Beispiel #1
0
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, t1, t2;
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magma_int_t ione = 1;
    magma_trans_t trans[] = { MagmaNoTrans, MagmaConjTrans, MagmaTrans };
    magma_uplo_t  uplo [] = { MagmaLower, MagmaUpper };
    magma_diag_t  diag [] = { MagmaUnit, MagmaNonUnit };
    magma_side_t  side [] = { MagmaLeft, MagmaRight };
    
    magmaDoubleComplex  *A,  *B,  *C,   *C2, *LU;
    magmaDoubleComplex *dA, *dB, *dC1, *dC2;
    magmaDoubleComplex alpha = MAGMA_Z_MAKE( 0.5, 0.1 );
    magmaDoubleComplex beta  = MAGMA_Z_MAKE( 0.7, 0.2 );
    double dalpha = 0.6;
    double dbeta  = 0.8;
    double work[1], error, total_error;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t m, n, k, size, maxn, ld, info;
    magma_int_t *piv;
    magma_int_t err;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf( "Compares magma wrapper function to cublas function; all diffs should be exactly 0.\n\n" );
    
    total_error = 0.;
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        m = opts.msize[itest];
        n = opts.nsize[itest];
        k = opts.ksize[itest];
        printf("=========================================================================\n");
        printf( "m=%d, n=%d, k=%d\n", (int) m, (int) n, (int) k );
        
        // allocate matrices
        // over-allocate so they can be any combination of {m,n,k} x {m,n,k}.
        maxn = max( max( m, n ), k );
        ld = max( 1, maxn );
        size = ld*maxn;
        err = magma_malloc_cpu( (void**) &piv, maxn*sizeof(magma_int_t) );  assert( err == 0 );
        err = magma_zmalloc_pinned( &A,  size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &B,  size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &C,  size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &C2, size );  assert( err == 0 );
        err = magma_zmalloc_pinned( &LU, size );  assert( err == 0 );
        err = magma_zmalloc( &dA,  size );        assert( err == 0 );
        err = magma_zmalloc( &dB,  size );        assert( err == 0 );
        err = magma_zmalloc( &dC1, size );        assert( err == 0 );
        err = magma_zmalloc( &dC2, size );        assert( err == 0 );
        
        // initialize matrices
        size = maxn*maxn;
        lapackf77_zlarnv( &ione, ISEED, &size, A  );
        lapackf77_zlarnv( &ione, ISEED, &size, B  );
        lapackf77_zlarnv( &ione, ISEED, &size, C  );
        
        printf( "========== Level 1 BLAS ==========\n" );
        
        // ----- test ZSWAP
        // swap columns 2 and 3 of dA, then copy to C2 and compare with A
        if ( n >= 3 ) {
            magma_zsetmatrix( m, n, A, ld, dA, ld );
            magma_zsetmatrix( m, n, A, ld, dB, ld );
            magma_zswap( m, dA(0,1), 1, dA(0,2), 1 );
            magma_zswap( m, dB(0,1), 1, dB(0,2), 1 );
            
            // check results, storing diff between magma and cuda calls in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dA, 1, dB, 1 );
            magma_zgetmatrix( m, n, dB, ld, C2, ld );
            error = lapackf77_zlange( "F", &m, &k, C2, &ld, work );
            total_error += error;
            printf( "zswap             diff %.2g\n", error );
        }
        else {
            printf( "zswap skipped for n < 3\n" );
        }
        
        // ----- test IZAMAX
        // get argmax of column of A
        magma_zsetmatrix( m, k, A, ld, dA, ld );
        error = 0;
        for( int j = 0; j < k; ++j ) {
            magma_int_t i1 = magma_izamax( m, dA(0,j), 1 );
            int i2;  // NOT magma_int_t, for cublas
            cublasIzamax( handle, m, dA(0,j), 1, &i2 );
            // todo need sync here?
            assert( i1 == i2 );
            error += abs( i1 - i2 );
        }
        total_error += error;
        gflops = (double)m * k / 1e9;
        printf( "izamax            diff %.2g\n", error );
        printf( "\n" );
        
        printf( "========== Level 2 BLAS ==========\n" );
        
        // ----- test ZGEMV
        // c = alpha*A*b + beta*c,  with A m*n; b,c m or n-vectors
        // try no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
            magma_zsetmatrix( m, n, A,  ld, dA,  ld );
            magma_zsetvector( maxn, B, 1, dB,  1 );
            magma_zsetvector( maxn, C, 1, dC1, 1 );
            magma_zsetvector( maxn, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_zgemv( trans[ia], m, n, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZgemv( handle, cublas_trans_const(trans[ia]),
                         m, n, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            size = (trans[ia] == MagmaNoTrans ? m : n);
            cublasZaxpy( handle, size, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetvector( size, dC2, 1, C2, 1 );
            error = lapackf77_zlange( "F", &size, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZGEMV( m, n ) / 1e9;
            printf( "zgemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test ZHEMV
        // c = alpha*A*b + beta*c,  with A m*m symmetric; b,c m-vectors
        // try upper/lower
        for( int iu = 0; iu < 2; ++iu ) {
            magma_zsetmatrix( m, m, A, ld, dA, ld );
            magma_zsetvector( m, B, 1, dB,  1 );
            magma_zsetvector( m, C, 1, dC1, 1 );
            magma_zsetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_zhemv( uplo[iu], m, alpha, dA, ld, dB, 1, beta, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZhemv( handle, cublas_uplo_const(uplo[iu]),
                         m, &alpha, dA, ld, dB, 1, &beta, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_zlange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHEMV( m ) / 1e9;
            printf( "zhemv( %c )        diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), error, gflops/t1, gflops/t2 );
        }
        printf( "\n" );
        
        // ----- test ZTRSV
        // solve A*c = c,  with A m*m triangular; c m-vector
        // try upper/lower, no-trans/trans, unit/non-unit diag
        // Factor A into LU to get well-conditioned triangles, else solve yields garbage.
        // Still can give garbage if solves aren't consistent with LU factors,
        // e.g., using unit diag for U, so copy lower triangle to upper triangle.
        // Also used for trsm later.
        lapackf77_zlacpy( "Full", &maxn, &maxn, A, &ld, LU, &ld );
        lapackf77_zgetrf( &maxn, &maxn, LU, &ld, piv, &info );
        for( int j = 0; j < maxn; ++j ) {
            for( int i = 0; i < j; ++i ) {
                *LU(i,j) = *LU(j,i);
            }
        }
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            magma_zsetmatrix( m, m, LU, ld, dA, ld );
            magma_zsetvector( m, C, 1, dC1, 1 );
            magma_zsetvector( m, C, 1, dC2, 1 );
            
            t1 = magma_sync_wtime( 0 );
            magma_ztrsv( uplo[iu], trans[it], diag[id], m, dA, ld, dC1, 1 );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZtrsv( handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         cublas_diag_const(diag[id]), m, dA, ld, dC2, 1 );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, m, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetvector( m, dC2, 1, C2, 1 );
            error = lapackf77_zlange( "F", &m, &ione, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZTRSM( MagmaLeft, m, 1 ) / 1e9;
            printf( "ztrsv( %c, %c, %c )  diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]), lapacke_diag_const(diag[id]),
                    error, gflops/t1, gflops/t2 );
        }}}
        printf( "\n" );
        
        printf( "========== Level 3 BLAS ==========\n" );
        
        // ----- test ZGEMM
        // C = alpha*A*B + beta*C,  with A m*k or k*m; B k*n or n*k; C m*n
        // try combinations of no-trans/trans
        for( int ia = 0; ia < 3; ++ia ) {
        for( int ib = 0; ib < 3; ++ib ) {
            bool nta = (trans[ia] == MagmaNoTrans);
            bool ntb = (trans[ib] == MagmaNoTrans);
            magma_zsetmatrix( (nta ? m : k), (nta ? m : k), A, ld, dA,  ld );
            magma_zsetmatrix( (ntb ? k : n), (ntb ? n : k), B, ld, dB,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zgemm( trans[ia], trans[ib], m, n, k, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZgemm( handle, cublas_trans_const(trans[ia]), cublas_trans_const(trans[ib]),
                         m, n, k, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZGEMM( m, n, k ) / 1e9;
            printf( "zgemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_trans_const(trans[ia]), lapacke_trans_const(trans[ib]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZHEMM
        // C = alpha*A*B + beta*C  (left)  with A m*m symmetric; B,C m*n; or
        // C = alpha*B*A + beta*C  (right) with A n*n symmetric; B,C m*n
        // try left/right, upper/lower
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
            magma_zsetmatrix( m, m, A, ld, dA,  ld );
            magma_zsetmatrix( m, n, B, ld, dB,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zhemm( side[is], uplo[iu], m, n, alpha, dA, ld, dB, ld, beta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZhemm( handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         m, n, &alpha, dA, ld, dB, ld, &beta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &m, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHEMM( side[is], m, n ) / 1e9;
            printf( "zhemm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_side_const(side[is]), lapacke_uplo_const(uplo[iu]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZHERK
        // C = alpha*A*A^H + beta*C  (no-trans) with A m*k and C m*m symmetric; or
        // C = alpha*A^H*A + beta*C  (trans)    with A k*m and C m*m symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            magma_zsetmatrix( n, k, A, ld, dA,  ld );
            magma_zsetmatrix( n, n, C, ld, dC1, ld );
            magma_zsetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zherk( uplo[iu], trans[it], n, k, dalpha, dA, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZherk( handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                         n, k, &dalpha, dA, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHERK( k, n ) / 1e9;
            printf( "zherk( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZHER2K
        // C = alpha*A*B^H + ^alpha*B*A^H + beta*C  (no-trans) with A,B n*k; C n*n symmetric; or
        // C = alpha*A^H*B + ^alpha*B^H*A + beta*C  (trans)    with A,B k*n; C n*n symmetric
        // try upper/lower, no-trans/trans
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
            bool nt = (trans[it] == MagmaNoTrans);
            magma_zsetmatrix( (nt ? n : k), (nt ? n : k), A, ld, dA,  ld );
            magma_zsetmatrix( n, n, C, ld, dC1, ld );
            magma_zsetmatrix( n, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_zher2k( uplo[iu], trans[it], n, k, alpha, dA, ld, dB, ld, dbeta, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZher2k( handle, cublas_uplo_const(uplo[iu]), cublas_trans_const(trans[it]),
                          n, k, &alpha, dA, ld, dB, ld, &dbeta, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( n, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZHER2K( k, n ) / 1e9;
            printf( "zher2k( %c, %c )    diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}
        printf( "\n" );
        
        // ----- test ZTRMM
        // C = alpha*A*C  (left)  with A m*m triangular; C m*n; or
        // C = alpha*C*A  (right) with A n*n triangular; C m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_zsetmatrix( (left ? m : n), (left ? m : n), A, ld, dA,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ztrmm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            // note cublas does trmm out-of-place (i.e., adds output matrix C),
            // but allows C=B to do in-place.
            t2 = magma_sync_wtime( 0 );
            cublasZtrmm( handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZTRMM( side[is], m, n ) / 1e9;
            printf( "ztrmm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // ----- test ZTRSM
        // solve A*X = alpha*B  (left)  with A m*m triangular; B m*n; or
        // solve X*A = alpha*B  (right) with A n*n triangular; B m*n
        // try left/right, upper/lower, no-trans/trans, unit/non-unit
        for( int is = 0; is < 2; ++is ) {
        for( int iu = 0; iu < 2; ++iu ) {
        for( int it = 0; it < 3; ++it ) {
        for( int id = 0; id < 2; ++id ) {
            bool left = (side[is] == MagmaLeft);
            magma_zsetmatrix( (left ? m : n), (left ? m : n), LU, ld, dA,  ld );
            magma_zsetmatrix( m, n, C, ld, dC1, ld );
            magma_zsetmatrix( m, n, C, ld, dC2, ld );
            
            t1 = magma_sync_wtime( 0 );
            magma_ztrsm( side[is], uplo[iu], trans[it], diag[id], m, n, alpha, dA, ld, dC1, ld );
            t1 = magma_sync_wtime( 0 ) - t1;
            
            t2 = magma_sync_wtime( 0 );
            cublasZtrsm( handle, cublas_side_const(side[is]), cublas_uplo_const(uplo[iu]),
                         cublas_trans_const(trans[it]), cublas_diag_const(diag[id]),
                         m, n, &alpha, dA, ld, dC2, ld );
            t2 = magma_sync_wtime( 0 ) - t2;
            
            // check results, storing diff between magma and cuda call in C2
            cublasZaxpy( handle, ld*n, &c_neg_one, dC1, 1, dC2, 1 );
            magma_zgetmatrix( m, n, dC2, ld, C2, ld );
            error = lapackf77_zlange( "F", &n, &n, C2, &ld, work );
            total_error += error;
            gflops = FLOPS_ZTRSM( side[is], m, n ) / 1e9;
            printf( "ztrsm( %c, %c )     diff %.2g,  Gflop/s %7.2f, %7.2f\n",
                    lapacke_uplo_const(uplo[iu]), lapacke_trans_const(trans[it]),
                    error, gflops/t1, gflops/t2 );
        }}}}
        printf( "\n" );
        
        // cleanup
        magma_free_cpu( piv );
        magma_free_pinned( A  );
        magma_free_pinned( B  );
        magma_free_pinned( C  );
        magma_free_pinned( C2 );
        magma_free_pinned( LU );
        magma_free( dA  );
        magma_free( dB  );
        magma_free( dC1 );
        magma_free( dC2 );
        fflush( stdout );
    }
    
    if ( total_error != 0. ) {
        printf( "total error %.2g -- ought to be 0 -- some test failed (see above).\n",
                total_error );
    }
    else {
        printf( "all tests passed\n" );
    }
    
    TESTING_FINALIZE();
    
    int status = (total_error != 0.);
    return status;
}
Beispiel #2
0
extern "C" magma_int_t
magma_zcposv_gpu(char uplo, magma_int_t n, magma_int_t nrhs,
                 magmaDoubleComplex *dA, magma_int_t ldda,
                 magmaDoubleComplex *dB, magma_int_t lddb,
                 magmaDoubleComplex *dX, magma_int_t lddx,
                 magmaDoubleComplex *dworkd, magmaFloatComplex *dworks,
                 magma_int_t *iter, magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    ZCPOSV computes the solution to a complex system of linear equations
       A * X = B,
    where A is an N-by-N Hermitian positive definite matrix and X and B
    are N-by-NRHS matrices.

    ZCPOSV first attempts to factorize the matrix in complex SINGLE PRECISION
    and use this factorization within an iterative refinement procedure
    to produce a solution with complex DOUBLE PRECISION norm-wise backward error
    quality (see below). If the approach fails the method switches to a
    complex DOUBLE PRECISION factorization and solve.

    The iterative refinement is not going to be a winning strategy if
    the ratio complex SINGLE PRECISION performance over complex DOUBLE PRECISION
    performance is too small. A reasonable strategy should take the
    number of right-hand sides and the size of the matrix into account.
    This might be done with a call to ILAENV in the future. Up to now, we
    always try iterative refinement.

    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by DLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    =========
    UPLO    (input) CHARACTER
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The number of linear equations, i.e., the order of the
            matrix A.  N >= 0.

    NRHS    (input) INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    dA      (input or input/output) COMPLEX_16 array on the GPU, dimension (LDDA,N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
            N-by-N upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = 'L', the
            leading N-by-N lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit, if iterative refinement has been successfully used
            (INFO.EQ.0 and ITER.GE.0, see description below), then A is
            unchanged, if double factorization has been used
            (INFO.EQ.0 and ITER.LT.0, see description below), then the
            array dA contains the factor U or L from the Cholesky
            factorization A = U**T*U or A = L*L**T.

    LDDA    (input) INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,N).

    dB      (input) COMPLEX_16 array on the GPU, dimension (LDDB,NRHS)
            The N-by-NRHS right hand side matrix B.

    LDDB    (input) INTEGER
            The leading dimension of the array dB.  LDDB >= max(1,N).

    dX      (output) COMPLEX_16 array on the GPU, dimension (LDDX,NRHS)
            If INFO = 0, the N-by-NRHS solution matrix X.

    LDDX    (input) INTEGER
            The leading dimension of the array dX.  LDDX >= max(1,N).

    dworkd  (workspace) COMPLEX_16 array on the GPU, dimension (N*NRHS)
            This array is used to hold the residual vectors.

    dworks  (workspace) COMPLEX array on the GPU, dimension (N*(N+NRHS))
            This array is used to store the complex single precision matrix
            and the right-hand sides or solutions in single precision.

    ITER    (output) INTEGER
            < 0: iterative refinement has failed, double precision
                 factorization has been performed
                 -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
                 -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
                 -3 : failure of SPOTRF
                 -31: stop the iterative refinement after the 30th iteration
            > 0: iterative refinement has been successfully used.
                 Returns the number of iterations

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i, the leading minor of order i of (DOUBLE
                  PRECISION) A is not positive definite, so the
                  factorization could not be completed, and the solution
                  has not been computed.

    =====================================================================    */

    #define dB(i,j)     (dB + (i) + (j)*lddb)
    #define dX(i,j)     (dX + (i) + (j)*lddx)
    #define dR(i,j)     (dR + (i) + (j)*lddr)
    #define dSX(i,j)    (dSX + (i) + (j)*lddsx)

    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magma_int_t     ione  = 1;
    magmaDoubleComplex *dR;
    magmaFloatComplex  *dSA, *dSX;
    magmaDoubleComplex Xnrmv, Rnrmv;
    double          Anrm, Xnrm, Rnrm, cte, eps;
    magma_int_t     i, j, iiter, lddsa, lddsx, lddr;

    /* Check arguments */
    *iter = 0;
    *info = 0;
    if ( n < 0 )
        *info = -1;
    else if ( nrhs < 0 )
        *info = -2;
    else if ( ldda < max(1,n))
        *info = -4;
    else if ( lddb < max(1,n))
        *info = -7;
    else if ( lddx < max(1,n))
        *info = -9;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if ( n == 0 || nrhs == 0 )
        return *info;

    lddsa = n;
    lddsx = n;
    lddr  = n;
    
    dSA = dworks;
    dSX = dSA + lddsa*n;
    dR  = dworkd;

    eps  = lapackf77_dlamch("Epsilon");
    Anrm = magmablas_zlanhe('I', uplo, n, dA, ldda, (double*)dworkd );
    cte  = Anrm * eps * pow((double)n, 0.5) * BWDMAX;

    /*
     * Convert to single precision
     */
    magmablas_zlag2c( n, nrhs, dB, lddb, dSX, lddsx, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    magmablas_zlat2c( uplo, n, dA, ldda, dSA, lddsa, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }
    
    // factor dSA in single precision
    magma_cpotrf_gpu( uplo, n, dSA, lddsa, info );
    if (*info != 0) {
        *iter = -3;
        goto FALLBACK;
    }
    
    // solve dSA*dSX = dB in single precision
    magma_cpotrs_gpu( uplo, n, nrhs, dSA, lddsa, dSX, lddsx, info );

    // residual dR = dB - dA*dX in double precision
    magmablas_clag2z( n, nrhs, dSX, lddsx, dX, lddx, info );
    magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dR, lddr );
    if ( nrhs == 1 ) {
        magma_zhemv( uplo, n,
                     c_neg_one, dA, ldda,
                                dX, 1,
                     c_one,     dR, 1 );
    }
    else {
        magma_zhemm( MagmaLeft, uplo, n, nrhs,
                     c_neg_one, dA, ldda,
                                dX, lddx,
                     c_one,     dR, lddr );
    }

    // TODO: use MAGMA_Z_ABS( dX(i,j) ) instead of zlange?
    for( j=0; j < nrhs; j++ ) {
        i = magma_izamax( n, dX(0,j), 1) - 1;
        magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
        Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

        i = magma_izamax ( n, dR(0,j), 1 ) - 1;
        magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
        Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

        if ( Rnrm >  Xnrm*cte ) {
            goto REFINEMENT;
        }
    }
    
    *iter = 0;
    return *info;

REFINEMENT:
    for( iiter=1; iiter < ITERMAX; ) {
        *info = 0;
        // convert residual dR to single precision dSX
        magmablas_zlag2c( n, nrhs, dR, lddr, dSX, lddsx, info );
        if (*info != 0) {
            *iter = -2;
            goto FALLBACK;
        }
        // solve dSA*dSX = R in single precision
        magma_cpotrs_gpu( uplo, n, nrhs, dSA, lddsa, dSX, lddsx, info );

        // Add correction and setup residual
        // dX += dSX [including conversion]  --and--
        // dR = dB
        for( j=0; j < nrhs; j++ ) {
            magmablas_zcaxpycp( n, dSX(0,j), dX(0,j), dB(0,j), dR(0,j) );
        }

        // residual dR = dB - dA*dX in double precision
        if ( nrhs == 1 ) {
            magma_zhemv( uplo, n,
                         c_neg_one, dA, ldda,
                                    dX, 1,
                         c_one,     dR, 1 );
        }
        else {
            magma_zhemm( MagmaLeft, uplo, n, nrhs,
                         c_neg_one, dA, ldda,
                                    dX, lddx,
                         c_one,     dR, lddr );
        }

        /*  Check whether the nrhs normwise backward errors satisfy the
         *  stopping criterion. If yes, set ITER=IITER>0 and return. */
        for( j=0; j < nrhs; j++ ) {
            i = magma_izamax( n, dX(0,j), 1) - 1;
            magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
            Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

            i = magma_izamax ( n, dR(0,j), 1 ) - 1;
            magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
            Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

            if ( Rnrm >  Xnrm*cte ) {
                goto L20;
            }
        }

        /*  If we are here, the nrhs normwise backward errors satisfy
         *  the stopping criterion, we are good to exit. */
        *iter = iiter;
        return *info;
        
      L20:
        iiter++;
    }
    
    /* If we are at this place of the code, this is because we have
     * performed ITER=ITERMAX iterations and never satisified the
     * stopping criterion. Set up the ITER flag accordingly and follow
     * up on double precision routine. */
    *iter = -ITERMAX - 1;

FALLBACK:
    /* Single-precision iterative refinement failed to converge to a
     * satisfactory solution, so we resort to double precision. */
    magma_zpotrf_gpu( uplo, n, dA, ldda, info );
    if (*info == 0) {
        magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dX, lddx );
        magma_zpotrs_gpu( uplo, n, nrhs, dA, ldda, dX, lddx, info );
    }
    
    return *info;
}
Beispiel #3
0
/**
    Purpose
    -------
    ZCGESV computes the solution to a complex system of linear equations
       A * X = B,  A**T * X = B,  or  A**H * X = B,
    where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

    ZCGESV first attempts to factorize the matrix in complex SINGLE PRECISION
    and use this factorization within an iterative refinement procedure
    to produce a solution with complex DOUBLE PRECISION norm-wise backward error
    quality (see below). If the approach fails the method switches to a
    complex DOUBLE PRECISION factorization and solve.

    The iterative refinement is not going to be a winning strategy if
    the ratio complex SINGLE PRECISION performance over complex DOUBLE PRECISION
    performance is too small. A reasonable strategy should take the
    number of right-hand sides and the size of the matrix into account.
    This might be done with a call to ILAENV in the future. Up to now, we
    always try iterative refinement.

    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by DLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    ---------
    @param[in]
    trans   magma_trans_t
            Specifies the form of the system of equations:
      -     = MagmaNoTrans:    A    * X = B  (No transpose)
      -     = MagmaTrans:      A**T * X = B  (Transpose)
      -     = MagmaConjTrans:  A**H * X = B  (Conjugate transpose)

    @param[in]
    n       INTEGER
            The number of linear equations, i.e., the order of the
            matrix A.  N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    @param[in,out]
    dA      COMPLEX_16 array on the GPU, dimension (ldda,N)
            On entry, the N-by-N coefficient matrix A.
            On exit, if iterative refinement has been successfully used
            (info.EQ.0 and ITER.GE.0, see description below), A is
            unchanged. If double precision factorization has been used
            (info.EQ.0 and ITER.LT.0, see description below), then the
            array dA contains the factors L and U from the factorization
            A = P*L*U; the unit diagonal elements of L are not stored.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  ldda >= max(1,N).

    @param[out]
    ipiv    INTEGER array, dimension (N)
            The pivot indices that define the permutation matrix P;
            row i of the matrix was interchanged with row IPIV(i).
            Corresponds either to the single precision factorization
            (if info.EQ.0 and ITER.GE.0) or the double precision
            factorization (if info.EQ.0 and ITER.LT.0).

    @param[out]
    dipiv   INTEGER array on the GPU, dimension (N)
            The pivot indices; for 1 <= i <= N, after permuting, row i of the
            matrix was moved to row dIPIV(i).
            Note this is different than IPIV, where interchanges
            are applied one-after-another.

    @param[in]
    dB      COMPLEX_16 array on the GPU, dimension (lddb,NRHS)
            The N-by-NRHS right hand side matrix B.

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB.  lddb >= max(1,N).

    @param[out]
    dX      COMPLEX_16 array on the GPU, dimension (lddx,NRHS)
            If info = 0, the N-by-NRHS solution matrix X.

    @param[in]
    lddx    INTEGER
            The leading dimension of the array dX.  lddx >= max(1,N).

    @param
    dworkd  (workspace) COMPLEX_16 array on the GPU, dimension (N*NRHS)
            This array is used to hold the residual vectors.

    @param
    dworks  (workspace) COMPLEX array on the GPU, dimension (N*(N+NRHS))
            This array is used to store the complex single precision matrix
            and the right-hand sides or solutions in single precision.

    @param[out]
    iter    INTEGER
      -     < 0: iterative refinement has failed, double precision
                 factorization has been performed
        +        -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
        +        -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
        +        -3 : failure of SGETRF
        +        -31: stop the iterative refinement after the 30th iteration
      -     > 0: iterative refinement has been successfully used.
                 Returns the number of iterations

    @param[out]
    info   INTEGER
      -     = 0:  successful exit
      -     < 0:  if info = -i, the i-th argument had an illegal value
      -     > 0:  if info = i, U(i,i) computed in DOUBLE PRECISION is
                  exactly zero.  The factorization has been completed,
                  but the factor U is exactly singular, so the solution
                  could not be computed.

    @ingroup magma_zgesv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zcgesv_gpu(magma_trans_t trans, magma_int_t n, magma_int_t nrhs,
                 magmaDoubleComplex *dA, magma_int_t ldda,
                 magma_int_t *ipiv,  magma_int_t *dipiv,
                 magmaDoubleComplex *dB, magma_int_t lddb,
                 magmaDoubleComplex *dX, magma_int_t lddx,
                 magmaDoubleComplex *dworkd, magmaFloatComplex *dworks,
                 magma_int_t *iter, magma_int_t *info)
{
#define dB(i,j)     (dB + (i) + (j)*lddb)
#define dX(i,j)     (dX + (i) + (j)*lddx)
#define dR(i,j)     (dR + (i) + (j)*lddr)

    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magma_int_t     ione  = 1;
    magmaDoubleComplex *dR;
    magmaFloatComplex  *dSA, *dSX;
    magmaDoubleComplex Xnrmv, Rnrmv;
    double          Anrm, Xnrm, Rnrm, cte, eps;
    magma_int_t     i, j, iiter, lddsa, lddr;

    /* Check arguments */
    *iter = 0;
    *info = 0;
    if ( n < 0 )
        *info = -1;
    else if ( nrhs < 0 )
        *info = -2;
    else if ( ldda < max(1,n))
        *info = -4;
    else if ( lddb < max(1,n))
        *info = -8;
    else if ( lddx < max(1,n))
        *info = -10;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if ( n == 0 || nrhs == 0 )
        return *info;

    lddsa = n;
    lddr  = n;

    dSA = dworks;
    dSX = dSA + lddsa*n;
    dR  = dworkd;

    eps  = lapackf77_dlamch("Epsilon");
    Anrm = magmablas_zlange(MagmaInfNorm, n, n, dA, ldda, (double*)dworkd );
    cte  = Anrm * eps * pow((double)n, 0.5) * BWDMAX;

    /*
     * Convert to single precision
     */
    //magmablas_zlag2c( n, nrhs, dB, lddb, dSX, lddsx, info );  // done inside zcgetrs with pivots
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    magmablas_zlag2c( n, n, dA, ldda, dSA, lddsa, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    // factor dSA in single precision
    magma_cgetrf_gpu( n, n, dSA, lddsa, ipiv, info );
    if (*info != 0) {
        *iter = -3;
        goto FALLBACK;
    }

    // Generate parallel pivots
    {
        magma_int_t *newipiv;
        magma_imalloc_cpu( &newipiv, n );
        if ( newipiv == NULL ) {
            *iter = -3;
            goto FALLBACK;
        }
        swp2pswp( trans, n, ipiv, newipiv );
        magma_setvector( n, sizeof(magma_int_t), newipiv, 1, dipiv, 1 );
        magma_free_cpu( newipiv );
    }

    // solve dSA*dSX = dB in single precision
    // converts dB to dSX and applies pivots, solves, then converts result back to dX
    magma_zcgetrs_gpu( trans, n, nrhs, dSA, lddsa, dipiv, dB, lddb, dX, lddx, dSX, info );

    // residual dR = dB - dA*dX in double precision
    magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dR, lddr );
    if ( nrhs == 1 ) {
        magma_zgemv( trans, n, n,
                     c_neg_one, dA, ldda,
                     dX, 1,
                     c_one,     dR, 1 );
    }
    else {
        magma_zgemm( trans, MagmaNoTrans, n, nrhs, n,
                     c_neg_one, dA, ldda,
                     dX, lddx,
                     c_one,     dR, lddr );
    }

    // TODO: use MAGMA_Z_ABS( dX(i,j) ) instead of zlange?
    for( j=0; j < nrhs; j++ ) {
        i = magma_izamax( n, dX(0,j), 1) - 1;
        magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
        Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

        i = magma_izamax ( n, dR(0,j), 1 ) - 1;
        magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
        Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

        if ( Rnrm >  Xnrm*cte ) {
            goto REFINEMENT;
        }
    }

    *iter = 0;
    return *info;

REFINEMENT:
    for( iiter=1; iiter < ITERMAX; ) {
        *info = 0;
        // convert residual dR to single precision dSX
        // solve dSA*dSX = R in single precision
        // convert result back to double precision dR
        // it's okay that dR is used for both dB input and dX output.
        magma_zcgetrs_gpu( trans, n, nrhs, dSA, lddsa, dipiv, dR, lddr, dR, lddr, dSX, info );
        if (*info != 0) {
            *iter = -3;
            goto FALLBACK;
        }

        // Add correction and setup residual
        // dX += dR  --and--
        // dR = dB
        // This saves going through dR a second time (if done with one more kernel).
        // -- not really: first time is read, second time is write.
        for( j=0; j < nrhs; j++ ) {
            magmablas_zaxpycp( n, dR(0,j), dX(0,j), dB(0,j) );
        }

        // residual dR = dB - dA*dX in double precision
        if ( nrhs == 1 ) {
            magma_zgemv( trans, n, n,
                         c_neg_one, dA, ldda,
                         dX, 1,
                         c_one,     dR, 1 );
        }
        else {
            magma_zgemm( trans, MagmaNoTrans, n, nrhs, n,
                         c_neg_one, dA, ldda,
                         dX, lddx,
                         c_one,     dR, lddr );
        }

        /*  Check whether the nrhs normwise backward errors satisfy the
         *  stopping criterion. If yes, set ITER=IITER > 0 and return. */
        for( j=0; j < nrhs; j++ ) {
            i = magma_izamax( n, dX(0,j), 1) - 1;
            magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
            Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

            i = magma_izamax ( n, dR(0,j), 1 ) - 1;
            magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
            Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

            if ( Rnrm >  Xnrm*cte ) {
                goto L20;
            }
        }

        /*  If we are here, the nrhs normwise backward errors satisfy
         *  the stopping criterion, we are good to exit. */
        *iter = iiter;
        return *info;

L20:
        iiter++;
    }

    /* If we are at this place of the code, this is because we have
     * performed ITER=ITERMAX iterations and never satisified the
     * stopping criterion. Set up the ITER flag accordingly and follow
     * up on double precision routine. */
    *iter = -ITERMAX - 1;

FALLBACK:
    /* Single-precision iterative refinement failed to converge to a
     * satisfactory solution, so we resort to double precision. */
    magma_zgetrf_gpu( n, n, dA, ldda, ipiv, info );
    if (*info == 0) {
        magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dX, lddx );
        magma_zgetrs_gpu( trans, n, nrhs, dA, ldda, ipiv, dX, lddx, info );
    }

    return *info;
}
Beispiel #4
0
/**
    Purpose
    -------
    ZCGEQRSV solves the least squares problem
       min || A*X - B ||,
    where A is an M-by-N matrix and X and B are M-by-NRHS matrices.

    ZCGEQRSV first attempts to factorize the matrix in complex SINGLE PRECISION
    and use this factorization within an iterative refinement procedure
    to produce a solution with complex DOUBLE PRECISION norm-wise backward error
    quality (see below). If the approach fails the method switches to a
    complex DOUBLE PRECISION factorization and solve.

    The iterative refinement is not going to be a winning strategy if
    the ratio complex SINGLE PRECISION performance over complex DOUBLE PRECISION
    performance is too small. A reasonable strategy should take the
    number of right-hand sides and the size of the matrix into account.
    This might be done with a call to ILAENV in the future. Up to now, we
    always try iterative refinement.
    
    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by DLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    @param[in,out]
    dA      COMPLEX_16 array on the GPU, dimension (LDDA,N)
            On entry, the M-by-N coefficient matrix A.
            On exit, if iterative refinement has been successfully used
            (info.EQ.0 and ITER.GE.0, see description below), A is
            unchanged. If double precision factorization has been used
            (info.EQ.0 and ITER.LT.0, see description below), then the
            array dA contains the QR factorization of A as returned by
            function DGEQRF_GPU.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,M).

    @param[in,out]
    dB      COMPLEX_16 array on the GPU, dimension (LDDB,NRHS)
            The M-by-NRHS right hand side matrix B.
            May be overwritten (e.g., if refinement fails).

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB.  LDDB >= max(1,M).

    @param[out]
    dX      COMPLEX_16 array on the GPU, dimension (LDDX,NRHS)
            If info = 0, the N-by-NRHS solution matrix X.

    @param[in]
    lddx    INTEGER
            The leading dimension of the array dX.  LDDX >= max(1,N).

    @param[out]
    iter    INTEGER
      -     < 0: iterative refinement has failed, double precision
                 factorization has been performed
        +        -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
        +        -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
        +        -3 : failure of SGEQRF
        +        -31: stop the iterative refinement after the 30th iteration
      -     > 0: iterative refinement has been successfully used.
                 Returns the number of iterations

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if info = -i, the i-th argument had an illegal value

    @ingroup magma_zgels_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zcgeqrsv_gpu(
    magma_int_t m, magma_int_t n, magma_int_t nrhs,
    magmaDoubleComplex_ptr dA,  magma_int_t ldda,
    magmaDoubleComplex_ptr dB,  magma_int_t lddb,
    magmaDoubleComplex_ptr dX,  magma_int_t lddx,
    magma_int_t *iter,
    magma_int_t *info)
{
    #define dB(i,j)     (dB + (i) + (j)*lddb)
    #define dX(i,j)     (dX + (i) + (j)*lddx)
    #define dR(i,j)     (dR + (i) + (j)*lddr)
    #define dSX(i,j)    (dSX + (i) + (j)*lddsx)
    
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magma_int_t     ione  = 1;
    magmaDoubleComplex *hworkd;
    magmaFloatComplex  *hworks;
    magmaDoubleComplex *tau;
    magmaFloatComplex  *stau;
    magmaDoubleComplex_ptr dworkd;
    magmaFloatComplex_ptr  dworks;
    magmaDoubleComplex_ptr dR, dT;
    magmaFloatComplex_ptr  dSA, dSX, dST;
    magmaDoubleComplex Xnrmv, Rnrmv;
    double          Anrm, Xnrm, Rnrm, cte, eps;
    magma_int_t     i, j, iiter, lddsa, lddsx, lddr, nb, lhwork, minmn, size, ldworkd;

    /* Check arguments */
    *iter = 0;
    *info = 0;
    if ( m < 0 )
        *info = -1;
    else if ( n < 0 || n > m )
        *info = -2;
    else if ( nrhs < 0 )
        *info = -3;
    else if ( ldda < max(1,m))
        *info = -5;
    else if ( lddb < max(1,m))
        *info = -7;
    else if ( lddx < max(1,n))
        *info = -9;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if ( m == 0 || n == 0 || nrhs == 0 )
        return *info;

    nb   = magma_get_cgeqrf_nb(m);
    minmn= min(m, n);
    
    /* dSX contains both B and X, so must be max(m or lddb,n). */
    lddsa = ldda;
    lddsx = max(lddb,n);
    lddr  = lddb;
    
    /*
     * Allocate temporary buffers
     */
    /* dworks(dSA + dSX + dST) */
    size = lddsa*n + lddsx*nrhs + ( 2*minmn + ((n+31)/32)*32 )*nb;
    if (MAGMA_SUCCESS != magma_cmalloc( &dworks, size )) {
        fprintf(stderr, "Allocation of dworks failed (%d)\n", (int) size);
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dSA = dworks;
    dSX = dSA + lddsa*n;
    dST = dSX + lddsx*nrhs;

    /* dworkd(dR) = lddr*nrhs */
    ldworkd = lddr*nrhs;
    if (MAGMA_SUCCESS != magma_zmalloc( &dworkd, ldworkd )) {
        magma_free( dworks );
        fprintf(stderr, "Allocation of dworkd failed\n");
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dR = dworkd;

    /* hworks(workspace for cgeqrs + stau) = min(m,n) + lhworks */
    lhwork = (m - n + nb)*(nrhs + nb) + nrhs*nb;
    size = lhwork + minmn;
    magma_cmalloc_cpu( &hworks, size );
    if ( hworks == NULL ) {
        magma_free( dworks );
        magma_free( dworkd );
        fprintf(stderr, "Allocation of hworks failed\n");
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    stau = hworks + lhwork;

    eps  = lapackf77_dlamch("Epsilon");
    Anrm = magmablas_zlange(MagmaInfNorm, m, n, dA, ldda, (double*)dworkd );
    cte  = Anrm * eps * pow((double)n, 0.5) * BWDMAX;

    /*
     * Convert to single precision
     */
    magmablas_zlag2c( m, nrhs, dB, lddb, dSX, lddsx, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    magmablas_zlag2c( m, n, dA, ldda, dSA, lddsa, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    // factor dSA in single precision
    magma_cgeqrf_gpu( m, n, dSA, lddsa, stau, dST, info );
    if (*info != 0) {
        *iter = -3;
        goto FALLBACK;
    }

    // solve dSA*dSX = dB in single precision
    magma_cgeqrs_gpu( m, n, nrhs, dSA, lddsa, stau, dST, dSX, lddsx, hworks, lhwork, info );
    if (*info != 0) {
        *iter = -3;
        goto FALLBACK;
    }

    // residual dR = dB - dA*dX in double precision
    magmablas_clag2z( n, nrhs, dSX, lddsx, dX, lddx, info );
    magmablas_zlacpy( MagmaUpperLower, m, nrhs, dB, lddb, dR, lddr );
    if ( nrhs == 1 ) {
        magma_zgemv( MagmaNoTrans, m, n,
                     c_neg_one, dA, ldda,
                                dX, 1,
                     c_one,     dR, 1 );
    }
    else {
        magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, nrhs, n,
                     c_neg_one, dA, ldda,
                                dX, lddx,
                     c_one,     dR, lddr );
    }

    // TODO: use MAGMA_Z_ABS( dX(i,j) ) instead of zlange?
    for( j=0; j < nrhs; j++ ) {
        i = magma_izamax( n, dX(0,j), 1) - 1;
        magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
        Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

        i = magma_izamax ( m, dR(0,j), 1 ) - 1;
        magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
        Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

        if ( Rnrm >  Xnrm*cte ) {
            goto REFINEMENT;
        }
    }

    *iter = 0;

    /* Free workspaces */
    magma_free( dworks );
    magma_free( dworkd );
    magma_free_cpu( hworks );
    return *info;

REFINEMENT:
    /* TODO: this iterative refinement algorithm works only for compatibile
     * systems (B in colspan of A).
     * See Matrix Computations (3rd ed) p. 267 for correct algorithm. */
    for( iiter=1; iiter < ITERMAX; ) {
        *info = 0;
        // convert residual dR to single precision dSX
        magmablas_zlag2c( m, nrhs, dR, lddr, dSX, lddsx, info );
        if (*info != 0) {
            *iter = -2;
            goto FALLBACK;
        }
        // solve dSA*dSX = R in single precision
        magma_cgeqrs_gpu( m, n, nrhs, dSA, lddsa, stau, dST, dSX, lddsx, hworks, lhwork, info );
        if (*info != 0) {
            *iter = -3;
            goto FALLBACK;
        }

        // Add correction and setup residual
        // dX += dSX [including conversion]  --and--
        // dR[1:n] = dB[1:n]   (only n rows, not whole m rows! -- useless if m > n)
        for( j=0; j < nrhs; j++ ) {
            magmablas_zcaxpycp( n, dSX(0,j), dX(0,j), dB(0,j), dR(0,j) );
        }
        // dR = dB  (whole m rows)
        magmablas_zlacpy( MagmaUpperLower, m, nrhs, dB, lddb, dR, lddr );
        
        // residual dR = dB - dA*dX in double precision
        if ( nrhs == 1 ) {
            magma_zgemv( MagmaNoTrans, m, n,
                         c_neg_one, dA, ldda,
                                    dX, 1,
                         c_one,     dR, 1 );
        }
        else {
            magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, nrhs, n,
                         c_neg_one, dA, ldda,
                                    dX, lddx,
                         c_one,     dR, lddr );
        }

        /*  Check whether the nrhs normwise backward errors satisfy the
         *  stopping criterion. If yes, set ITER=IITER > 0 and return. */
        for( j=0; j < nrhs; j++ ) {
            i = magma_izamax( n, dX(0,j), 1) - 1;
            magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
            Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

            i = magma_izamax ( m, dR(0,j), 1 ) - 1;
            magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
            Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

            if ( Rnrm >  Xnrm*cte ) {
                goto L20;
            }
        }

        /*  If we are here, the nrhs normwise backward errors satisfy
         *  the stopping criterion, we are good to exit. */
        *iter = iiter;

        /* Free workspaces */
        magma_free( dworks );
        magma_free( dworkd );
        magma_free_cpu( hworks );
        return *info;
        
      L20:
        iiter++;
    }

    /* If we are at this place of the code, this is because we have
     * performed ITER=ITERMAX iterations and never satisified the
     * stopping criterion. Set up the ITER flag accordingly and follow
     * up on double precision routine. */
    *iter = -ITERMAX - 1;
    
FALLBACK:
    /* Single-precision iterative refinement failed to converge to a
     * satisfactory solution, so we resort to double precision. */
    magma_free( dworks );
    magma_free_cpu( hworks );

    /*
     * Allocate temporary buffers
     */
    /* dworkd = dT for zgeqrf */
    nb   = magma_get_zgeqrf_nb( m );
    size = (2*min(m, n) + (n+31)/32*32 )*nb;
    if ( size > ldworkd ) {
        magma_free( dworkd );
        if (MAGMA_SUCCESS != magma_zmalloc( &dworkd, size )) {
            fprintf(stderr, "Allocation of dworkd2 failed\n");
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
    }
    dT = dworkd;

    /* hworkd(dtau + workspace for zgeqrs) = min(m,n) + lhwork */
    size = lhwork + minmn;
    magma_zmalloc_cpu( &hworkd, size );
    if ( hworkd == NULL ) {
        magma_free( dworkd );
        fprintf(stderr, "Allocation of hworkd2 failed\n");
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    tau = hworkd + lhwork;

    magma_zgeqrf_gpu( m, n, dA, ldda, tau, dT, info );
    if (*info == 0) {
        // if m > n, then dB won't fit in dX, so solve with dB and copy n rows to dX
        magma_zgeqrs_gpu( m, n, nrhs, dA, ldda, tau, dT, dB, lddb, hworkd, lhwork, info );
        magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dX, lddx );
    }

    magma_free( dworkd );
    magma_free_cpu( hworkd );
    return *info;
}
Beispiel #5
0
extern "C" magma_int_t
magma_zcgeqrsv_gpu(magma_int_t m, magma_int_t n, magma_int_t nrhs,
                   magmaDoubleComplex *dA,  magma_int_t ldda,
                   magmaDoubleComplex *dB,  magma_int_t lddb,
                   magmaDoubleComplex *dX,  magma_int_t lddx,
                   magma_int_t *iter, magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    ZCGEQRSV solves the least squares problem
       min || A*X - B ||,
    where A is an M-by-N matrix and X and B are M-by-NRHS matrices.

    ZCGEQRSV first attempts to factorize the matrix in complex SINGLE PRECISION
    and use this factorization within an iterative refinement procedure
    to produce a solution with complex DOUBLE PRECISION norm-wise backward error
    quality (see below). If the approach fails the method switches to a
    complex DOUBLE PRECISION factorization and solve.

    The iterative refinement is not going to be a winning strategy if
    the ratio complex SINGLE PRECISION performance over complex DOUBLE PRECISION
    performance is too small. A reasonable strategy should take the
    number of right-hand sides and the size of the matrix into account.
    This might be done with a call to ILAENV in the future. Up to now, we
    always try iterative refinement.
    
    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by DLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    NRHS    (input) INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    dA      (input or input/output) COMPLEX_16 array on the GPU, dimension (LDDA,N)
            On entry, the M-by-N coefficient matrix A.
            On exit, if iterative refinement has been successfully used
            (info.EQ.0 and ITER.GE.0, see description below), A is
            unchanged. If double precision factorization has been used
            (info.EQ.0 and ITER.LT.0, see description below), then the
            array dA contains the QR factorization of A as returned by
            function DGEQRF_GPU.

    LDDA    (input) INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,M).

    dB      (input or input/output) COMPLEX_16 array on the GPU, dimension (LDDB,NRHS)
            The M-by-NRHS right hand side matrix B.
            May be overwritten (e.g., if refinement fails).

    LDDB    (input) INTEGER
            The leading dimension of the array dB.  LDDB >= max(1,M).

    dX      (output) COMPLEX_16 array on the GPU, dimension (LDDX,NRHS)
            If info = 0, the N-by-NRHS solution matrix X.

    LDDX    (input) INTEGER
            The leading dimension of the array dX.  LDDX >= max(1,N).

    ITER    (output) INTEGER
            < 0: iterative refinement has failed, double precision
                 factorization has been performed
                 -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
                 -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
                 -3 : failure of SGEQRF
                 -31: stop the iterative refinement after the 30th iteration
            > 0: iterative refinement has been successfully used.
                 Returns the number of iterations

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if info = -i, the i-th argument had an illegal value

    =====================================================================    */

    #define dB(i,j)     (dB + (i) + (j)*lddb)
    #define dX(i,j)     (dX + (i) + (j)*lddx)
    #define dR(i,j)     (dR + (i) + (j)*lddr)
    #define dSX(i,j)    (dSX + (i) + (j)*lddsx)
    
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magma_int_t     ione  = 1;
    magmaDoubleComplex *dworkd, *hworkd;
    magmaFloatComplex  *dworks, *hworks;
    magmaDoubleComplex *dR, *tau, *dT;
    magmaFloatComplex  *dSA, *dSX, *dST, *stau;
    magmaDoubleComplex Xnrmv, Rnrmv;
    double          Anrm, Xnrm, Rnrm, cte, eps;
    magma_int_t     i, j, iiter, lddsa, lddsx, lddr, nb, lhwork, minmn, size, ldworkd;

    /* Check arguments */
    *iter = 0;
    *info = 0;
    if ( m < 0 )
        *info = -1;
    else if ( n < 0 || n > m )
        *info = -2;
    else if ( nrhs < 0 )
        *info = -3;
    else if ( ldda < max(1,m))
        *info = -5;
    else if ( lddb < max(1,m))
        *info = -7;
    else if ( lddx < max(1,n))
        *info = -9;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if ( m == 0 || n == 0 || nrhs == 0 )
        return *info;

    nb   = magma_get_cgeqrf_nb(m);
    minmn= min(m, n);
    
    /* dSX contains both B and X, so must be max(m or lddb,n). */
    lddsa = ldda;
    lddsx = max(lddb,n);
    lddr  = lddb;
    
    /*
     * Allocate temporary buffers
     */
    /* dworks(dSA + dSX + dST) */
    size = lddsa*n + lddsx*nrhs + ( 2*minmn + ((n+31)/32)*32 )*nb;
    if (MAGMA_SUCCESS != magma_cmalloc( &dworks, size )) {
        fprintf(stderr, "Allocation of dworks failed (%d)\n", (int) size);
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dSA = dworks;
    dSX = dSA + lddsa*n;
    dST = dSX + lddsx*nrhs;

    /* dworkd(dR) = lddr*nrhs */
    ldworkd = lddr*nrhs;
    if (MAGMA_SUCCESS != magma_zmalloc( &dworkd, ldworkd )) {
        magma_free( dworks );
        fprintf(stderr, "Allocation of dworkd failed\n");
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dR = dworkd;

    /* hworks(workspace for cgeqrs + stau) = min(m,n) + lhworks */
    lhwork = (m - n + nb)*(nrhs + nb) + nrhs*nb;
    size = lhwork + minmn;
    magma_cmalloc_cpu( &hworks, size );
    if ( hworks == NULL ) {
        magma_free( dworks );
        magma_free( dworkd );
        fprintf(stderr, "Allocation of hworks failed\n");
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    stau = hworks + lhwork;

    eps  = lapackf77_dlamch("Epsilon");
    Anrm = magmablas_zlange('I', m, n, dA, ldda, (double*)dworkd );
    cte  = Anrm * eps * pow((double)n, 0.5) * BWDMAX;

    /*
     * Convert to single precision
     */
    magmablas_zlag2c( m, nrhs, dB, lddb, dSX, lddsx, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    magmablas_zlag2c( m, n, dA, ldda, dSA, lddsa, info );
    if (*info != 0) {
        *iter = -2;
        goto FALLBACK;
    }

    // factor dSA in single precision
    magma_cgeqrf_gpu( m, n, dSA, lddsa, stau, dST, info );
    if (*info != 0) {
        *iter = -3;
        goto FALLBACK;
    }

    // solve dSA*dSX = dB in single precision
    magma_cgeqrs_gpu( m, n, nrhs, dSA, lddsa, stau, dST, dSX, lddsx, hworks, lhwork, info );
    if (*info != 0) {
        *iter = -3;
        goto FALLBACK;
    }

    // residual dR = dB - dA*dX in double precision
    magmablas_clag2z( n, nrhs, dSX, lddsx, dX, lddx, info );
    magmablas_zlacpy( MagmaUpperLower, m, nrhs, dB, lddb, dR, lddr );
    if ( nrhs == 1 ) {
        magma_zgemv( MagmaNoTrans, m, n,
                     c_neg_one, dA, ldda,
                                dX, 1,
                     c_one,     dR, 1 );
    }
    else {
        magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, nrhs, n,
                     c_neg_one, dA, ldda,
                                dX, lddx,
                     c_one,     dR, lddr );
    }

    // TODO: use MAGMA_Z_ABS( dX(i,j) ) instead of zlange?
    for( j=0; j < nrhs; j++ ) {
        i = magma_izamax( n, dX(0,j), 1) - 1;
        magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
        Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

        i = magma_izamax ( m, dR(0,j), 1 ) - 1;
        magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
        Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

        if ( Rnrm >  Xnrm*cte ) {
            goto REFINEMENT;
        }
    }

    *iter = 0;

    /* Free workspaces */
    magma_free( dworks );
    magma_free( dworkd );
    magma_free_cpu( hworks );
    return *info;

REFINEMENT:
    /* TODO: this iterative refinement algorithm works only for compatibile
     * systems (B in colspan of A).
     * See Matrix Computations (3rd ed) p. 267 for correct algorithm. */
    for( iiter=1; iiter < ITERMAX; ) {
        *info = 0;
        // convert residual dR to single precision dSX
        magmablas_zlag2c( m, nrhs, dR, lddr, dSX, lddsx, info );
        if (*info != 0) {
            *iter = -2;
            goto FALLBACK;
        }
        // solve dSA*dSX = R in single precision
        magma_cgeqrs_gpu( m, n, nrhs, dSA, lddsa, stau, dST, dSX, lddsx, hworks, lhwork, info );
        if (*info != 0) {
            *iter = -3;
            goto FALLBACK;
        }

        // Add correction and setup residual
        // dX += dSX [including conversion]  --and--
        // dR[1:n] = dB[1:n]   (only n rows, not whole m rows! -- useless if m > n)
        for( j=0; j < nrhs; j++ ) {
            magmablas_zcaxpycp( n, dSX(0,j), dX(0,j), dB(0,j), dR(0,j) );
        }
        // dR = dB  (whole m rows)
        magmablas_zlacpy( MagmaUpperLower, m, nrhs, dB, lddb, dR, lddr );
        
        // residual dR = dB - dA*dX in double precision
        if ( nrhs == 1 ) {
            magma_zgemv( MagmaNoTrans, m, n,
                         c_neg_one, dA, ldda,
                                    dX, 1,
                         c_one,     dR, 1 );
        }
        else {
            magma_zgemm( MagmaNoTrans, MagmaNoTrans, m, nrhs, n,
                         c_neg_one, dA, ldda,
                                    dX, lddx,
                         c_one,     dR, lddr );
        }

        /*  Check whether the nrhs normwise backward errors satisfy the
         *  stopping criterion. If yes, set ITER=IITER>0 and return. */
        for( j=0; j < nrhs; j++ ) {
            i = magma_izamax( n, dX(0,j), 1) - 1;
            magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
            Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );

            i = magma_izamax ( m, dR(0,j), 1 ) - 1;
            magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
            Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );

            if ( Rnrm >  Xnrm*cte ) {
                goto L20;
            }
        }

        /*  If we are here, the nrhs normwise backward errors satisfy
         *  the stopping criterion, we are good to exit. */
        *iter = iiter;

        /* Free workspaces */
        magma_free( dworks );
        magma_free( dworkd );
        magma_free_cpu( hworks );
        return *info;
        
      L20:
        iiter++;
    }

    /* If we are at this place of the code, this is because we have
     * performed ITER=ITERMAX iterations and never satisified the
     * stopping criterion. Set up the ITER flag accordingly and follow
     * up on double precision routine. */
    *iter = -ITERMAX - 1;
    
FALLBACK:
    /* Single-precision iterative refinement failed to converge to a
     * satisfactory solution, so we resort to double precision. */
    magma_free( dworks );
    magma_free_cpu( hworks );

    /*
     * Allocate temporary buffers
     */
    /* dworkd = dT for zgeqrf */
    nb   = magma_get_zgeqrf_nb( m );
    size = (2*min(m, n) + (n+31)/32*32 )*nb;
    if ( size > ldworkd ) {
        magma_free( dworkd );
        if (MAGMA_SUCCESS != magma_zmalloc( &dworkd, size )) {
            fprintf(stderr, "Allocation of dworkd2 failed\n");
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
    }
    dT = dworkd;

    /* hworkd(dtau + workspace for zgeqrs) = min(m,n) + lhwork */
    size = lhwork + minmn;
    magma_zmalloc_cpu( &hworkd, size );
    if ( hworkd == NULL ) {
        magma_free( dworkd );
        fprintf(stderr, "Allocation of hworkd2 failed\n");
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    tau = hworkd + lhwork;

    magma_zgeqrf_gpu( m, n, dA, ldda, tau, dT, info );
    if (*info == 0) {
        // if m > n, then dB won't fit in dX, so solve with dB and copy n rows to dX
        magma_zgeqrs_gpu( m, n, nrhs, dA, ldda, tau, dT, dB, lddb, hworkd, lhwork, info );
        magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dX, lddx );
    }

    magma_free( dworkd );
    magma_free_cpu( hworkd );
    return *info;
}
Beispiel #6
0
/**
    Purpose
    -------
    ZGERFS  improve the computed solution to a system of linear
          equations.

        
    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(n)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by DLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    ---------
    @param[in]
    trans   magma_trans_t
            Specifies the form of the system of equations:
      -     = MagmaNoTrans:    A    * X = B  (No transpose)
      -     = MagmaTrans:      A**T * X = B  (Transpose)
      -     = MagmaConjTrans:  A**H * X = B  (Conjugate transpose)

    @param[in]
    n       INTEGER
            The number of linear equations, i.e., the order of the
            matrix A.  N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    @param[in]
    dA      COMPLEX_16 array on the GPU, dimension (ldda,N)
            the N-by-N coefficient matrix A.
            
    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  ldda >= max(1,N).

    @param[in]
    dB      COMPLEX_16 array on the GPU, dimension (lddb,NRHS)
            The N-by-NRHS right hand side matrix B.

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB.  lddb >= max(1,N).

    @param[in, out]
    dX      COMPLEX_16 array on the GPU, dimension (lddx,NRHS)
            On entry, the solution matrix X, as computed by
            ZGETRS_NOPIV.  On exit, the improved solution matrix X.

    @param[in]
    lddx    INTEGER
            The leading dimension of the array dX.  lddx >= max(1,N).

    @param
    dworkd  (workspace) COMPLEX_16 array on the GPU, dimension (N*NRHS)
            This array is used to hold the residual vectors.

    @param
    dAF     COMPLEX*16 array on the GPU, dimension (ldda,n)
            The factors L and U from the factorization A = L*U
            as computed by ZGETRF_NOPIV.

    @param[out]
    iter    INTEGER
      -     < 0: iterative refinement has failed, double precision
                 factorization has been performed
        +        -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
        +        -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
        +        -3 : failure of SGETRF
        +        -31: stop the iterative refinement after the 30th iteration
      -     > 0: iterative refinement has been successfully used.
                 Returns the number of iterations
 
    @param[out]
    info   INTEGER
      -     = 0:  successful exit
      -     < 0:  if info = -i, the i-th argument had an illegal value
      -     > 0:  if info = i, U(i,i) computed in DOUBLE PRECISION is
                  exactly zero.  The factorization has been completed,
                  but the factor U is exactly singular, so the solution
                  could not be computed.

    @ingroup magma_zgesv_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zgerfs_nopiv_gpu(
    magma_trans_t trans, magma_int_t n, magma_int_t nrhs,
    magmaDoubleComplex_ptr dA, magma_int_t ldda,
    magmaDoubleComplex_ptr dB, magma_int_t lddb,
    magmaDoubleComplex_ptr dX, magma_int_t lddx,
    magmaDoubleComplex_ptr dworkd, magmaDoubleComplex_ptr dAF,
    magma_int_t *iter,
    magma_int_t *info)
{
    #define dB(i,j)     (dB + (i) + (j)*lddb)
    #define dX(i,j)     (dX + (i) + (j)*lddx)
    #define dR(i,j)     (dR + (i) + (j)*lddr)
    
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex c_one     = MAGMA_Z_ONE;
    magma_int_t     ione  = 1;
    magmaDoubleComplex_ptr dR;
    magmaDoubleComplex Xnrmv, Rnrmv;
    double          Anrm, Xnrm, Rnrm, cte, eps;
    magma_int_t     i, j, iiter, lddsa, lddr;
    
    /* Check arguments */
    *iter = 0;
    *info = 0;
    if ( n < 0 )
        *info = -1;
    else if ( nrhs < 0 )
        *info = -2;
    else if ( ldda < max(1,n))
        *info = -4;
    else if ( lddb < max(1,n))
        *info = -8;
    else if ( lddx < max(1,n))
        *info = -10;
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    
    if ( n == 0 || nrhs == 0 )
        return *info;

    lddsa = n;
    lddr  = n;
    
    dR  = dworkd;
    
    eps  = lapackf77_dlamch("Epsilon");
    Anrm = magmablas_zlange(MagmaInfNorm, n, n, dA, ldda, (double*)dworkd );
    cte  = Anrm * eps * pow( (double)n, (double)0.5 ) * BWDMAX;
    
    // residual dR = dB - dA*dX in double precision
    magmablas_zlacpy( MagmaUpperLower, n, nrhs, dB, lddb, dR, lddr );
    if ( nrhs == 1 ) {
        magma_zgemv( trans, n, n,
                     c_neg_one, dA, ldda,
                                dX, 1,
                     c_one,     dR, 1 );
    }
    else {
        magma_zgemm( trans, MagmaNoTrans, n, nrhs, n,
                     c_neg_one, dA, ldda,
                                dX, lddx,
                     c_one,     dR, lddr );
    }
    
    // TODO: use MAGMA_Z_ABS( dX(i,j) ) instead of zlange?
    for( j=0; j < nrhs; j++ ) {
        i = magma_izamax( n, dX(0,j), 1) - 1;
        magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
        Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );
        
        i = magma_izamax ( n, dR(0,j), 1 ) - 1;
        magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
        Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );
       


 //       printf("Rnrm : %e, Xnrm*cte : %e\n", Rnrm, Xnrm*cte);



        if ( Rnrm >  Xnrm*cte ) {
            goto REFINEMENT;
        }
    }
    
    *iter = 0;
    return *info;

REFINEMENT:
    for( iiter=1; iiter < ITERMAX; ) {
        *info = 0;
        // solve dAF*dX = dR 
        // it's okay that dR is used for both dB input and dX output.
        magma_zgetrs_nopiv_gpu( trans, n, nrhs, dAF, lddsa, dR, lddr, info );
        if (*info != 0) {
            *iter = -3;
            goto FALLBACK;
        }
        
        // Add correction and setup residual
        // dX += dR  --and--
        // dR = dB
        // This saves going through dR a second time (if done with one more kernel).
        // -- not really: first time is read, second time is write.
        for( j=0; j < nrhs; j++ ) {
            magmablas_zaxpycp2( n, dR(0,j), dX(0,j), dB(0,j) );
        }
        
        // residual dR = dB - dA*dX in double precision
        if ( nrhs == 1 ) {
            magma_zgemv( trans, n, n,
                         c_neg_one, dA, ldda,
                                    dX, 1,
                         c_one,     dR, 1 );
        }
        else {
            magma_zgemm( trans, MagmaNoTrans, n, nrhs, n,
                         c_neg_one, dA, ldda,
                                    dX, lddx,
                         c_one,     dR, lddr );
        }
        
        /*  Check whether the nrhs normwise backward errors satisfy the
         *  stopping criterion. If yes, set ITER=IITER > 0 and return. */
        for( j=0; j < nrhs; j++ ) {
            i = magma_izamax( n, dX(0,j), 1) - 1;
            magma_zgetmatrix( 1, 1, dX(i,j), 1, &Xnrmv, 1 );
            Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );
            
            i = magma_izamax ( n, dR(0,j), 1 ) - 1;
            magma_zgetmatrix( 1, 1, dR(i,j), 1, &Rnrmv, 1 );
            Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );
            
            if ( Rnrm >  Xnrm*cte ) {
                goto L20;
            }
        }
        
        /*  If we are here, the nrhs normwise backward errors satisfy
         *  the stopping criterion, we are good to exit. */
        *iter = iiter;
        return *info;
        
      L20:
        iiter++;
    }

    
    /* If we are at this place of the code, this is because we have
     * performed ITER=ITERMAX iterations and never satisified the
     * stopping criterion. Set up the ITER flag accordingly. */
    *iter = -ITERMAX - 1;
    
FALLBACK:
    /* Iterative refinement failed to converge to a
     * satisfactory solution. */
    
    return *info;
}
Beispiel #7
0
extern "C" magma_int_t
magma_zcgeqrsv_gpu(magma_int_t M, magma_int_t N, magma_int_t NRHS, 
                   cuDoubleComplex *dA,  magma_int_t ldda, 
                   cuDoubleComplex *dB,  magma_int_t lddb, 
                   cuDoubleComplex *dX,  magma_int_t lddx, 
                   magma_int_t *iter, magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose
    =======

    ZCGEQRSV solves the least squares problem 
       min || A*X - B ||,
    where A is an M-by-N matrix and X and B are M-by-NRHS matrices.

    ZCGEQRSV first attempts to factorize the matrix in SINGLE PRECISION
    and use this factorization within an iterative refinement procedure
    to produce a solution with DOUBLE PRECISION norm-wise backward error
    quality (see below). If the approach fails the method switches to a
    DOUBLE PRECISION factorization and solve.

    The iterative refinement is not going to be a winning strategy if
    the ratio SINGLE PRECISION performance over DOUBLE PRECISION
    performance is too small. A reasonable strategy should take the
    number of right-hand sides and the size of the matrix into account.
    This might be done with a call to ILAENV in the future. Up to now, we
    always try iterative refinement.
    The iterative refinement process is stopped if
        ITER > ITERMAX
    or for all the RHS we have:
        RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
    where
        o ITER is the number of the current iteration in the iterative
          refinement process
        o RNRM is the infinity-norm of the residual
        o XNRM is the infinity-norm of the solution
        o ANRM is the infinity-operator-norm of the matrix A
        o EPS is the machine epsilon returned by DLAMCH('Epsilon')
    The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively.

    Arguments
    =========

    M       (input) INTEGER   
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    NRHS    (input) INTEGER
            The number of right hand sides, i.e., the number of columns
            of the matrix B.  NRHS >= 0.

    A       (input or input/output) DOUBLE PRECISION array, dimension (ldda,N)
            On entry, the M-by-N coefficient matrix A.
            On exit, if iterative refinement has been successfully used
            (info.EQ.0 and ITER.GE.0, see description below), A is
            unchanged. If double precision factorization has been used
            (info.EQ.0 and ITER.LT.0, see description below), then the
            array A contains the QR factorization of A as returned by
            function DGEQRF_GPU.

    ldda     (input) INTEGER
            The leading dimension of the array A.  ldda >= max(1,M).

    B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
            The M-by-NRHS right hand side matrix B.

    LDB     (input) INTEGER
            The leading dimension of the array B.  LDB >= max(1,M).

    X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
            If info = 0, the N-by-NRHS solution matrix X.

    LDX     (input) INTEGER
            The leading dimension of the array X.  LDX >= max(1,N).

    WORK    (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
            This array is used to hold the residual vectors.

    SWORK   (workspace) REAL array, dimension (M*(N+NRHS))
            This array is used to store the single precision matrix and the
            right-hand sides or solutions in single precision.

    ITER    (output) INTEGER
            < 0: iterative refinement has failed, double precision
                 factorization has been performed
                 -1 : the routine fell back to full precision for
                      implementation- or machine-specific reasons
                 -2 : narrowing the precision induced an overflow,
                      the routine fell back to full precision
                 -3 : failure of SGETRF
                 -31: stop the iterative refinement after the 30th
                      iterations
            > 0: iterative refinement has been successfully used.
                 Returns the number of iterations
 
    info    (output) INTEGER
            = 0:  successful exit
            < 0:  if info = -i, the i-th argument had an illegal value

    TAU     (output) REAL array, dimension (N)
            On exit, TAU(i) contains the scalar factor of the elementary
            reflector H(i), as returned by magma_cgeqrf_gpu.

    LWORK   (input) INTEGER   
            The dimension of the array H_WORK.  LWORK >= (M+N+NB)*NB,   
            where NB can be obtained through magma_get_sgeqrf_nb(M).

    H_WORK  (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            Higher performance is achieved if H_WORK is in pinned memory, e.g.
            allocated using magma_malloc_pinned.

    D_WORK  (workspace/output)  REAL array on the GPU, dimension 2*N*NB,
            where NB can be obtained through magma_get_sgeqrf_nb(M).
            It starts with NB*NB blocks that store the triangular T 
            matrices, followed by the NB*NB blocks of the diagonal 
            inverses for the R matrix.

    TAU_D   (output) DOUBLE REAL array, dimension (N)
            On exit, if the matrix had to be factored in double precision,
            TAU(i) contains the scalar factor of the elementary
            reflector H(i), as returned by magma_zgeqrf_gpu.

    LWORK_D (input) INTEGER   
            The dimension of the array H_WORK_D. LWORK_D >= (M+N+NB)*NB,   
            where NB can be obtained through magma_get_dgeqrf_nb(M).

    H_WORK_D (workspace/output) DOUBLE REAL array, dimension (MAX(1,LWORK_D))
            This memory is unattached if the iterative refinement worked, 
            otherwise it is used as workspace to factor the matrix in
            double precision. Higher performance is achieved if H_WORK_D is 
            in pinned memory, e.g. allocated using magma_malloc_pinned. 

    D_WORK_D (workspace/output) DOUBLE REAL array on the GPU, dimension 2*N*NB,
            where NB can be obtained through magma_get_dgeqrf_nb(M).
            This memory is unattached if the iterative refinement worked, 
            otherwise it is used as workspace to factor the matrix in
            double precision. It starts with NB*NB blocks that store the 
            triangular T matrices, followed by the NB*NB blocks of the 
            diagonal inverses for the R matrix.

    =====================================================================    */

    cuDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    cuDoubleComplex c_one     = MAGMA_Z_ONE;
    magma_int_t     ione  = 1;
    cuDoubleComplex *dworkd, *hworkd;
    cuFloatComplex  *dworks, *hworks;
    cuDoubleComplex *dR, *tau, *dT;
    cuFloatComplex  *dSA, *dSX, *dST, *stau;
    cuDoubleComplex Xnrmv, Rnrmv; 
    double          Anrm, Xnrm, Rnrm, cte, eps; 
    magma_int_t     i, j, iiter, nb, lhwork, minmn, size;
    
    /*
      Check The Parameters. 
    */
    *iter = 0 ;
    *info = 0 ;
    if ( N < 0 )
        *info = -1;
    else if(NRHS<0)
        *info = -3;
    else if( ldda < max(1,N))
        *info = -5;
    else if( lddb < max(1,N))
        *info = -7;
    else if( lddx < max(1,N))
        *info = -9;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if( N == 0 || NRHS == 0 )
        return *info;

    nb   = magma_get_cgeqrf_nb(M);
    minmn= min(M, N);

    /*
     * Allocate temporary buffers
     */
    /* dworks(dSA + dSX + dST) */
    size = ldda*N + N*NRHS + ( 2*minmn + ((N+31)/32)*32 )*nb;
    if (MAGMA_SUCCESS != magma_cmalloc( &dworks, size )) {
        fprintf(stderr, "Allocation of dworks failed (%d)\n", (int) size);
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dSA = dworks;
    dSX = dSA + ldda*N;
    dST = dSX + N*NRHS;
    
    /* dworkd(dR) = N*NRHS */
    size = N*NRHS;
    if (MAGMA_SUCCESS != magma_zmalloc( &dworkd, size )) {
        magma_free( dworks );
        fprintf(stderr, "Allocation of dworkd failed\n");
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dR = dworkd;

    /* hworks(stau + workspace for cgeqrs) = min(M,N) + lhworks */
    lhwork = nb*max((M-N+nb+2*(NRHS)), 1);
    lhwork = max(lhwork, N*nb); /* We hope that magma nb is bigger than lapack nb to have enough memory in workspace */
    size = minmn + lhwork;
    magma_cmalloc_cpu( &hworks, size );
    if ( hworks == NULL ) {
        magma_free( dworks );
        magma_free( dworkd );
        fprintf(stderr, "Allocation of hworks failed\n");
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    stau = hworks + lhwork;

    eps  = lapackf77_dlamch("Epsilon");
    Anrm = magmablas_zlange('I', M, N, dA, ldda, (double*)dworkd );
    cte  = Anrm * eps *  pow((double)N, 0.5) * BWDMAX ;

    /*
     * Convert to single precision
     */
    magmablas_zlag2c(N, NRHS, dB, lddb, dSX, N, info );
    if( *info != 0 ) {
        *iter = -2; goto L40;
    }

    magmablas_zlag2c(N, N, dA, ldda, dSA, ldda, info );
    if(*info !=0){
        *iter = -2; goto L40;
    }

    // In an ideal version these variables should come from user.
    magma_cgeqrf_gpu(M, N, dSA, ldda, stau, dST, info);
    if( *info != 0 ) {
        *iter = -3; goto L40;
    }

    magma_cgeqrs_gpu(M, N, NRHS, dSA, ldda, stau, dST, dSX, N, hworks, lhwork, info);

    // dX = dSX
    magmablas_clag2z(N, NRHS, dSX, N, dX, lddx, info);

    // dR = dB
    magmablas_zlacpy(MagmaUpperLower, N, NRHS, dB, lddb, dR, N);

    // dR = dB - dA * dX
    if( NRHS == 1 )
        magma_zgemv( MagmaNoTrans, N, N, 
                     c_neg_one, dA, ldda, 
                                dX, 1, 
                     c_one,     dR, 1);
    else
        magma_zgemm( MagmaNoTrans, MagmaNoTrans, N, NRHS, N, 
                     c_neg_one, dA, ldda, 
                                dX, lddx, 
                     c_one,     dR, N );

    for(i=0; i<NRHS; i++){
        j = magma_izamax( N, dX+i*N, 1);
        magma_zgetmatrix( 1, 1, dX+i*N+j-1, 1, &Xnrmv, 1 );
        Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );
      
        j = magma_izamax ( N, dR+i*N, 1 );
        magma_zgetmatrix( 1, 1, dR+i*N+j-1, 1, &Rnrmv, 1 );
        Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );
      
        if( Rnrm >  Xnrm *cte ) goto L10;
    }

    *iter = 0;

    /* Free workspaces */
    magma_free( dworks );
    magma_free( dworkd );
    magma_free_cpu( hworks );
    return *info;

  L10:
    for(iiter=1; iiter<ITERMAX; ) {
        *info = 0 ;
        /*  Convert R from double precision to single precision
            and store the result in SX.
            Solve the system SA*SX = SR.
            -- These two Tasks are merged here. */
        // make SWORK = WORK ... residuals... 
        magmablas_zlag2c( N, NRHS, dR, N, dSX, N, info );
        magma_cgeqrs_gpu( M, N, NRHS, dSA, ldda, stau, dST, dSX, N, hworks, lhwork, info);

        if( *info != 0 ){
            *iter = -3; goto L40;
        }

        for(i=0; i<NRHS; i++) {
            magmablas_zcaxpycp( dSX+i*N, dX+i*lddx, N, dB+i*lddb, dR+i*N );
        }

        /* unnecessary may be */
        magmablas_zlacpy(MagmaUpperLower, N, NRHS, dB, lddb, dR, N);
        if( NRHS == 1 )
            magma_zgemv( MagmaNoTrans, N, N, 
                         c_neg_one, dA, ldda,
                                    dX, 1,
                         c_one,     dR, 1);
        else
            magma_zgemm( MagmaNoTrans, MagmaNoTrans, N, NRHS, N, 
                         c_neg_one, dA, ldda,
                                    dX, lddx,
                         c_one,     dR, N);

        /*  Check whether the NRHS normwise backward errors satisfy the
            stopping criterion. If yes, set ITER=IITER>0 and return.     */
        for(i=0;i<NRHS;i++)
        {
            j = magma_izamax( N, dX+i*N, 1);
            magma_zgetmatrix( 1, 1, dX+i*N+j-1, 1, &Xnrmv, 1 );
            Xnrm = lapackf77_zlange( "F", &ione, &ione, &Xnrmv, &ione, NULL );
            
            j = magma_izamax ( N, dR+i*N, 1 );
            magma_zgetmatrix( 1, 1, dR+i*N+j-1, 1, &Rnrmv, 1 );
            Rnrm = lapackf77_zlange( "F", &ione, &ione, &Rnrmv, &ione, NULL );
            
            if( Rnrm >  Xnrm *cte ) goto L20;
        }

        /*  If we are here, the NRHS normwise backward errors satisfy
            the stopping criterion, we are good to exit.                    */
        *iter = iiter ;

        /* Free workspaces */
        magma_free( dworks );
        magma_free( dworkd );
        magma_free_cpu( hworks );
        return *info;
      L20:
        iiter++;
    }

    /* If we are at this place of the code, this is because we have
       performed ITER=ITERMAX iterations and never satisified the
       stopping criterion, set up the ITER flag accordingly and follow
       up on double precision routine.                                    */
    *iter = -ITERMAX - 1 ;

  L40:
    magma_free( dworks );

    /*
     * Allocate temporary buffers
     */
    /* dworkd(dT + tau) = min_mn + min_mn*nb*3 */
    nb   = magma_get_zgeqrf_nb(M);
    size = minmn * (3 * nb + 1);
    if ( size > (N*NRHS) ) {
        magma_free( dworkd );
        if (MAGMA_SUCCESS != magma_zmalloc( &dworkd, size )) {
            fprintf(stderr, "Allocation of dworkd2 failed\n");
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
    }
    tau = dworkd;
    dT  = tau + minmn;

    /* hworks(stau + workspace for cgeqrs) = min(M,N) + lhworks */
    /* re-use hworks memory for hworkd if possible, else re-allocate. */
    if ( (2*lhwork) <= (minmn+lhwork) ) {
        hworkd = (cuDoubleComplex*) hworks;
    }
    else {
        magma_free_cpu( hworks );
        magma_zmalloc_cpu( &hworkd, lhwork );
        if ( hworkd == NULL ) {
            magma_free( dworkd );
            fprintf(stderr, "Allocation of hworkd2 failed\n");
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
    }

    /* Single-precision iterative refinement failed to converge to a
       satisfactory solution, so we resort to double precision.           */
    magma_zgeqrf_gpu(M, N, dA, ldda, tau, dT, info);
    if ( *info == 0 ) {
        magmablas_zlacpy(MagmaUpperLower, N, NRHS, dB, lddb, dX, lddx);
        magma_zgeqrs_gpu(M, N, NRHS, dA, ldda, tau, dT, dX, lddx, hworkd, lhwork, info);
    }
    
    magma_free( dworkd );
    magma_free_cpu( hworkd );
    return *info;
}