void ica(gsl_matrix *A, gsl_matrix *S, gsl_matrix *X, int verbose){ /* Checking the existance of the enviroment variable for controlling the number of threads used by openblas*/ const size_t NCOMP = A->size2; const size_t NSUB = X->size1; const size_t NVOX = X->size2; gsl_matrix *weights = gsl_matrix_alloc(NCOMP, NCOMP); gsl_matrix *inv_weights = gsl_matrix_alloc(NCOMP, NCOMP); gsl_matrix *white_X = gsl_matrix_alloc(NCOMP, NVOX); gsl_matrix *white = gsl_matrix_alloc(NCOMP, NSUB); gsl_matrix *dewhite = gsl_matrix_alloc(NSUB, NCOMP); pca_whiten(X, NCOMP, white_X, white, dewhite, 1); if (verbose) printf("Done."); if (verbose) printf("\nINFOMAX ..."); if (verbose) printf("\nPCA decomposition ..."); infomax(white_X, weights, S, verbose); if (verbose) printf("Done"); matrix_inv(weights, inv_weights); matrix_mmul(dewhite, inv_weights, A); gsl_matrix_free(weights); gsl_matrix_free(white_X); gsl_matrix_free(white); gsl_matrix_free(dewhite); }
void rotator::update(float elapsed_seconds) { glm::mat4 matrix(1.0f); matrix = glm::translate(matrix, glm::vec3(0, 0, dist_)); matrix = glm::rotate(matrix, angle_x_, glm::vec3(1, 0, 0)); matrix = glm::rotate(matrix, angle_y_, glm::vec3(0, 1, 0)); scene_->update_modelview(matrix); glm::mat4 matrix_inv(1.0f); matrix_inv = glm::rotate(matrix_inv, -angle_y_, glm::vec3(0, 1, 0)); matrix_inv = glm::rotate(matrix_inv, -angle_x_, glm::vec3(1, 0, 0)); matrix_inv = glm::translate(matrix_inv, glm::vec3(0, 0, -dist_)); scene_->update_modelview_inv(matrix_inv); scene_->update(elapsed_seconds); }
int main( int argc, char ** argv) { rng_type * rng = rng_alloc( MZRAN , INIT_DEV_RANDOM ); matrix_type * A = matrix_alloc( 12 , 12 ); matrix_type * B = matrix_alloc( 12 , 12 ); matrix_random_init( A , rng ); matrix_assign( B , A ); matrix_pretty_print( A , " A " , "%8.4f" ); #ifdef WITH_LAPACK matrix_inv( B ); printf("\n"); matrix_pretty_print( B , "inv(A)" , "%8.4f" ); matrix_inplace_matmul( B , A ); printf("\n"); matrix_pretty_print( B , " I " , "%8.4f" ); { matrix_type * A3 = matrix_alloc(3,3); matrix_random_init( A3 , rng ); matrix_iset( A3 , 0 , 0 , sin(0.98)); printf("matrix_det3:%g ",matrix_det3( A3 )); printf("matrix_det:%g \n",matrix_det( A3 )); } { matrix_type * A4 = matrix_alloc(4,4); matrix_random_init( A4 , rng ); matrix_iset( A4 , 0 , 0 , sin(0.98)); printf("matrix_det4:%g ",matrix_det4( A4 )); printf("matrix_det:%g \n",matrix_det( A4 )); } #endif matrix_free( A ); matrix_free( B ); rng_free( rng ); }
void lars_estimate(lars_type * lars , int max_vars , double max_beta , bool verbose) { int nvars = matrix_get_columns( lars->X ); int nsample = matrix_get_rows( lars->X ); matrix_type * X = matrix_alloc( nsample, nvars ); // Allocate local X and Y variables matrix_type * Y = matrix_alloc( nsample, 1 ); // which will hold the normalized data lars_estimate_init( lars , X , Y); // during the estimation process. { matrix_type * G = matrix_alloc_gram( X , true ); matrix_type * mu = matrix_alloc( nsample , 1 ); matrix_type * C = matrix_alloc( nvars , 1 ); matrix_type * Y_mu = matrix_alloc_copy( Y ); int_vector_type * active_set = int_vector_alloc(0,0); int_vector_type * inactive_set = int_vector_alloc(0,0); int active_size; if ((max_vars <= 0) || (max_vars > nvars)) max_vars = nvars; { int i; for (i=0; i < nvars; i++) int_vector_iset( inactive_set , i , i ); } matrix_set( mu , 0 ); while (true) { double maxC = 0; /* The first step is to calculate the correlations between the covariates, and the current residual. All the currently inactive covariates are searched; the covariate with the greatest correlation with (Y - mu) is selected and added to the active set. */ matrix_sub( Y_mu , Y , mu ); // Y_mu = Y - mu matrix_dgemm( C , X , Y_mu , true , false , 1.0 , 0); // C = X' * Y_mu { int i; int max_set_index = 0; for (i=0; i < int_vector_size( inactive_set ); i++) { int set_index = i; int var_index = int_vector_iget( inactive_set , set_index ); double value = fabs( matrix_iget(C , var_index , 0) ); if (value > maxC) { maxC = value; max_set_index = set_index; } } /* Remove element corresponding to max_set_index from the inactive set and add it to the active set: */ int_vector_append( active_set , int_vector_idel( inactive_set , max_set_index )); } active_size = int_vector_size( active_set ); /* Now we have calculated the correlations between all the covariates and the current residual @Y_mu. The correlations are stored in the matrix @C. The value of the maximum correlation is stored in @maxC. Based on the value of @maxC we have added one new covariate to the model, technically by moving the index from @inactive_set to @active_set. */ /*****************************************************************/ { matrix_type * weights = matrix_alloc( active_size , 1); double scale; /*****************************************************************/ /* This scope should compute and initialize the variables @weights and @scale. */ { matrix_type * subG = matrix_alloc( active_size , active_size ); matrix_type * STS = matrix_alloc( active_size , active_size ); matrix_type * sign_vector = matrix_alloc( active_size , 1); int i , j; /* STS = S' o S where 'o' is the Schur product and S is given by: [ s1 s2 s3 s4 ] S = [ s1 s2 s3 s4 ] [ s1 s2 s3 s4 ] [ s1 s2 s3 s4 ] Where si is the sign of the correlation between (active) variable 'i' and Y_mu. */ for (i=0; i < active_size ; i++) { int vari = int_vector_iget( active_set , i ); double signi = sgn( matrix_iget( C , vari , 0)); matrix_iset( sign_vector , i , 0 , signi ); for (j=0; j < active_size; j++) { int varj = int_vector_iget( active_set , j ); double signj = sgn( matrix_iget( C , varj , 0)); matrix_iset( STS , i , j , signi * signj ); } } // Extract the elements from G corresponding to active indices and // copy to the matrix subG: for (i=0; i < active_size ; i++) { int ii = int_vector_iget( active_set , i ); for (j=0; j < active_size; j++) { int jj = int_vector_iget( active_set , j ); matrix_iset( subG , i , j , matrix_iget(G , ii , jj)); } } // Weights matrix_inplace_mul( subG , STS ); matrix_inv( subG ); { matrix_type * ones = matrix_alloc( active_size , 1 ); matrix_type * GA1 = matrix_alloc( active_size , 1 ); matrix_set( ones , 1.0 ); matrix_matmul( GA1 , subG , ones ); scale = 1.0 / sqrt( matrix_get_column_sum( GA1 , 0 )); matrix_mul( weights , GA1 , sign_vector ); matrix_scale( weights , scale ); matrix_free( GA1 ); matrix_free( ones ); } matrix_free( sign_vector ); matrix_free( subG ); matrix_free( STS ); } /******************************************************************/ /* The variables weight and scale have been calculated, proceed to calculate the step length @gamma. */ { int i; double gamma; { matrix_type * u = matrix_alloc( nsample , 1 ); int j; for (i=0; i < nsample; i++) { double row_sum = 0; for (j =0; j < active_size; j++) row_sum += matrix_iget( X , i , int_vector_iget( active_set , j)) * matrix_iget(weights , j , 0 ); matrix_iset( u , i , 0 , row_sum ); } gamma = maxC / scale; if (active_size < matrix_get_columns( X )) { matrix_type * equi_corr = matrix_alloc( nvars , 1 ); matrix_dgemm( equi_corr , X , u , true , false , 1.0 , 0); // equi_corr = X'·u for (i=0; i < (nvars - active_size); i++) { int var_index = int_vector_iget( inactive_set , i ); double gamma1 = (maxC - matrix_iget(C , var_index , 0 )) / ( scale - matrix_iget( equi_corr , var_index , 0)); double gamma2 = (maxC + matrix_iget(C , var_index , 0 )) / ( scale + matrix_iget( equi_corr , var_index , 0)); if ((gamma1 > 0) && (gamma1 < gamma)) gamma = gamma1; if ((gamma2 > 0) && (gamma2 < gamma)) gamma = gamma2; } matrix_free( equi_corr ); } /* Update the current estimated 'location' mu. */ matrix_scale( u , gamma ); matrix_inplace_add( mu , u ); matrix_free( u ); } /* We have calculated the step length @gamma, and the @weights. Update the @beta matrix. */ for (i=0; i < active_size; i++) matrix_iset( lars->beta , int_vector_iget( active_set , i ) , active_size - 1 , gamma * matrix_iget( weights , i , 0)); if (active_size > 1) for (i=0; i < nvars; i++) matrix_iadd( lars->beta , i , active_size - 1 , matrix_iget( lars->beta , i , active_size - 2)); matrix_free( weights ); } } if (active_size == max_vars) break; if (max_beta > 0) { double beta_norm2 = matrix_get_column_abssum( lars->beta , active_size - 1 ); if (beta_norm2 > max_beta) { // We stop - we will use an interpolation between this beta estimate and // the previous, to ensure that the |beta| = max_beta criteria is satisfied. if (active_size >= 2) { double beta_norm1 = matrix_get_column_abssum( lars->beta , active_size - 2 ); double s = (max_beta - beta_norm1)/(beta_norm2 - beta_norm1); { int j; for (j=0; j < nvars; j++) { double beta1 = matrix_iget( lars->beta , j , active_size - 2 ); double beta2 = matrix_iget( lars->beta , j , active_size - 1 ); matrix_iset( lars->beta , j , active_size - 1 , beta1 + s*(beta2 - beta1)); } } } break; } } } matrix_free( G ); matrix_free( mu ); matrix_free( C ); matrix_free( Y_mu ); int_vector_free( active_set ); int_vector_free( inactive_set ); matrix_resize( lars->beta , nvars , active_size , true ); if (verbose) matrix_pretty_fprint( lars->beta , "beta" , "%12.5f" , stdout ); lars_select_beta( lars , active_size - 1); } matrix_free( X ); matrix_free( Y ); }
void cox_test(double** covariates, size_t num_features_in_covariate, size_t num_samples, double* time, double* censor, double* coefficients, double** variance) { // declare variables, init values and allocate memory // gsl matrices matrix_t* coefficients_matrix_p = NULL; matrix_t* information_matrix_p = NULL; matrix_t* information_matrix_inverse_p = NULL; matrix_t* score_matrix_p = NULL; matrix_t* error_matrix_p = NULL; matrix_t* variance_matrix_p = NULL; // other variables double denominator = 0, numerator = 0; double error1 = 1, error2 = 1; double* risk_factor = (double*) calloc(num_samples, sizeof(double)); double* score = (double*) calloc(num_features_in_covariate, sizeof(double)); double** expected_covariate = (double**) calloc(num_features_in_covariate, sizeof(double*)); double** information = (double**) calloc(num_features_in_covariate, sizeof(double*)); for (size_t i = 0; i < num_features_in_covariate; i++) { coefficients[i] = 0.1; expected_covariate[i] = (double*) calloc(num_samples, sizeof(double)); information[i] = (double*) calloc(num_features_in_covariate, sizeof(double)); } // create gsl matrices coefficients_matrix_p = matrix_new(num_features_in_covariate, 1); matrix_init(0.1, coefficients_matrix_p); information_matrix_p = matrix_new(num_features_in_covariate, num_features_in_covariate); score_matrix_p = matrix_new(num_features_in_covariate, 1); error_matrix_p = matrix_new(num_features_in_covariate, 1); information_matrix_inverse_p = matrix_new(num_features_in_covariate, num_features_in_covariate); while((error1 > COX_ERROR_LIMIT) || (error2 > COX_ERROR_LIMIT)) { for (size_t i = 0; i < num_samples; ++i) { risk_factor[i] = 1.0; for (size_t s = 0; s < num_features_in_covariate; ++s) { risk_factor[i] *= exp(coefficients[s] * covariates[s][i]); } } for (size_t j = 0; j < num_features_in_covariate; j++) { score[j] = 0.0; for (size_t i = 0; i < num_samples; i++) { for (size_t k = 0; k < num_samples; k++) { if (time[k] >= time[i]) { denominator += risk_factor[k]; numerator += covariates[j][k] * risk_factor[k]; } } expected_covariate[j][i] = numerator / denominator; score[j] += censor[i] * (covariates[j][i] - expected_covariate[j][i]); numerator = 0.0; denominator = 0.0; } } for (size_t r = 0; r < num_features_in_covariate; r++) { for (size_t s = 0; s < num_features_in_covariate; s++) { information[r][s] = 0.0; for (size_t i = 0; i < num_samples; i++) { for (size_t k = 0; k < num_samples; k++) { if (time[k] >= time[i]) { denominator += risk_factor[k]; numerator += (covariates[r][k] * covariates[s][k] * risk_factor[k]); } } information[r][s] += censor[i] * (expected_covariate[r][i] * expected_covariate[s][i] - (numerator / denominator)); numerator = 0.0; denominator = 0.0; } } } // fill information_matrix matrix_fill(information, num_features_in_covariate, num_features_in_covariate, information_matrix_p); // fill the matrix with data // fill score_matrix from score array for (size_t i = 0; i < num_features_in_covariate; i++) { matrix_set(i, 0, score[i], score_matrix_p); } // calculate error matrix: inv(information_matrix) * score_matrix matrix_inv(information_matrix_p, information_matrix_inverse_p); matrix_mul(information_matrix_inverse_p, score_matrix_p, error_matrix_p); // calculate coefficients matrix coefficients_matrix_p = matrix_sub(coefficients_matrix_p, error_matrix_p); // fill coefficientes for (size_t i = 0; i < num_features_in_covariate; i++) { coefficients[i] = matrix_get(i, 0, coefficients_matrix_p); } error1 = sqrt(matrix_Fnorm(error_matrix_p)); error2 = sqrt(matrix_Fnorm(score_matrix_p)); } // end of while // calculate variance: (-1 * inv(information_matrix)) variance_matrix_p = matrix_scale(information_matrix_inverse_p, -1.0); for (size_t i = 0; i < num_features_in_covariate; i++) { for (size_t j = 0; j < num_features_in_covariate; j++) { variance[i][j] = matrix_get(i, j, variance_matrix_p); } } // free gsl matrices matrix_free(coefficients_matrix_p); matrix_free(information_matrix_p); matrix_free(information_matrix_inverse_p); matrix_free(score_matrix_p); matrix_free(error_matrix_p); variance_matrix_p = NULL; // points to information_matrix_inverse_p previously freed matrix_free(variance_matrix_p); // free other resources free(risk_factor); free(score); for (size_t i = 0; i < num_features_in_covariate; i++) { free(expected_covariate[i]); free(information[i]); } free(expected_covariate); free(information); return; }