type);

   /* Decode the input vector components */
   for (chan = 0; chan < format_desc->nr_channels; ++chan) {
      const unsigned width = format_desc->channel[chan].size;
      const unsigned start = format_desc->channel[chan].shift;
      const unsigned stop = start + width;
      LLVMValueRef input;

      input = packed;

      switch(format_desc->channel[chan].type) {
      case UTIL_FORMAT_TYPE_VOID:
         input = lp_build_undef(gallivm, type);
         break;

      case UTIL_FORMAT_TYPE_UNSIGNED:
         /*
          * Align the LSB
          */

         if (start) {
            input = LLVMBuildLShr(builder, input, lp_build_const_int_vec(gallivm, type, start), "");
         }

         /*
          * Zero the MSBs
          */

         if (stop < format_desc->block.bits) {
            unsigned mask = ((unsigned long long)1 << width) - 1;
            input = LLVMBuildAnd(builder, input, lp_build_const_int_vec(gallivm, type, mask), "");
         }

         /*
          * Type conversion
          */

         if (type.floating) {
            if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
               assert(width == 8);
               if (format_desc->swizzle[3] == chan) {
                  input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
               }
               else {
                  struct lp_type conv_type = lp_uint_type(type);
                  input = lp_build_srgb_to_linear(gallivm, conv_type, input);
               }
            }
            else {
               if(format_desc->channel[chan].normalized)
                  input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
               else
                  input = LLVMBuildSIToFP(builder, input,
                                          lp_build_vec_type(gallivm, type), "");
            }
         }
         else if (format_desc->channel[chan].pure_integer) {
            /* Nothing to do */
         } else {
             /* FIXME */
             assert(0);
         }

         break;

      case UTIL_FORMAT_TYPE_SIGNED:
         /*
          * Align the sign bit first.
          */

         if (stop < type.width) {
            unsigned bits = type.width - stop;
            LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
            input = LLVMBuildShl(builder, input, bits_val, "");
         }

         /*
          * Align the LSB (with an arithmetic shift to preserve the sign)
          */

         if (format_desc->channel[chan].size < type.width) {
            unsigned bits = type.width - format_desc->channel[chan].size;
            LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
            input = LLVMBuildAShr(builder, input, bits_val, "");
         }

         /*
          * Type conversion
          */

         if (type.floating) {
            input = LLVMBuildSIToFP(builder, input, lp_build_vec_type(gallivm, type), "");
            if (format_desc->channel[chan].normalized) {
               double scale = 1.0 / ((1 << (format_desc->channel[chan].size - 1)) - 1);
               LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
               input = LLVMBuildFMul(builder, input, scale_val, "");
               /* the formula above will produce value below -1.0 for most negative
                * value but everything seems happy with that hence disable for now */
               if (0)
                  input = lp_build_max(&bld, input,
                                       lp_build_const_vec(gallivm, type, -1.0f));
            }
         }
         else if (format_desc->channel[chan].pure_integer) {
            /* Nothing to do */
         } else {
             /* FIXME */
             assert(0);
         }

         break;

      case UTIL_FORMAT_TYPE_FLOAT:
         if (type.floating) {
            assert(start == 0);
            assert(stop == 32);
            assert(type.width == 32);
            input = LLVMBuildBitCast(builder, input, lp_build_vec_type(gallivm, type), "");
         }
         else {
            /* FIXME */
            assert(0);
            input = lp_build_undef(gallivm, type);
         }
         break;

      case UTIL_FORMAT_TYPE_FIXED:
         if (type.floating) {
            double scale = 1.0 / ((1 << (format_desc->channel[chan].size/2)) - 1);
            LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
            input = LLVMBuildSIToFP(builder, input, lp_build_vec_type(gallivm, type), "");
            input = LLVMBuildFMul(builder, input, scale_val, "");
         }
         else {
            /* FIXME */
            assert(0);
            input = lp_build_undef(gallivm, type);
         }
         break;

      default:
         assert(0);
         input = lp_build_undef(gallivm, type);
         break;
      }

      inputs[chan] = input;
   }

   lp_build_format_swizzle_soa(format_desc, &bld, inputs, rgba_out);
}
Beispiel #28
0
/**
 * Store depth/stencil values.
 * Incoming values are swizzled (typically n 2x2 quads), stored linear.
 * If there's a mask it will do select/store otherwise just store.
 *
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param z_fb  z values read from fb (with padding)
 * \param s_fb  s values read from fb (with padding)
 * \param loop_counter  the current loop iteration
 * \param depth_ptr  pointer to the depth/stencil values of this 4x4 block
 * \param depth_stride  stride of the depth/stencil buffer
 * \param z_value the depth values to store (with padding)
 * \param s_value the stencil values to store (with padding)
 */
void
lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm,
                                      struct lp_type z_src_type,
                                      const struct util_format_description *format_desc,
                                      struct lp_build_mask_context *mask,
                                      LLVMValueRef z_fb,
                                      LLVMValueRef s_fb,
                                      LLVMValueRef loop_counter,
                                      LLVMValueRef depth_ptr,
                                      LLVMValueRef depth_stride,
                                      LLVMValueRef z_value,
                                      LLVMValueRef s_value)
{
   struct lp_build_context z_bld;
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef mask_value = NULL;
   LLVMValueRef zs_dst1, zs_dst2;
   LLVMValueRef zs_dst_ptr1, zs_dst_ptr2;
   LLVMValueRef depth_offset1, depth_offset2;
   LLVMTypeRef load_ptr_type;
   unsigned depth_bytes = format_desc->block.bits / 8;
   struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
   struct lp_type z_type = zs_type;
   struct lp_type zs_load_type = zs_type;

   zs_load_type.length = zs_load_type.length / 2;
   load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);

   z_type.width = z_src_type.width;

   lp_build_context_init(&z_bld, gallivm, z_type);

   /*
    * This is far from ideal, at least for late depth write we should do this
    * outside the fs loop to avoid all the swizzle stuff.
    */
   if (z_src_type.length == 4) {
      LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 1), "");
      LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 2), "");
      LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
                                          depth_stride, "");
      depth_offset1 = LLVMBuildMul(builder, looplsb,
                                   lp_build_const_int32(gallivm, depth_bytes * 2), "");
      depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
   }
   else {
      unsigned i;
      LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
                                         lp_build_const_int32(gallivm, 1), "");
      assert(z_src_type.length == 8);
      depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
      /*
       * We load 2x4 values, and need to swizzle them (order
       * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
       */
      for (i = 0; i < 8; i++) {
         shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
      }
   }

   depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");

   zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
   zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, "");
   zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
   zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, "");

   if (format_desc->block.bits > 32) {
      s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, "");
   }

   if (mask) {
      mask_value = lp_build_mask_value(mask);
      z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb);
      if (format_desc->block.bits > 32) {
         s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, "");
         s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb);
      }
   }

   if (zs_type.width < z_src_type.width) {
      /* Truncate ZS values (e.g., when writing to Z16_UNORM) */
      z_value = LLVMBuildTrunc(builder, z_value,
                               lp_build_int_vec_type(gallivm, zs_type), "");
   }

   if (format_desc->block.bits <= 32) {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2);
         zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2);
      }
      else {
         assert(z_src_type.length == 8);
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[0],
                                                          zs_load_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[4],
                                                          zs_load_type.length), "");
      }
   }
   else {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 0);
         zs_dst2 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 1);
      }
      else {
         unsigned i;
         LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2];
         assert(z_src_type.length == 8);
         for (i = 0; i < 8; i++) {
            shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
            shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 +
                                                   z_src_type.length);
         }
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[0],
                                                          z_src_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[8],
                                                          z_src_type.length), "");
      }
      zs_dst1 = LLVMBuildBitCast(builder, zs_dst1,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
      zs_dst2 = LLVMBuildBitCast(builder, zs_dst2,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
   }

   LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1);
   LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2);
}
Beispiel #29
0
static INLINE void
yuv_to_rgb_soa(struct gallivm_state *gallivm,
               unsigned n,
               LLVMValueRef y, LLVMValueRef u, LLVMValueRef v,
               LLVMValueRef *r, LLVMValueRef *g, LLVMValueRef *b)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type type;
   struct lp_build_context bld;

   LLVMValueRef c0;
   LLVMValueRef c8;
   LLVMValueRef c16;
   LLVMValueRef c128;
   LLVMValueRef c255;

   LLVMValueRef cy;
   LLVMValueRef cug;
   LLVMValueRef cub;
   LLVMValueRef cvr;
   LLVMValueRef cvg;

   memset(&type, 0, sizeof type);
   type.sign = TRUE;
   type.width = 32;
   type.length = n;

   lp_build_context_init(&bld, gallivm, type);

   assert(lp_check_value(type, y));
   assert(lp_check_value(type, u));
   assert(lp_check_value(type, v));

   /*
    * Constants
    */

   c0   = lp_build_const_int_vec(gallivm, type,   0);
   c8   = lp_build_const_int_vec(gallivm, type,   8);
   c16  = lp_build_const_int_vec(gallivm, type,  16);
   c128 = lp_build_const_int_vec(gallivm, type, 128);
   c255 = lp_build_const_int_vec(gallivm, type, 255);

   cy  = lp_build_const_int_vec(gallivm, type,  298);
   cug = lp_build_const_int_vec(gallivm, type, -100);
   cub = lp_build_const_int_vec(gallivm, type,  516);
   cvr = lp_build_const_int_vec(gallivm, type,  409);
   cvg = lp_build_const_int_vec(gallivm, type, -208);

   /*
    *  y -= 16;
    *  u -= 128;
    *  v -= 128;
    */

   y = LLVMBuildSub(builder, y, c16, "");
   u = LLVMBuildSub(builder, u, c128, "");
   v = LLVMBuildSub(builder, v, c128, "");

   /*
    * r = 298 * _y            + 409 * _v + 128;
    * g = 298 * _y - 100 * _u - 208 * _v + 128;
    * b = 298 * _y + 516 * _u            + 128;
    */

   y = LLVMBuildMul(builder, y, cy, "");
   y = LLVMBuildAdd(builder, y, c128, "");

   *r = LLVMBuildMul(builder, v, cvr, "");
   *g = LLVMBuildAdd(builder,
                     LLVMBuildMul(builder, u, cug, ""),
                     LLVMBuildMul(builder, v, cvg, ""),
                     "");
   *b = LLVMBuildMul(builder, u, cub, "");

   *r = LLVMBuildAdd(builder, *r, y, "");
   *g = LLVMBuildAdd(builder, *g, y, "");
   *b = LLVMBuildAdd(builder, *b, y, "");

   /*
    * r >>= 8;
    * g >>= 8;
    * b >>= 8;
    */

   *r = LLVMBuildAShr(builder, *r, c8, "r");
   *g = LLVMBuildAShr(builder, *g, c8, "g");
   *b = LLVMBuildAShr(builder, *b, c8, "b");

   /*
    * Clamp
    */

   *r = lp_build_clamp(&bld, *r, c0, c255);
   *g = lp_build_clamp(&bld, *g, c0, c255);
   *b = lp_build_clamp(&bld, *b, c0, c255);
}
Beispiel #30
0
/**
 * Generate code for performing depth and/or stencil tests.
 * We operate on a vector of values (typically n 2x2 quads).
 *
 * \param depth  the depth test state
 * \param stencil  the front/back stencil state
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param stencil_refs  the front/back stencil ref values (scalar)
 * \param z_src  the incoming depth/stencil values (n 2x2 quad values, float32)
 * \param zs_dst  the depth/stencil values in framebuffer
 * \param face  contains boolean value indicating front/back facing polygon
 */
void
lp_build_depth_stencil_test(struct gallivm_state *gallivm,
                            const struct pipe_depth_state *depth,
                            const struct pipe_stencil_state stencil[2],
                            struct lp_type z_src_type,
                            const struct util_format_description *format_desc,
                            struct lp_build_mask_context *mask,
                            LLVMValueRef stencil_refs[2],
                            LLVMValueRef z_src,
                            LLVMValueRef z_fb,
                            LLVMValueRef s_fb,
                            LLVMValueRef face,
                            LLVMValueRef *z_value,
                            LLVMValueRef *s_value,
                            boolean do_branch)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type z_type;
   struct lp_build_context z_bld;
   struct lp_build_context s_bld;
   struct lp_type s_type;
   unsigned z_shift = 0, z_width = 0, z_mask = 0;
   LLVMValueRef z_dst = NULL;
   LLVMValueRef stencil_vals = NULL;
   LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
   LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
   LLVMValueRef orig_mask = lp_build_mask_value(mask);
   LLVMValueRef front_facing = NULL;
   boolean have_z, have_s;

   /*
    * Depths are expected to be between 0 and 1, even if they are stored in
    * floats. Setting these bits here will ensure that the lp_build_conv() call
    * below won't try to unnecessarily clamp the incoming values.
    */
   if(z_src_type.floating) {
      z_src_type.sign = FALSE;
      z_src_type.norm = TRUE;
   }
   else {
      assert(!z_src_type.sign);
      assert(z_src_type.norm);
   }

   /* Pick the type matching the depth-stencil format. */
   z_type = lp_depth_type(format_desc, z_src_type.length);

   /* Pick the intermediate type for depth operations. */
   z_type.width = z_src_type.width;
   assert(z_type.length == z_src_type.length);

   /* FIXME: for non-float depth/stencil might generate better code
    * if we'd always split it up to use 128bit operations.
    * For stencil we'd almost certainly want to pack to 8xi16 values,
    * for z just run twice.
    */

   /* Sanity checking */
   {
      const unsigned z_swizzle = format_desc->swizzle[0];
      const unsigned s_swizzle = format_desc->swizzle[1];

      assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
             s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);

      assert(depth->enabled || stencil[0].enabled);

      assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
      assert(format_desc->block.width == 1);
      assert(format_desc->block.height == 1);

      if (stencil[0].enabled) {
         assert(s_swizzle < 4);
         assert(format_desc->channel[s_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED);
         assert(format_desc->channel[s_swizzle].pure_integer);
         assert(!format_desc->channel[s_swizzle].normalized);
         assert(format_desc->channel[s_swizzle].size == 8);
      }

      if (depth->enabled) {
         assert(z_swizzle < 4);
         if (z_type.floating) {
            assert(z_swizzle == 0);
            assert(format_desc->channel[z_swizzle].type ==
                   UTIL_FORMAT_TYPE_FLOAT);
            assert(format_desc->channel[z_swizzle].size == 32);
         }
         else {
            assert(format_desc->channel[z_swizzle].type ==
                   UTIL_FORMAT_TYPE_UNSIGNED);
            assert(format_desc->channel[z_swizzle].normalized);
            assert(!z_type.fixed);
         }
      }
   }


   /* Setup build context for Z vals */
   lp_build_context_init(&z_bld, gallivm, z_type);

   /* Setup build context for stencil vals */
   s_type = lp_int_type(z_type);
   lp_build_context_init(&s_bld, gallivm, s_type);

   /* Compute and apply the Z/stencil bitmasks and shifts.
    */
   {
      unsigned s_shift, s_mask;

      z_dst = z_fb;
      stencil_vals = s_fb;

      have_z = get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask);
      have_s = get_s_shift_and_mask(format_desc, &s_shift, &s_mask);

      if (have_z) {
         if (z_mask != 0xffffffff) {
            z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
         }

         /*
          * Align the framebuffer Z 's LSB to the right.
          */
         if (z_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
            z_dst = LLVMBuildLShr(builder, z_dst, shift, "z_dst");
         } else if (z_bitmask) {
            z_dst = LLVMBuildAnd(builder, z_dst, z_bitmask, "z_dst");
         } else {
            lp_build_name(z_dst, "z_dst");
         }
      }

      if (have_s) {
         if (s_shift) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
            stencil_vals = LLVMBuildLShr(builder, stencil_vals, shift, "");
            stencil_shift = shift;  /* used below */
         }

         if (s_mask != 0xffffffff) {
            LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
            stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
         }

         lp_build_name(stencil_vals, "s_dst");
      }
   }

   if (stencil[0].enabled) {

      if (face) {
         LLVMValueRef zero = lp_build_const_int32(gallivm, 0);

         /* front_facing = face != 0 ? ~0 : 0 */
         front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
         front_facing = LLVMBuildSExt(builder, front_facing,
                                      LLVMIntTypeInContext(gallivm->context,
                                             s_bld.type.length*s_bld.type.width),
                                      "");
         front_facing = LLVMBuildBitCast(builder, front_facing,
                                         s_bld.int_vec_type, "");
      }

      /* convert scalar stencil refs into vectors */
      stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
      stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);

      s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
                                          stencil_refs, stencil_vals,
                                          front_facing);

      /* apply stencil-fail operator */
      {
         LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            s_fail_mask, front_facing);
      }
   }

   if (depth->enabled) {
      /*
       * Convert fragment Z to the desired type, aligning the LSB to the right.
       */

      assert(z_type.width == z_src_type.width);
      assert(z_type.length == z_src_type.length);
      assert(lp_check_value(z_src_type, z_src));
      if (z_src_type.floating) {
         /*
          * Convert from floating point values
          */

         if (!z_type.floating) {
            z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
                                                            z_src_type,
                                                            z_width,
                                                            z_src);
         }
      } else {
         /*
          * Convert from unsigned normalized values.
          */

         assert(!z_src_type.sign);
         assert(!z_src_type.fixed);
         assert(z_src_type.norm);
         assert(!z_type.floating);
         if (z_src_type.width > z_width) {
            LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
                                                        z_src_type.width - z_width);
            z_src = LLVMBuildLShr(builder, z_src, shift, "");
         }
      }
      assert(lp_check_value(z_type, z_src));

      lp_build_name(z_src, "z_src");

      /* compare src Z to dst Z, returning 'pass' mask */
      z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);

      if (!stencil[0].enabled) {
         /* We can potentially skip all remaining operations here, but only
          * if stencil is disabled because we still need to update the stencil
          * buffer values.  Don't need to update Z buffer values.
          */
         lp_build_mask_update(mask, z_pass);

         if (do_branch) {
            lp_build_mask_check(mask);
            do_branch = FALSE;
         }
      }

      if (depth->writemask) {
         LLVMValueRef zselectmask;

         /* mask off bits that failed Z test */
         zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");

         /* mask off bits that failed stencil test */
         if (s_pass_mask) {
            zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
         }

         /* Mix the old and new Z buffer values.
          * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
          */
         z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
      }

      if (stencil[0].enabled) {
         /* update stencil buffer values according to z pass/fail result */
         LLVMValueRef z_fail_mask, z_pass_mask;

         /* apply Z-fail operator */
         z_fail_mask = lp_build_andnot(&s_bld, orig_mask, z_pass);
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
                                            stencil_refs, stencil_vals,
                                            z_fail_mask, front_facing);

         /* apply Z-pass operator */
         z_pass_mask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
         stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
                                            stencil_refs, stencil_vals,
                                            z_pass_mask, front_facing);
      }
   }
   else {
      /* No depth test: apply Z-pass operator to stencil buffer values which
       * passed the stencil test.
       */
      s_pass_mask = LLVMBuildAnd(builder, orig_mask, s_pass_mask, "");
      stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
                                         stencil_refs, stencil_vals,
                                         s_pass_mask, front_facing);
   }

   /* Put Z and stencil bits in the right place */
   if (have_z && z_shift) {
      LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
      z_dst = LLVMBuildShl(builder, z_dst, shift, "");
   }
   if (stencil_vals && stencil_shift)
      stencil_vals = LLVMBuildShl(builder, stencil_vals,
                                  stencil_shift, "");

   /* Finally, merge the z/stencil values */
   if (format_desc->block.bits <= 32) {
      if (have_z && have_s)
         *z_value = LLVMBuildOr(builder, z_dst, stencil_vals, "");
      else if (have_z)
         *z_value = z_dst;
      else
         *z_value = stencil_vals;
      *s_value = *z_value;
   }
   else {
      *z_value = z_dst;
      *s_value = stencil_vals;
   }

   if (s_pass_mask)
      lp_build_mask_update(mask, s_pass_mask);

   if (depth->enabled && stencil[0].enabled)
      lp_build_mask_update(mask, z_pass);
}