int sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ int error; struct proc *p = l->l_proc; struct lwp *t; error = 0; mutex_enter(p->p_lock); if ((t = lwp_find(p, SCARG(uap, target))) == NULL) { mutex_exit(p->p_lock); return ESRCH; } lwp_lock(t); lwp_continue(t); mutex_exit(p->p_lock); return error; }
void sigsuspendsetup(struct lwp *l, const sigset_t *ss) { struct proc *p = l->l_proc; /* * When returning from sigsuspend/pselect/pollts, we want * the old mask to be restored after the * signal handler has finished. Thus, we * save it here and mark the sigctx structure * to indicate this. */ mutex_enter(p->p_lock); l->l_sigrestore = 1; l->l_sigoldmask = l->l_sigmask; l->l_sigmask = *ss; sigminusset(&sigcantmask, &l->l_sigmask); /* Check for pending signals when sleeping. */ if (sigispending(l, 0)) { lwp_lock(l); l->l_flag |= LW_PENDSIG; lwp_unlock(l); } mutex_exit(p->p_lock); }
int sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; syscallarg(char *) name; syscallarg(size_t) len; } */ char name[MAXCOMLEN]; lwpid_t target; proc_t *p; lwp_t *t; if ((target = SCARG(uap, target)) == 0) target = l->l_lid; p = curproc; mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); return ESRCH; } lwp_lock(t); if (t->l_name == NULL) name[0] = '\0'; else strcpy(name, t->l_name); lwp_unlock(t); mutex_exit(p->p_lock); return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL); }
int lwp_unpark(lwpid_t target, const void *hint) { sleepq_t *sq; wchan_t wchan; kmutex_t *mp; proc_t *p; lwp_t *t; /* * Easy case: search for the LWP on the sleep queue. If * it's parked, remove it from the queue and set running. */ p = curproc; wchan = lwp_park_wchan(p, hint); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); TAILQ_FOREACH(t, sq, l_sleepchain) if (t->l_proc == p && t->l_lid == target) break; if (__predict_true(t != NULL)) { sleepq_remove(sq, t); mutex_spin_exit(mp); return 0; } /* * The LWP hasn't parked yet. Take the hit and mark the * operation as pending. */ mutex_spin_exit(mp); mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); return ESRCH; } /* * It may not have parked yet, we may have raced, or it * is parked on a different user sync object. */ lwp_lock(t); if (t->l_syncobj == &lwp_park_sobj) { /* Releases the LWP lock. */ lwp_unsleep(t, true); } else { /* * Set the operation pending. The next call to _lwp_park * will return early. */ t->l_flag |= LW_UNPARKED; lwp_unlock(t); } mutex_exit(p->p_lock); return 0; }
int lwp_park(struct timespec *ts, const void *hint) { struct timespec tsx; sleepq_t *sq; kmutex_t *mp; wchan_t wchan; int timo, error; lwp_t *l; /* Fix up the given timeout value. */ if (ts != NULL) { getnanotime(&tsx); timespecsub(ts, &tsx, &tsx); if (tsx.tv_sec < 0 || (tsx.tv_sec == 0 && tsx.tv_nsec <= 0)) return ETIMEDOUT; if ((error = itimespecfix(&tsx)) != 0) return error; timo = tstohz(&tsx); KASSERT(timo != 0); } else timo = 0; /* Find and lock the sleep queue. */ l = curlwp; wchan = lwp_park_wchan(l->l_proc, hint); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); /* * Before going the full route and blocking, check to see if an * unpark op is pending. */ lwp_lock(l); if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) { l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED); lwp_unlock(l); mutex_spin_exit(mp); return EALREADY; } lwp_unlock_to(l, mp); l->l_biglocks = 0; sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj); error = sleepq_block(timo, true); switch (error) { case EWOULDBLOCK: error = ETIMEDOUT; break; case ERESTART: error = EINTR; break; default: /* nothing */ break; } return error; }
int do_lwp_create(lwp_t *l, void *arg, u_long flags, lwpid_t *new_lwp) { struct proc *p = l->l_proc; struct lwp *l2; struct schedstate_percpu *spc; vaddr_t uaddr; int error; /* XXX check against resource limits */ uaddr = uvm_uarea_alloc(); if (__predict_false(uaddr == 0)) return ENOMEM; error = lwp_create(l, p, uaddr, flags & LWP_DETACHED, NULL, 0, p->p_emul->e_startlwp, arg, &l2, l->l_class); if (__predict_false(error)) { uvm_uarea_free(uaddr); return error; } *new_lwp = l2->l_lid; /* * Set the new LWP running, unless the caller has requested that * it be created in suspended state. If the process is stopping, * then the LWP is created stopped. */ mutex_enter(p->p_lock); lwp_lock(l2); spc = &l2->l_cpu->ci_schedstate; if ((flags & LWP_SUSPENDED) == 0 && (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) { if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { KASSERT(l2->l_wchan == NULL); l2->l_stat = LSSTOP; p->p_nrlwps--; lwp_unlock_to(l2, spc->spc_lwplock); } else { KASSERT(lwp_locked(l2, spc->spc_mutex)); l2->l_stat = LSRUN; sched_enqueue(l2, false); lwp_unlock(l2); } } else { l2->l_stat = LSSUSPENDED; p->p_nrlwps--; lwp_unlock_to(l2, spc->spc_lwplock); } mutex_exit(p->p_lock); return 0; }
int lwp_park(clockid_t clock_id, int flags, struct timespec *ts, const void *hint) { sleepq_t *sq; kmutex_t *mp; wchan_t wchan; int timo, error; lwp_t *l; if (ts != NULL) { if ((error = ts2timo(clock_id, flags, ts, &timo, NULL)) != 0) return error; KASSERT(timo != 0); } else { timo = 0; } /* Find and lock the sleep queue. */ l = curlwp; wchan = lwp_park_wchan(l->l_proc, hint); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); /* * Before going the full route and blocking, check to see if an * unpark op is pending. */ lwp_lock(l); if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) { l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED); lwp_unlock(l); mutex_spin_exit(mp); return EALREADY; } lwp_unlock_to(l, mp); l->l_biglocks = 0; sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj); error = sleepq_block(timo, true); switch (error) { case EWOULDBLOCK: error = ETIMEDOUT; break; case ERESTART: error = EINTR; break; default: /* nothing */ break; } return error; }
int sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; syscallarg(const char *) name; } */ char *name, *oname; lwpid_t target; proc_t *p; lwp_t *t; int error; if ((target = SCARG(uap, target)) == 0) target = l->l_lid; name = kmem_alloc(MAXCOMLEN, KM_SLEEP); if (name == NULL) return ENOMEM; error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL); switch (error) { case ENAMETOOLONG: case 0: name[MAXCOMLEN - 1] = '\0'; break; default: kmem_free(name, MAXCOMLEN); return error; } p = curproc; mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); kmem_free(name, MAXCOMLEN); return ESRCH; } lwp_lock(t); oname = t->l_name; t->l_name = name; lwp_unlock(t); mutex_exit(p->p_lock); if (oname != NULL) kmem_free(oname, MAXCOMLEN); return 0; }
void sigsuspendteardown(struct lwp *l) { struct proc *p = l->l_proc; mutex_enter(p->p_lock); /* Check for pending signals when sleeping. */ if (l->l_sigrestore) { if (sigispending(l, 0)) { lwp_lock(l); l->l_flag |= LW_PENDSIG; lwp_unlock(l); } else { l->l_sigrestore = 0; l->l_sigmask = l->l_sigoldmask; } } mutex_exit(p->p_lock); }
int sigprocmask1(struct lwp *l, int how, const sigset_t *nss, sigset_t *oss) { sigset_t *mask = &l->l_sigmask; bool more; KASSERT(mutex_owned(l->l_proc->p_lock)); if (oss) { *oss = *mask; } if (nss == NULL) { return 0; } switch (how) { case SIG_BLOCK: sigplusset(nss, mask); more = false; break; case SIG_UNBLOCK: sigminusset(nss, mask); more = true; break; case SIG_SETMASK: *mask = *nss; more = true; break; default: return EINVAL; } sigminusset(&sigcantmask, mask); if (more && sigispending(l, 0)) { /* * Check for pending signals on return to user. */ lwp_lock(l); l->l_flag |= LW_PENDSIG; lwp_unlock(l); } return 0; }
/* * sleepq_timeout: * * Entered via the callout(9) subsystem to time out an LWP that is on a * sleep queue. */ void sleepq_timeout(void *arg) { lwp_t *l = arg; /* * Lock the LWP. Assuming it's still on the sleep queue, its * current mutex will also be the sleep queue mutex. */ lwp_lock(l); if (l->l_wchan == NULL) { /* Somebody beat us to it. */ lwp_unlock(l); return; } //lwp_unsleep(l, true); sleepq_unsleep(l, true); }
int sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ struct lwp *t; struct proc *p; int error; p = l->l_proc; mutex_enter(p->p_lock); if ((t = lwp_find(p, SCARG(uap, target))) == NULL) { mutex_exit(p->p_lock); return ESRCH; } lwp_lock(t); t->l_flag |= (LW_CANCELLED | LW_UNPARKED); if (t->l_stat != LSSLEEP) { lwp_unlock(t); error = ENODEV; } else if ((t->l_flag & LW_SINTR) == 0) { lwp_unlock(t); error = EBUSY; } else { /* Wake it up. lwp_unsleep() will release the LWP lock. */ lwp_unsleep(t, true); error = 0; } mutex_exit(p->p_lock); return error; }
int sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap, register_t *retval) { /* { syscallarg(const lwpid_t *) targets; syscallarg(size_t) ntargets; syscallarg(const void *) hint; } */ struct proc *p; struct lwp *t; sleepq_t *sq; wchan_t wchan; lwpid_t targets[32], *tp, *tpp, *tmax, target; int error; kmutex_t *mp; u_int ntargets; size_t sz; p = l->l_proc; ntargets = SCARG(uap, ntargets); if (SCARG(uap, targets) == NULL) { /* * Let the caller know how much we are willing to do, and * let it unpark the LWPs in blocks. */ *retval = LWP_UNPARK_MAX; return 0; } if (ntargets > LWP_UNPARK_MAX || ntargets == 0) return EINVAL; /* * Copy in the target array. If it's a small number of LWPs, then * place the numbers on the stack. */ sz = sizeof(target) * ntargets; if (sz <= sizeof(targets)) tp = targets; else { tp = kmem_alloc(sz, KM_SLEEP); if (tp == NULL) return ENOMEM; } error = copyin(SCARG(uap, targets), tp, sz); if (error != 0) { if (tp != targets) { kmem_free(tp, sz); } return error; } wchan = lwp_park_wchan(p, SCARG(uap, hint)); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) { target = *tpp; /* * Easy case: search for the LWP on the sleep queue. If * it's parked, remove it from the queue and set running. */ TAILQ_FOREACH(t, sq, l_sleepchain) if (t->l_proc == p && t->l_lid == target) break; if (t != NULL) { sleepq_remove(sq, t); continue; } /* * The LWP hasn't parked yet. Take the hit and * mark the operation as pending. */ mutex_spin_exit(mp); mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); mutex_spin_enter(mp); continue; } lwp_lock(t); /* * It may not have parked yet, we may have raced, or * it is parked on a different user sync object. */ if (t->l_syncobj == &lwp_park_sobj) { /* Releases the LWP lock. */ lwp_unsleep(t, true); } else { /* * Set the operation pending. The next call to * _lwp_park will return early. */ t->l_flag |= LW_UNPARKED; lwp_unlock(t); } mutex_exit(p->p_lock); mutex_spin_enter(mp); } mutex_spin_exit(mp); if (tp != targets) kmem_free(tp, sz); return 0; }
/* * General fork call. Note that another LWP in the process may call exec() * or exit() while we are forking. It's safe to continue here, because * neither operation will complete until all LWPs have exited the process. */ int fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize, void (*func)(void *), void *arg, register_t *retval, struct proc **rnewprocp) { struct proc *p1, *p2, *parent; struct plimit *p1_lim; uid_t uid; struct lwp *l2; int count; vaddr_t uaddr; int tnprocs; int tracefork; int error = 0; p1 = l1->l_proc; uid = kauth_cred_getuid(l1->l_cred); tnprocs = atomic_inc_uint_nv(&nprocs); /* * Although process entries are dynamically created, we still keep * a global limit on the maximum number we will create. */ if (__predict_false(tnprocs >= maxproc)) error = -1; else error = kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); if (error) { static struct timeval lasttfm; atomic_dec_uint(&nprocs); if (ratecheck(&lasttfm, &fork_tfmrate)) tablefull("proc", "increase kern.maxproc or NPROC"); if (forkfsleep) kpause("forkmx", false, forkfsleep, NULL); return EAGAIN; } /* * Enforce limits. */ count = chgproccnt(uid, 1); if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) { (void)chgproccnt(uid, -1); atomic_dec_uint(&nprocs); if (forkfsleep) kpause("forkulim", false, forkfsleep, NULL); return EAGAIN; } } /* * Allocate virtual address space for the U-area now, while it * is still easy to abort the fork operation if we're out of * kernel virtual address space. */ uaddr = uvm_uarea_alloc(); if (__predict_false(uaddr == 0)) { (void)chgproccnt(uid, -1); atomic_dec_uint(&nprocs); return ENOMEM; } /* * We are now committed to the fork. From here on, we may * block on resources, but resource allocation may NOT fail. */ /* Allocate new proc. */ p2 = proc_alloc(); /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ memset(&p2->p_startzero, 0, (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); memcpy(&p2->p_startcopy, &p1->p_startcopy, (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); TAILQ_INIT(&p2->p_sigpend.sp_info); LIST_INIT(&p2->p_lwps); LIST_INIT(&p2->p_sigwaiters); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. * Inherit flags we want to keep. The flags related to SIGCHLD * handling are important in order to keep a consistent behaviour * for the child after the fork. If we are a 32-bit process, the * child will be too. */ p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); p2->p_emul = p1->p_emul; p2->p_execsw = p1->p_execsw; if (flags & FORK_SYSTEM) { /* * Mark it as a system process. Set P_NOCLDWAIT so that * children are reparented to init(8) when they exit. * init(8) can easily wait them out for us. */ p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT); } mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); rw_init(&p2->p_reflock); cv_init(&p2->p_waitcv, "wait"); cv_init(&p2->p_lwpcv, "lwpwait"); /* * Share a lock between the processes if they are to share signal * state: we must synchronize access to it. */ if (flags & FORK_SHARESIGS) { p2->p_lock = p1->p_lock; mutex_obj_hold(p1->p_lock); } else p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); kauth_proc_fork(p1, p2); p2->p_raslist = NULL; #if defined(__HAVE_RAS) ras_fork(p1, p2); #endif /* bump references to the text vnode (for procfs) */ p2->p_textvp = p1->p_textvp; if (p2->p_textvp) vref(p2->p_textvp); if (flags & FORK_SHAREFILES) fd_share(p2); else if (flags & FORK_CLEANFILES) p2->p_fd = fd_init(NULL); else p2->p_fd = fd_copy(); /* XXX racy */ p2->p_mqueue_cnt = p1->p_mqueue_cnt; if (flags & FORK_SHARECWD) cwdshare(p2); else p2->p_cwdi = cwdinit(); /* * Note: p_limit (rlimit stuff) is copy-on-write, so normally * we just need increase pl_refcnt. */ p1_lim = p1->p_limit; if (!p1_lim->pl_writeable) { lim_addref(p1_lim); p2->p_limit = p1_lim; } else { p2->p_limit = lim_copy(p1_lim); } if (flags & FORK_PPWAIT) { /* Mark ourselves as waiting for a child. */ l1->l_pflag |= LP_VFORKWAIT; p2->p_lflag = PL_PPWAIT; p2->p_vforklwp = l1; } else { p2->p_lflag = 0; } p2->p_sflag = 0; p2->p_slflag = 0; parent = (flags & FORK_NOWAIT) ? initproc : p1; p2->p_pptr = parent; p2->p_ppid = parent->p_pid; LIST_INIT(&p2->p_children); p2->p_aio = NULL; #ifdef KTRACE /* * Copy traceflag and tracefile if enabled. * If not inherited, these were zeroed above. */ if (p1->p_traceflag & KTRFAC_INHERIT) { mutex_enter(&ktrace_lock); p2->p_traceflag = p1->p_traceflag; if ((p2->p_tracep = p1->p_tracep) != NULL) ktradref(p2); mutex_exit(&ktrace_lock); } #endif /* * Create signal actions for the child process. */ p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS); mutex_enter(p1->p_lock); p2->p_sflag |= (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); sched_proc_fork(p1, p2); mutex_exit(p1->p_lock); p2->p_stflag = p1->p_stflag; /* * p_stats. * Copy parts of p_stats, and zero out the rest. */ p2->p_stats = pstatscopy(p1->p_stats); /* * Set up the new process address space. */ uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false); /* * Finish creating the child process. * It will return through a different path later. */ lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0, stack, stacksize, (func != NULL) ? func : child_return, arg, &l2, l1->l_class); /* * Inherit l_private from the parent. * Note that we cannot use lwp_setprivate() here since that * also sets the CPU TLS register, which is incorrect if the * process has changed that without letting the kernel know. */ l2->l_private = l1->l_private; /* * If emulation has a process fork hook, call it now. */ if (p2->p_emul->e_proc_fork) (*p2->p_emul->e_proc_fork)(p2, l1, flags); /* * ...and finally, any other random fork hooks that subsystems * might have registered. */ doforkhooks(p2, p1); SDT_PROBE(proc,,,create, p2, p1, flags, 0, 0); /* * It's now safe for the scheduler and other processes to see the * child process. */ mutex_enter(proc_lock); if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) p2->p_lflag |= PL_CONTROLT; LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling); p2->p_exitsig = exitsig; /* signal for parent on exit */ /* * We don't want to tracefork vfork()ed processes because they * will not receive the SIGTRAP until it is too late. */ tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) == (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0; if (tracefork) { p2->p_slflag |= PSL_TRACED; p2->p_opptr = p2->p_pptr; if (p2->p_pptr != p1->p_pptr) { struct proc *parent1 = p2->p_pptr; if (parent1->p_lock < p2->p_lock) { if (!mutex_tryenter(parent1->p_lock)) { mutex_exit(p2->p_lock); mutex_enter(parent1->p_lock); } } else if (parent1->p_lock > p2->p_lock) { mutex_enter(parent1->p_lock); } parent1->p_slflag |= PSL_CHTRACED; proc_reparent(p2, p1->p_pptr); if (parent1->p_lock != p2->p_lock) mutex_exit(parent1->p_lock); } /* * Set ptrace status. */ p1->p_fpid = p2->p_pid; p2->p_fpid = p1->p_pid; } LIST_INSERT_AFTER(p1, p2, p_pglist); LIST_INSERT_HEAD(&allproc, p2, p_list); p2->p_trace_enabled = trace_is_enabled(p2); #ifdef __HAVE_SYSCALL_INTERN (*p2->p_emul->e_syscall_intern)(p2); #endif /* * Update stats now that we know the fork was successful. */ uvmexp.forks++; if (flags & FORK_PPWAIT) uvmexp.forks_ppwait++; if (flags & FORK_SHAREVM) uvmexp.forks_sharevm++; /* * Pass a pointer to the new process to the caller. */ if (rnewprocp != NULL) *rnewprocp = p2; if (ktrpoint(KTR_EMUL)) p2->p_traceflag |= KTRFAC_TRC_EMUL; /* * Notify any interested parties about the new process. */ if (!SLIST_EMPTY(&p1->p_klist)) { mutex_exit(proc_lock); KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid); mutex_enter(proc_lock); } /* * Make child runnable, set start time, and add to run queue except * if the parent requested the child to start in SSTOP state. */ mutex_enter(p2->p_lock); /* * Start profiling. */ if ((p2->p_stflag & PST_PROFIL) != 0) { mutex_spin_enter(&p2->p_stmutex); startprofclock(p2); mutex_spin_exit(&p2->p_stmutex); } getmicrotime(&p2->p_stats->p_start); p2->p_acflag = AFORK; lwp_lock(l2); KASSERT(p2->p_nrlwps == 1); if (p2->p_sflag & PS_STOPFORK) { struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate; p2->p_nrlwps = 0; p2->p_stat = SSTOP; p2->p_waited = 0; p1->p_nstopchild++; l2->l_stat = LSSTOP; KASSERT(l2->l_wchan == NULL); lwp_unlock_to(l2, spc->spc_lwplock); } else { p2->p_nrlwps = 1; p2->p_stat = SACTIVE; l2->l_stat = LSRUN; sched_enqueue(l2, false); lwp_unlock(l2); } /* * Return child pid to parent process, * marking us as parent via retval[1]. */ if (retval != NULL) { retval[0] = p2->p_pid; retval[1] = 0; } mutex_exit(p2->p_lock); /* * Preserve synchronization semantics of vfork. If waiting for * child to exec or exit, sleep until it clears LP_VFORKWAIT. */ #if 0 while (l1->l_pflag & LP_VFORKWAIT) { cv_wait(&l1->l_waitcv, proc_lock); } #else while (p2->p_lflag & PL_PPWAIT) cv_wait(&p1->p_waitcv, proc_lock); #endif /* * Let the parent know that we are tracing its child. */ if (tracefork) { ksiginfo_t ksi; KSI_INIT_EMPTY(&ksi); ksi.ksi_signo = SIGTRAP; ksi.ksi_lid = l1->l_lid; kpsignal(p1, &ksi, NULL); } mutex_exit(proc_lock); return 0; }
/* * Fork a kernel thread. Any process can request this to be done. */ int kthread_create(pri_t pri, int flag, struct cpu_info *ci, void (*func)(void *), void *arg, lwp_t **lp, const char *fmt, ...) { lwp_t *l; vaddr_t uaddr; bool inmem; int error; va_list ap; int lc; inmem = uvm_uarea_alloc(&uaddr); if (uaddr == 0) return ENOMEM; if ((flag & KTHREAD_TS) != 0) { lc = SCHED_OTHER; } else { lc = SCHED_RR; } error = lwp_create(&lwp0, &proc0, uaddr, inmem, LWP_DETACHED, NULL, 0, func, arg, &l, lc); if (error) { uvm_uarea_free(uaddr, curcpu()); return error; } uvm_lwp_hold(l); if (fmt != NULL) { l->l_name = kmem_alloc(MAXCOMLEN, KM_SLEEP); if (l->l_name == NULL) { lwp_exit(l); return ENOMEM; } va_start(ap, fmt); vsnprintf(l->l_name, MAXCOMLEN, fmt, ap); va_end(ap); } /* * Set parameters. */ if ((flag & KTHREAD_INTR) != 0) { KASSERT((flag & KTHREAD_MPSAFE) != 0); } if (pri == PRI_NONE) { if ((flag & KTHREAD_TS) != 0) { /* Maximum user priority level. */ pri = MAXPRI_USER; } else { /* Minimum kernel priority level. */ pri = PRI_KTHREAD; } } mutex_enter(proc0.p_lock); lwp_lock(l); l->l_priority = pri; if (ci != NULL) { if (ci != l->l_cpu) { lwp_unlock_to(l, ci->ci_schedstate.spc_mutex); lwp_lock(l); } l->l_pflag |= LP_BOUND; l->l_cpu = ci; } if ((flag & KTHREAD_INTR) != 0) l->l_pflag |= LP_INTR; if ((flag & KTHREAD_MPSAFE) == 0) l->l_pflag &= ~LP_MPSAFE; /* * Set the new LWP running, unless the caller has requested * otherwise. */ if ((flag & KTHREAD_IDLE) == 0) { l->l_stat = LSRUN; sched_enqueue(l, false); lwp_unlock(l); } else lwp_unlock_to(l, ci->ci_schedstate.spc_lwplock); /* * The LWP is not created suspended or stopped and cannot be set * into those states later, so must be considered runnable. */ proc0.p_nrlwps++; mutex_exit(proc0.p_lock); /* All done! */ if (lp != NULL) *lp = l; return (0); }
int sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ struct proc *p = l->l_proc; struct lwp *t; int error; mutex_enter(p->p_lock); if ((t = lwp_find(p, SCARG(uap, target))) == NULL) { mutex_exit(p->p_lock); return ESRCH; } /* * Check for deadlock, which is only possible when we're suspending * ourself. XXX There is a short race here, as p_nrlwps is only * incremented when an LWP suspends itself on the kernel/user * boundary. It's still possible to kill -9 the process so we * don't bother checking further. */ lwp_lock(t); if ((t == l && p->p_nrlwps == 1) || (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) { lwp_unlock(t); mutex_exit(p->p_lock); return EDEADLK; } /* * Suspend the LWP. XXX If it's on a different CPU, we should wait * for it to be preempted, where it will put itself to sleep. * * Suspension of the current LWP will happen on return to userspace. */ error = lwp_suspend(l, t); if (error) { mutex_exit(p->p_lock); return error; } /* * Wait for: * o process exiting * o target LWP suspended * o target LWP not suspended and L_WSUSPEND clear * o target LWP exited */ for (;;) { error = cv_wait_sig(&p->p_lwpcv, p->p_lock); if (error) { error = ERESTART; break; } if (lwp_find(p, SCARG(uap, target)) == NULL) { error = ESRCH; break; } if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) { error = ERESTART; break; } if (t->l_stat == LSSUSPENDED || (t->l_flag & LW_WSUSPEND) == 0) break; } mutex_exit(p->p_lock); return error; }
int sigaction1(struct lwp *l, int signum, const struct sigaction *nsa, struct sigaction *osa, const void *tramp, int vers) { struct proc *p; struct sigacts *ps; sigset_t tset; int prop, error; ksiginfoq_t kq; static bool v0v1valid; if (signum <= 0 || signum >= NSIG) return EINVAL; p = l->l_proc; error = 0; ksiginfo_queue_init(&kq); /* * Trampoline ABI version 0 is reserved for the legacy kernel * provided on-stack trampoline. Conversely, if we are using a * non-0 ABI version, we must have a trampoline. Only validate the * vers if a new sigaction was supplied and there was an actual * handler specified (not SIG_IGN or SIG_DFL), which don't require * a trampoline. Emulations use legacy kernel trampolines with * version 0, alternatively check for that too. * * If version < 2, we try to autoload the compat module. Note * that we interlock with the unload check in compat_modcmd() * using kernconfig_lock. If the autoload fails, we don't try it * again for this process. */ if (nsa != NULL && nsa->sa_handler != SIG_IGN && nsa->sa_handler != SIG_DFL) { if (__predict_false(vers < 2)) { if (p->p_flag & PK_32) v0v1valid = true; else if ((p->p_lflag & PL_SIGCOMPAT) == 0) { kernconfig_lock(); if (sendsig_sigcontext_vec == NULL) { (void)module_autoload("compat", MODULE_CLASS_ANY); } if (sendsig_sigcontext_vec != NULL) { /* * We need to remember if the * sigcontext method may be useable, * because libc may use it even * if siginfo is available. */ v0v1valid = true; } mutex_enter(proc_lock); /* * Prevent unload of compat module while * this process remains. */ p->p_lflag |= PL_SIGCOMPAT; mutex_exit(proc_lock); kernconfig_unlock(); } } switch (vers) { case 0: /* sigcontext, kernel supplied trampoline. */ if (tramp != NULL || !v0v1valid) { return EINVAL; } break; case 1: /* sigcontext, user supplied trampoline. */ if (tramp == NULL || !v0v1valid) { return EINVAL; } break; case 2: case 3: /* siginfo, user supplied trampoline. */ if (tramp == NULL) { return EINVAL; } break; default: return EINVAL; } } mutex_enter(p->p_lock); ps = p->p_sigacts; if (osa) *osa = SIGACTION_PS(ps, signum); if (!nsa) goto out; prop = sigprop[signum]; if ((nsa->sa_flags & ~SA_ALLBITS) || (prop & SA_CANTMASK)) { error = EINVAL; goto out; } SIGACTION_PS(ps, signum) = *nsa; ps->sa_sigdesc[signum].sd_tramp = tramp; ps->sa_sigdesc[signum].sd_vers = vers; sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask); if ((prop & SA_NORESET) != 0) SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND; if (signum == SIGCHLD) { if (nsa->sa_flags & SA_NOCLDSTOP) p->p_sflag |= PS_NOCLDSTOP; else p->p_sflag &= ~PS_NOCLDSTOP; if (nsa->sa_flags & SA_NOCLDWAIT) { /* * Paranoia: since SA_NOCLDWAIT is implemented by * reparenting the dying child to PID 1 (and trust * it to reap the zombie), PID 1 itself is forbidden * to set SA_NOCLDWAIT. */ if (p->p_pid == 1) p->p_flag &= ~PK_NOCLDWAIT; else p->p_flag |= PK_NOCLDWAIT; } else p->p_flag &= ~PK_NOCLDWAIT; if (nsa->sa_handler == SIG_IGN) { /* * Paranoia: same as above. */ if (p->p_pid == 1) p->p_flag &= ~PK_CLDSIGIGN; else p->p_flag |= PK_CLDSIGIGN; } else p->p_flag &= ~PK_CLDSIGIGN; } if ((nsa->sa_flags & SA_NODEFER) == 0) sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum); else sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum); /* * Set bit in p_sigctx.ps_sigignore for signals that are set to * SIG_IGN, and for signals set to SIG_DFL where the default is to * ignore. However, don't put SIGCONT in p_sigctx.ps_sigignore, as * we have to restart the process. */ if (nsa->sa_handler == SIG_IGN || (nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) { /* Never to be seen again. */ sigemptyset(&tset); sigaddset(&tset, signum); sigclearall(p, &tset, &kq); if (signum != SIGCONT) { /* Easier in psignal */ sigaddset(&p->p_sigctx.ps_sigignore, signum); } sigdelset(&p->p_sigctx.ps_sigcatch, signum); } else { sigdelset(&p->p_sigctx.ps_sigignore, signum); if (nsa->sa_handler == SIG_DFL) sigdelset(&p->p_sigctx.ps_sigcatch, signum); else sigaddset(&p->p_sigctx.ps_sigcatch, signum); } /* * Previously held signals may now have become visible. Ensure that * we check for them before returning to userspace. */ if (sigispending(l, 0)) { lwp_lock(l); l->l_flag |= LW_PENDSIG; lwp_unlock(l); } out: mutex_exit(p->p_lock); ksiginfo_queue_drain(&kq); return error; }
/* ARGSUSED */ int sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap, register_t *retval) { /* { syscallarg(const ucontext_t *) ucp; syscallarg(u_long) flags; syscallarg(lwpid_t *) new_lwp; } */ struct proc *p = l->l_proc; struct lwp *l2; vaddr_t uaddr; bool inmem; ucontext_t *newuc; int error, lid; #ifdef KERN_SA mutex_enter(p->p_lock); if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) { mutex_exit(p->p_lock); return EINVAL; } mutex_exit(p->p_lock); #endif newuc = pool_get(&lwp_uc_pool, PR_WAITOK); error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize); if (error) { pool_put(&lwp_uc_pool, newuc); return error; } /* XXX check against resource limits */ inmem = uvm_uarea_alloc(&uaddr); if (__predict_false(uaddr == 0)) { pool_put(&lwp_uc_pool, newuc); return ENOMEM; } error = lwp_create(l, p, uaddr, inmem, SCARG(uap, flags) & LWP_DETACHED, NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class); if (error) { uvm_uarea_free(uaddr, curcpu()); pool_put(&lwp_uc_pool, newuc); return error; } lid = l2->l_lid; error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid)); if (error) { lwp_exit(l2); pool_put(&lwp_uc_pool, newuc); return error; } /* * Set the new LWP running, unless the caller has requested that * it be created in suspended state. If the process is stopping, * then the LWP is created stopped. */ mutex_enter(p->p_lock); lwp_lock(l2); if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 && (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) { if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) l2->l_stat = LSSTOP; else { KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex)); p->p_nrlwps++; l2->l_stat = LSRUN; sched_enqueue(l2, false); } lwp_unlock(l2); } else { l2->l_stat = LSSUSPENDED; lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock); } mutex_exit(p->p_lock); return 0; }
static int linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval) { /* { syscallarg(int) flags; syscallarg(void *) stack; syscallarg(void *) parent_tidptr; syscallarg(void *) tls; syscallarg(void *) child_tidptr; } */ struct proc *p; struct lwp *l2; struct linux_emuldata *led; void *parent_tidptr, *tls, *child_tidptr; struct schedstate_percpu *spc; vaddr_t uaddr; lwpid_t lid; int flags, tnprocs, error; p = l->l_proc; flags = SCARG(uap, flags); parent_tidptr = SCARG(uap, parent_tidptr); tls = SCARG(uap, tls); child_tidptr = SCARG(uap, child_tidptr); tnprocs = atomic_inc_uint_nv(&nprocs); if (__predict_false(tnprocs >= maxproc) || kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p, KAUTH_ARG(tnprocs), NULL, NULL) != 0) { atomic_dec_uint(&nprocs); return EAGAIN; } uaddr = uvm_uarea_alloc(); if (__predict_false(uaddr == 0)) { atomic_dec_uint(&nprocs); return ENOMEM; } error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID, SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class); if (__predict_false(error)) { DPRINTF(("%s: lwp_create error=%d\n", __func__, error)); atomic_dec_uint(&nprocs); uvm_uarea_free(uaddr); return error; } lid = l2->l_lid; /* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */ if (flags & LINUX_CLONE_CHILD_CLEARTID) { led = l2->l_emuldata; led->led_clear_tid = child_tidptr; } /* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */ if (flags & LINUX_CLONE_PARENT_SETTID) { if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0) printf("%s: LINUX_CLONE_PARENT_SETTID " "failed (parent_tidptr = %p tid = %d error=%d)\n", __func__, parent_tidptr, lid, error); } /* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory */ if (flags & LINUX_CLONE_CHILD_SETTID) { if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0) printf("%s: LINUX_CLONE_CHILD_SETTID " "failed (child_tidptr = %p, tid = %d error=%d)\n", __func__, child_tidptr, lid, error); } if (flags & LINUX_CLONE_SETTLS) { error = LINUX_LWP_SETPRIVATE(l2, tls); if (error) { DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__, error)); lwp_exit(l2); return error; } } /* * Set the new LWP running, unless the process is stopping, * then the LWP is created stopped. */ mutex_enter(p->p_lock); lwp_lock(l2); spc = &l2->l_cpu->ci_schedstate; if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) { if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { KASSERT(l2->l_wchan == NULL); l2->l_stat = LSSTOP; p->p_nrlwps--; lwp_unlock_to(l2, spc->spc_lwplock); } else { KASSERT(lwp_locked(l2, spc->spc_mutex)); l2->l_stat = LSRUN; sched_enqueue(l2, false); lwp_unlock(l2); } } else { l2->l_stat = LSSUSPENDED; p->p_nrlwps--; lwp_unlock_to(l2, spc->spc_lwplock); } mutex_exit(p->p_lock); retval[0] = lid; retval[1] = 0; return 0; }