Beispiel #1
0
/*
 *      arctanh(x) == 0.5 * log [ (1 + x) / (1 - x) ]
 *
 *      |x| < 1.0
 */
void	m_apm_arctanh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3;
int     ii, local_precision;

tmp1 = M_get_stack_var();

m_apm_absolute_value(tmp1, aa);

ii = m_apm_compare(tmp1, MM_One);

if (ii >= 0)       /* |x| >= 1.0 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctanh\', |Argument| >= 1");
   M_set_to_zero(rr);
   M_restore_stack(1);
   return;
  }

tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();

local_precision = places + 8;

m_apm_add(tmp1, MM_One, aa);
m_apm_subtract(tmp2, MM_One, aa);
m_apm_divide(tmp3, local_precision, tmp1, tmp2);
m_apm_log(tmp2, local_precision, tmp3);
m_apm_multiply(tmp1, tmp2, MM_0_5);
m_apm_round(rr, places, tmp1);

M_restore_stack(3);
}
Beispiel #2
0
/*
 *      arccosh(x) == log [ x + sqrt(x^2 - 1) ]
 *
 *      x >= 1.0
 */
void	m_apm_arccosh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2;
int     ii;

ii = m_apm_compare(aa, MM_One);

if (ii == -1)       /* x < 1 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccosh\', Argument < 1");
   M_set_to_zero(rr);
   return;
  }

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

m_apm_multiply(tmp1, aa, aa);
m_apm_subtract(tmp2, tmp1, MM_One);
m_apm_sqrt(tmp1, (places + 6), tmp2);
m_apm_add(tmp2, aa, tmp1);
m_apm_log(rr, places, tmp2);

M_restore_stack(2);
}
Beispiel #3
0
static int Blt(lua_State *L)
{
 M_APM a=Bget(L,1);
 M_APM b=Bget(L,2);
 lua_pushboolean(L,m_apm_compare(a,b)<0);
 return 1;
}
Beispiel #4
0
static int Bcompare(lua_State *L)		/** compare(x,y) */
{
 M_APM a=Bget(L,1);
 M_APM b=Bget(L,2);
 lua_pushinteger(L,m_apm_compare(a,b));
 return 1;
}
Beispiel #5
0
/*
	compute  int *n  = round_to_nearest_int(a / log(2))
	         M_APM b = MAPM version of *n

        returns      0: OK
		 -1, 1: failure
*/
int	M_exp_compute_nn(int *n, M_APM b, M_APM a)
{
M_APM	tmp0, tmp1;
void	*vp;
char    *cp, sbuf[48];
int	kk;

*n   = 0;
vp   = NULL;
cp   = sbuf;
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();

/* find 'n' and convert it to a normal C int            */
/* we just need an approx 1/log(2) for this calculation */

m_apm_multiply(tmp1, a, MM_exp_log2R);

/* round to the nearest int */

if (tmp1->m_apm_sign >= 0)
  {
   m_apm_add(tmp0, tmp1, MM_0_5);
   m_apm_floor(tmp1, tmp0);
  }
else
  {
   m_apm_subtract(tmp0, tmp1, MM_0_5);
   m_apm_ceil(tmp1, tmp0);
  }

kk = tmp1->m_apm_exponent;
if (kk >= 42)
  {
   if ((vp = (void *)MAPM_MALLOC((kk + 16) * sizeof(char))) == NULL)
     {
      /* fatal, this does not return */

      M_apm_log_error_msg(M_APM_FATAL, "\'M_exp_compute_nn\', Out of memory");
     }

   cp = (char *)vp;
  }

m_apm_to_integer_string(cp, tmp1);
*n = atoi(cp);

m_apm_set_long(b, (long)(*n));

kk = m_apm_compare(b, tmp1);

if (vp != NULL)
  MAPM_FREE(vp);

M_restore_stack(2);
return(kk);
}
Beispiel #6
0
int	m_apm_compare_mt(M_APM ltmp, M_APM rtmp)
{
int 	ret;

	m_apm_enter();
	ret=m_apm_compare(ltmp,rtmp);
	m_apm_leave();
	return(ret);
}
Beispiel #7
0
void	M_limit_angle_to_pi(M_APM rr, int places, M_APM aa)
{
	M_APM	tmp7, tmp8, tmp9;

	M_check_PI_places(places);

	tmp9 = M_get_stack_var();
	m_apm_copy(tmp9, MM_lc_PI);

	if (m_apm_compare(aa, tmp9) == 1)       /*  > PI  */
	{
		tmp7 = M_get_stack_var();
		tmp8 = M_get_stack_var();

		m_apm_add(tmp7, aa, tmp9);
		m_apm_integer_divide(tmp9, tmp7, MM_lc_2_PI);
		m_apm_multiply(tmp8, tmp9, MM_lc_2_PI);
		m_apm_subtract(tmp9, aa, tmp8);
		m_apm_round(rr, places, tmp9);

		M_restore_stack(3);
		return;
	}

	tmp9->m_apm_sign = -1;
	if (m_apm_compare(aa, tmp9) == -1)       /*  < -PI  */
	{
		tmp7 = M_get_stack_var();
		tmp8 = M_get_stack_var();

		m_apm_add(tmp7, aa, tmp9);
		m_apm_integer_divide(tmp9, tmp7, MM_lc_2_PI);
		m_apm_multiply(tmp8, tmp9, MM_lc_2_PI);
		m_apm_subtract(tmp9, aa, tmp8);
		m_apm_round(rr, places, tmp9);

		M_restore_stack(3);
		return;
	}

	m_apm_copy(rr, aa);
	M_restore_stack(1);
}
Beispiel #8
0
void	m_apm_arccos(M_APM r, int places, M_APM x)
{
M_APM   tmp0, tmp1, tmp2, tmp3, current_x;
int	ii, maxiter, maxp, tolerance, local_precision;

current_x = M_get_stack_var();
tmp0      = M_get_stack_var();
tmp1      = M_get_stack_var();
tmp2      = M_get_stack_var();
tmp3      = M_get_stack_var();

m_apm_absolute_value(tmp0, x);

ii = m_apm_compare(tmp0, MM_One);

if (ii == 1)       /* |x| > 1 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccos\', |Argument| > 1");
   M_set_to_zero(r);
   M_restore_stack(5);
   return;
  }

if (ii == 0)       /* |x| == 1, arccos = 0, PI */
  {
   if (x->m_apm_sign == 1)
     {
      M_set_to_zero(r);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_round(r, places, MM_lc_PI);
     }

   M_restore_stack(5);
   return;
  }

if (m_apm_compare(tmp0, MM_0_85) == 1)        /* check if > 0.85 */
  {
   M_cos_to_sin(tmp2, (places + 4), x);

   if (x->m_apm_sign == 1)
     {
      m_apm_arcsin(r, places, tmp2);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_arcsin(tmp3, (places + 4), tmp2);
      m_apm_subtract(tmp1, MM_lc_PI, tmp3);
      m_apm_round(r, places, tmp1);
     }

   M_restore_stack(5);
   return;
  }

if (x->m_apm_sign == 0)			      /* input == 0 ?? */
  {
   M_check_PI_places(places);
   m_apm_round(r, places, MM_lc_HALF_PI);
   M_restore_stack(5);
   return;
  }

if (x->m_apm_exponent <= -4)		      /* input close to 0 ?? */
  {
   M_arccos_near_0(r, places, x);
   M_restore_stack(5);
   return;
  }

tolerance       = -(places + 4);
maxp            = places + 8;
local_precision = 18;

/*
 *      compute the maximum number of iterations
 *	that should be needed to calculate to
 *	the desired accuracy.  [ constant below ~= 1 / log(2) ]
 */

maxiter = (int)(log((double)(places + 2)) * 1.442695) + 3;

if (maxiter < 5)
  maxiter = 5;

M_get_acos_guess(current_x, x);

/*    Use the following iteration to solve for arc-cos :

                      cos(X) - N
      X     =  X  +  ------------
       n+1              sin(X)
*/

ii = 0;

while (TRUE)
  {
   M_4x_cos(tmp1, local_precision, current_x);

   M_cos_to_sin(tmp2, local_precision, tmp1);
   if (tmp2->m_apm_sign != 0)
     tmp2->m_apm_sign = current_x->m_apm_sign;

   m_apm_subtract(tmp3, tmp1, x);
   m_apm_divide(tmp0, local_precision, tmp3, tmp2);

   m_apm_add(tmp2, current_x, tmp0);
   m_apm_copy(current_x, tmp2);

   if (ii != 0)
     {
      if (((2 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
        break;
     }

   if (++ii == maxiter)
     {
      M_apm_log_error_msg(M_APM_RETURN,
            "\'m_apm_arccos\', max iteration count reached");
      break;
     }

   local_precision *= 2;

   if (local_precision > maxp)
     local_precision = maxp;
  }

m_apm_round(r, places, current_x);
M_restore_stack(5);
}
Beispiel #9
0
int main(int argc, char *argv[])
{
char	 version_info[80];
int      ct;
				/* declare the M_APM variables ... */
M_APM    aa_mapm;
M_APM    bb_mapm;
M_APM    cc_mapm;
M_APM    dd_mapm;

if (argc < 2)
  {
   m_apm_lib_short_version(version_info);

   fprintf(stdout,
      "Usage: primenum number\t\t\t[Version 1.3, MAPM Version %s]\n",
      	      version_info);
   fprintf(stdout,
      "       find the first 10 prime numbers starting with \'number\'\n");

   exit(4);
  }
				/* now initialize the M_APM variables ... */
aa_mapm = m_apm_init();
bb_mapm = m_apm_init();
cc_mapm = m_apm_init();
dd_mapm = m_apm_init();

init_working_mapm();

m_apm_set_string(dd_mapm, argv[1]);

/*
 *  if input < 3, set start point = 3
 */

if (m_apm_compare(dd_mapm, MM_Three) == -1)
  {
   m_apm_copy(dd_mapm, MM_Three);
  }

/*
 *  make sure we start with an odd integer
 */

m_apm_integer_divide(aa_mapm, dd_mapm, MM_Two);
m_apm_multiply(bb_mapm, MM_Two, aa_mapm);
m_apm_add(aa_mapm, MM_One, bb_mapm);

ct = 0;

while (TRUE)
  {
   if (is_number_prime(aa_mapm))
     {
      m_apm_to_integer_string(buffer, aa_mapm);
      fprintf(stdout,"%s\n",buffer);

      if (++ct == 10)
        break;
     }

   m_apm_add(cc_mapm, MM_Two, aa_mapm);
   m_apm_copy(aa_mapm, cc_mapm);
  }

free_working_mapm();

m_apm_free(aa_mapm);
m_apm_free(bb_mapm);
m_apm_free(cc_mapm);
m_apm_free(dd_mapm);

m_apm_free_all_mem();

exit(0);
}
Beispiel #10
0
/*
 *      functions returns TRUE if the M_APM input number is prime
 *                        FALSE if it is not
 */
int     is_number_prime(M_APM input)
{
int     ii, ret, index;
char    sbuf[32];

/*
 *      for reference:
 *
 *      table size of 2 to filter multiples of 2 and 3 
 *      table size of 8 to filter multiples of 2, 3 and 5
 *      table size of 480 to filter multiples of 2,3,5,7, and 11
 *
 *      this increment table will filter out all numbers
 *      that are multiples of 2,3,5 and 7.
 */

static  char  incr_table[48] = {
        2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2,
        6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6,
        2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10 };
   
/* 
 *  since the real algorithm starts at 11 (to syncronize
 *  with the increment table), we will cheat for numbers < 10.
 */

if (m_apm_compare(input, MM_Ten) <= 0)
  {
   m_apm_to_integer_string(sbuf, input);
   ii = atoi(sbuf);

   if (ii == 2 || ii == 3 || ii == 5 || ii == 7)
     return(TRUE);
   else
     return(FALSE);
  }

ret   = FALSE;
index = 0;

/*
 *    see if the input number is a
 *    multiple of 3, 5, or 7.
 */

m_apm_integer_div_rem(M_quot, M_rem, input, MM_Three);
if (m_apm_sign(M_rem) == 0)               /* remainder == 0 */
  return(ret);

m_apm_integer_div_rem(M_quot, M_rem, input, MM_Five);
if (m_apm_sign(M_rem) == 0)
  return(ret);

m_apm_set_long(M_digit, 7L);
m_apm_integer_div_rem(M_quot, M_rem, input, M_digit);
if (m_apm_sign(M_rem) == 0)
  return(ret);

ii = m_apm_exponent(input) + 16;

m_apm_sqrt(M_tmp1, ii, input);
m_apm_add(M_limit, MM_Two, M_tmp1);
   
m_apm_set_long(M_digit, 11L);              /* now start at '11' to check */
   
while (TRUE)
  {
   if (m_apm_compare(M_digit, M_limit) >= 0)
     {
      ret = TRUE;
      break;
     }
   
   m_apm_integer_div_rem(M_quot, M_rem, input, M_digit);
   
   if (m_apm_sign(M_rem) == 0)         /* remainder == 0 */
     break;
   
   m_apm_set_long(M_tmp1, (long)incr_table[index]);
   m_apm_add(M_tmp0, M_digit, M_tmp1);
   m_apm_copy(M_digit, M_tmp0);

   if (++index == 48)
     index = 0;
  }

return(ret);
}
Beispiel #11
0
void	m_apm_factorial(M_APM moutput, M_APM minput)
{
int     ii, nmul, ndigits, nd, jj, kk, mm, ct;
M_APM   array[NDIM];
M_APM   iprod1, iprod2, tmp1, tmp2;

/* return 1 for any input <= 1 */

if (m_apm_compare(minput, MM_One) <= 0)
  {
   m_apm_copy(moutput, MM_One);
   return;
  }

ct       = 0;
mm       = NDIM - 2;
ndigits  = 256;
nd       = ndigits - 20;
tmp1     = m_apm_init();
tmp2     = m_apm_init();
iprod1   = m_apm_init();
iprod2   = m_apm_init();
array[0] = m_apm_init();

m_apm_copy(tmp2, minput);

/* loop until multiply count-down has reached '2' */

while (TRUE)
  {
   m_apm_copy(iprod1, MM_One);

   /* 
    *   loop until the number of significant digits in this 
    *   partial result is slightly less than 256
    */

   while (TRUE)
     {
      m_apm_multiply(iprod2, iprod1, tmp2);

      m_apm_subtract(tmp1, tmp2, MM_One);

      m_apm_multiply(iprod1, iprod2, tmp1);

      /*
       *  I know, I know.  There just isn't a *clean* way 
       *  to break out of 2 nested loops.
       */

      if (m_apm_compare(tmp1, MM_Two) <= 0)
        goto PHASE2;

      m_apm_subtract(tmp2, tmp1, MM_One);

      if (iprod1->m_apm_datalength > nd)
        break;
     }

   if (ct == (NDIM - 1))
     {
      /* 
       *    if the array has filled up, start multiplying
       *    some of the partial products now.
       */

      m_apm_copy(tmp1, array[mm]);
      m_apm_multiply(array[mm], iprod1, tmp1);

      if (mm == 0)
        {
         mm = NDIM - 2;
	 ndigits = ndigits << 1;
         nd = ndigits - 20;
	}
      else
         mm--;
     }
   else
     {
      /* 
       *    store this partial product in the array
       *    and allocate the next array element
       */

      m_apm_copy(array[ct], iprod1);
      array[++ct] = m_apm_init();
     }
  }

PHASE2:

m_apm_copy(array[ct], iprod1);

kk = ct;

while (kk != 0)
  {
   ii = 0;
   jj = 0;
   nmul = (kk + 1) >> 1;

   while (TRUE)
     {
      /* must use tmp var when ii,jj point to same element */

      if (ii == 0)
        {
         m_apm_copy(tmp1, array[ii]);
         m_apm_multiply(array[jj], tmp1, array[ii+1]);
        }
      else
         m_apm_multiply(array[jj], array[ii], array[ii+1]);

      if (++jj == nmul)
        break;

      ii += 2;
     }

   if ((kk & 1) == 0)
     {
      jj = kk >> 1;
      m_apm_copy(array[jj], array[kk]);
     }

   kk = kk >> 1;
  }
Beispiel #12
0
int MAPM::compare(const MAPM &m) const
{
    return m_apm_compare(cval(),m.cval());
}
Beispiel #13
0
bool MAPM::operator>=(const MAPM &m) const
{
    return m_apm_compare(cval(),m.cval())>=0;
}
Beispiel #14
0
void	M_apm_sdivide(M_APM r, int places, M_APM a, M_APM b)
{
int	j, k, m, b0, sign, nexp, indexr, icompare, iterations;
long    trial_numer;
void	*vp;

if (M_div_firsttime)
  {
   M_div_firsttime = FALSE;

   M_div_worka = m_apm_init();
   M_div_workb = m_apm_init();
   M_div_tmp7  = m_apm_init();
   M_div_tmp8  = m_apm_init();
   M_div_tmp9  = m_apm_init();
  }

sign = a->m_apm_sign * b->m_apm_sign;

if (sign == 0)      /* one number is zero, result is zero */
  {
   if (b->m_apm_sign == 0)
     {
      M_apm_log_error_msg(M_APM_RETURN, "\'M_apm_sdivide\', Divide by 0");
     }

   M_set_to_zero(r);
   return;
  }

/*
 *  Knuth step D1. Since base = 100, base / 2 = 50.
 *  (also make the working copies positive)
 */

if (b->m_apm_data[0] >= 50)
  {
   m_apm_absolute_value(M_div_worka, a);
   m_apm_absolute_value(M_div_workb, b);
  }
else       /* 'normal' step D1 */
  {
   k = 100 / (b->m_apm_data[0] + 1);
   m_apm_set_long(M_div_tmp9, (long)k);

   m_apm_multiply(M_div_worka, M_div_tmp9, a);
   m_apm_multiply(M_div_workb, M_div_tmp9, b);

   M_div_worka->m_apm_sign = 1;
   M_div_workb->m_apm_sign = 1;
  }

/* setup trial denominator for step D3 */

b0 = 100 * (int)M_div_workb->m_apm_data[0];

if (M_div_workb->m_apm_datalength >= 3)
  b0 += M_div_workb->m_apm_data[1];

nexp = M_div_worka->m_apm_exponent - M_div_workb->m_apm_exponent;

if (nexp > 0)
  iterations = nexp + places + 1;
else
  iterations = places + 1;

k = (iterations + 1) >> 1;     /* required size of result, in bytes */

if (k > r->m_apm_malloclength)
  {
   if ((vp = MAPM_REALLOC(r->m_apm_data, (k + 32))) == NULL)
     {
      /* fatal, this does not return */

      M_apm_log_error_msg(M_APM_FATAL, "\'M_apm_sdivide\', Out of memory");
     }
  
   r->m_apm_malloclength = k + 28;
   r->m_apm_data = (UCHAR *)vp;
  }

/* clear the exponent in the working copies */

M_div_worka->m_apm_exponent = 0;
M_div_workb->m_apm_exponent = 0;

/* if numbers are equal, ratio == 1.00000... */

if ((icompare = m_apm_compare(M_div_worka, M_div_workb)) == 0)
  {
   iterations = 1;
   r->m_apm_data[0] = 10;
   nexp++;
  }
else			           /* ratio not 1, do the real division */
  {
   if (icompare == 1)                        /* numerator > denominator */
     {
      nexp++;                           /* to adjust the final exponent */
      M_div_worka->m_apm_exponent += 1;     /* multiply numerator by 10 */
     }
   else                                      /* numerator < denominator */
     {
      M_div_worka->m_apm_exponent += 2;    /* multiply numerator by 100 */
     }

   indexr = 0;
   m      = 0;

   while (TRUE)
     {
      /*
       *  Knuth step D3. Only use the 3rd -> 6th digits if the number
       *  actually has that many digits.
       */

      trial_numer = 10000L * (long)M_div_worka->m_apm_data[0];
      
      if (M_div_worka->m_apm_datalength >= 5)
        {
         trial_numer += 100 * M_div_worka->m_apm_data[1]
                            + M_div_worka->m_apm_data[2];
	}
      else
        {
         if (M_div_worka->m_apm_datalength >= 3)
           trial_numer += 100 * M_div_worka->m_apm_data[1];
        }

      j = (int)(trial_numer / b0);

      /* 
       *    Since the library 'normalizes' all the results, we need
       *    to look at the exponent of the number to decide if we 
       *    have a lead in 0n or 00.
       */

      if ((k = 2 - M_div_worka->m_apm_exponent) > 0)
        {
	 while (TRUE)
	   {
	    j /= 10;
	    if (--k == 0)
	      break;
	   }
	}

      if (j == 100)     /* qhat == base ??      */
        j = 99;         /* if so, decrease by 1 */

      m_apm_set_long(M_div_tmp8, (long)j);
      m_apm_multiply(M_div_tmp7, M_div_tmp8, M_div_workb);

      /*
       *    Compare our q-hat (j) against the desired number.
       *    j is either correct, 1 too large, or 2 too large
       *    per Theorem B on pg 272 of Art of Compter Programming,
       *    Volume 2, 3rd Edition.
       *    
       *    The above statement is only true if using the 2 leading
       *    digits of the numerator and the leading digit of the 
       *    denominator. Since we are using the (3) leading digits
       *    of the numerator and the (2) leading digits of the 
       *    denominator, we eliminate the case where our q-hat is 
       *    2 too large, (and q-hat being 1 too large is quite remote).
       */

      if (m_apm_compare(M_div_tmp7, M_div_worka) == 1)
        {
	 j--;
         m_apm_subtract(M_div_tmp8, M_div_tmp7, M_div_workb);
         m_apm_copy(M_div_tmp7, M_div_tmp8);
	}

      /* 
       *  Since we know q-hat is correct, step D6 is unnecessary.
       *
       *  Store q-hat, step D5. Since D6 is unnecessary, we can 
       *  do D5 before D4 and decide if we are done.
       */

      r->m_apm_data[indexr++] = (UCHAR)j;    /* j == 'qhat' */
      m += 2;

      if (m >= iterations)
        break;

      /* step D4 */

      m_apm_subtract(M_div_tmp9, M_div_worka, M_div_tmp7);

      /*
       *  if the subtraction yields zero, the division is exact
       *  and we are done early.
       */

      if (M_div_tmp9->m_apm_sign == 0)
        {
	 iterations = m;
	 break;
	}

      /* multiply by 100 and re-save */
      M_div_tmp9->m_apm_exponent += 2;
      m_apm_copy(M_div_worka, M_div_tmp9);
     }
  }

r->m_apm_sign       = sign;
r->m_apm_exponent   = nexp;
r->m_apm_datalength = iterations;

M_apm_normalize(r);
}
Beispiel #15
0
/*
	Calculate the POW function by calling EXP :

                  Y      A                 
                 X   =  e    where A = Y * log(X)
*/
void	m_apm_pow(M_APM rr, int places, M_APM xx, M_APM yy)
{
int	iflag, pflag;
char    sbuf[64];
M_APM   tmp8, tmp9;

/* if yy == 0, return 1 */

if (yy->m_apm_sign == 0)
  {
   m_apm_copy(rr, MM_One);
   return;
  }

/* if xx == 0, return 0 */

if (xx->m_apm_sign == 0)
  {
   M_set_to_zero(rr);
   return;
  }

if (M_size_flag == 0)       /* init locals on first call */
  {
   M_size_flag       = M_get_sizeof_int();
   M_last_log_digits = 0;
   M_last_xx_input   = m_apm_init();
   M_last_xx_log     = m_apm_init();
  }

/*
 *  if 'yy' is a small enough integer, call the more
 *  efficient _integer_pow function.
 */

if (m_apm_is_integer(yy))
  {
   iflag = FALSE;

   if (M_size_flag == 2)            /* 16 bit compilers */
     {
      if (yy->m_apm_exponent <= 4)
        iflag = TRUE;
     }
   else                             /* >= 32 bit compilers */
     {
      if (yy->m_apm_exponent <= 7)
        iflag = TRUE;
     }

   if (iflag)
     {
      m_apm_to_integer_string(sbuf, yy);
      m_apm_integer_pow(rr, places, xx, atoi(sbuf));
      return;
     }
  }

tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();

/*
 *    If parameter 'X' is the same this call as it 
 *    was the previous call, re-use the saved log 
 *    calculation from last time.
 */

pflag = FALSE;

if (M_last_log_digits >= places)
  {
   if (m_apm_compare(xx, M_last_xx_input) == 0)
     pflag = TRUE;
  }

if (pflag)
  {
   m_apm_round(tmp9, (places + 8), M_last_xx_log);
  }
else
  {
   m_apm_log(tmp9, (places + 8), xx);

   M_last_log_digits = places + 2;

   /* save the 'X' input value and the log calculation */

   m_apm_copy(M_last_xx_input, xx);
   m_apm_copy(M_last_xx_log, tmp9);
  }

m_apm_multiply(tmp8, tmp9, yy);
m_apm_exp(rr, places, tmp8);
M_restore_stack(2);                    /* restore the 2 locals we used here */
}