Beispiel #1
0
static void __fscanf_and_set( matrix_type * matrix , int row , int col , FILE * stream) {
  double value;
  if (fscanf(stream , "%lg" , &value) == 1)
    matrix_iset( matrix , row , col , value );
  else
    util_abort("%s: reading of matrix failed at row:%d  col:%d \n",__func__ , row , col);
}
Beispiel #2
0
void test_diag_std() {
  const int N = 25;
  double_vector_type * data = double_vector_alloc( 0,0);
  rng_type * rng = rng_alloc(MZRAN , INIT_DEV_URANDOM ); 
  matrix_type * m = matrix_alloc( N , N );
  double sum1 = 0;
  double sum2 = 0;
  int i;

  for (i=0; i < N; i++) {
    double R = rng_get_double( rng ); 
    matrix_iset(m , i , i , R);
    double_vector_iset( data , i , R );
    
    sum1 += R;
    sum2 += R*R;
  }
  {
    double mean = sum1 / N;
    double std = sqrt( sum2 / N - mean * mean );

    test_assert_double_equal( std , matrix_diag_std( m , mean ));
    test_assert_double_equal( statistics_std( data ) , matrix_diag_std( m , mean ));
    test_assert_double_equal( statistics_mean( data ) , mean );
  }
  matrix_free( m );
  rng_free( rng );
}
Beispiel #3
0
void matrix_subtract_and_store_row_mean(matrix_type * matrix, matrix_type * row_mean) {
        int i;
        for ( i=0; i < matrix->rows; i++) {
    double mean = matrix_get_row_sum(matrix , i) / matrix->columns;
    matrix_shift_row( matrix , i , -mean);
    matrix_iset(row_mean , i , 0, mean );
  }
}
Beispiel #4
0
int main( int argc, char ** argv)  {
  rng_type * rng   =  rng_alloc( MZRAN , INIT_DEV_RANDOM );
  matrix_type * A  =  matrix_alloc( 12 , 12 );
  matrix_type * B  =  matrix_alloc( 12 , 12 );
  matrix_random_init( A , rng );
  matrix_assign( B , A );
  matrix_pretty_print( A , "    A " , "%8.4f" );
  

#ifdef WITH_LAPACK
  matrix_inv( B );
  printf("\n");
  matrix_pretty_print( B , "inv(A)" , "%8.4f" );
  matrix_inplace_matmul( B , A );
  printf("\n");
  matrix_pretty_print( B , "    I " , "%8.4f" );
  {
    matrix_type * A3 = matrix_alloc(3,3);
    matrix_random_init( A3 , rng );
    matrix_iset( A3 , 0 , 0 , sin(0.98));
    printf("matrix_det3:%g  ",matrix_det3( A3 ));
    printf("matrix_det:%g \n",matrix_det( A3 ));
  }

  {
    matrix_type * A4 = matrix_alloc(4,4);
    matrix_random_init( A4 , rng );
    matrix_iset( A4 , 0 , 0 , sin(0.98));
    printf("matrix_det4:%g  ",matrix_det4( A4 ));
    printf("matrix_det:%g \n",matrix_det( A4 ));
  }
#endif

  matrix_free( A );
  matrix_free( B );
  rng_free( rng );
}
Beispiel #5
0
void matrix_set(matrix_type * matrix, double value) {
  int i,j;
  for (j=0; j < matrix->columns; j++)
    for (i=0; i < matrix->rows; i++)
      matrix_iset(matrix , i , j , value);
}
Beispiel #6
0
void matrix_iset_safe(matrix_type * matrix , int i , int j, double value) {
  matrix_assert_ij( matrix , i , j );
  matrix_iset( matrix , i , j , value );
}
Beispiel #7
0
void stepwise_isetY0( stepwise_type * stepwise , int i , double value ) {
    matrix_iset( stepwise->Y0, i , 0 , value );
}
Beispiel #8
0
static double stepwise_estimate__( stepwise_type * stepwise , bool_vector_type * active_rows) {
    matrix_type * X;
    matrix_type * E;
    matrix_type * Y;

    double y_mean    = 0;
    int nvar         = matrix_get_columns( stepwise->X0 );
    int nsample      = matrix_get_rows( stepwise->X0 );

    nsample = bool_vector_count_equal( active_rows , true );
    nvar = bool_vector_count_equal( stepwise->active_set , true );


    matrix_set( stepwise->beta , 0 ); // It is essential to make sure that old finite values in the beta0 vector do not hang around.


    /*
      Extracting the data used for regression, and storing them in the
      temporary local matrices X and Y. Selecting data is based both on
      which varibles are active (stepwise->active_set) and which rows
      should be used for regression, versus which should be used for
      validation (@active_rows).
    */
    if ((nsample < matrix_get_rows( stepwise->X0 )) || (nvar < matrix_get_columns( stepwise->X0 ))) {
        X = matrix_alloc( nsample , nvar );
        E = matrix_alloc( nsample , nvar );
        Y = matrix_alloc( nsample , 1);

        {
            int icol,irow;   // Running over all values.
            int arow,acol;   // Running over active values.
            arow = 0;
            for (irow = 0; irow < matrix_get_rows( stepwise->X0 ); irow++) {
                if (bool_vector_iget( active_rows , irow )) {
                    acol = 0;
                    for (icol = 0; icol < matrix_get_columns( stepwise->X0 ); icol++) {
                        if (bool_vector_iget( stepwise->active_set , icol )) {
                            matrix_iset( X , arow , acol , matrix_iget( stepwise->X0 , irow , icol ));
                            matrix_iset( E , arow , acol , matrix_iget( stepwise->E0 , irow , icol ));
                            acol++;
                        }
                    }

                    matrix_iset( Y , arow , 0 , matrix_iget( stepwise->Y0 , irow , 0 ));
                    arow++;
                }
            }
        }
    } else {
        X = matrix_alloc_copy( stepwise->X0 );
        E = matrix_alloc_copy( stepwise->E0 );
        Y = matrix_alloc_copy( stepwise->Y0 );
    }


    {

        if (stepwise->X_mean != NULL)
            matrix_free( stepwise->X_mean);

        stepwise->X_mean = matrix_alloc( 1 , nvar );

        if (stepwise->X_norm != NULL)
            matrix_free( stepwise->X_norm);

        stepwise->X_norm = matrix_alloc( 1 , nvar );

        matrix_type * beta     = matrix_alloc( nvar , 1);           /* This is the beta vector as estimated from the OLS estimator. */

        regression_augmented_OLS( X , Y , E, beta );


        /*
           In this code block the beta/tmp_beta vector which is dense with
           fewer elements than the full model is scattered into the beta0
           vector which has full size and @nvar elements.
        */
        {
            int ivar,avar;
            avar = 0;
            for (ivar = 0; ivar < matrix_get_columns( stepwise->X0 ); ivar++) {
                if (bool_vector_iget( stepwise->active_set , ivar )) {
                    matrix_iset( stepwise->beta , ivar , 0 , matrix_iget( beta , avar , 0));
                    avar++;
                }
            }
        }


        matrix_free( beta );
    }

    matrix_free( X );
    matrix_free( E );
    matrix_free( Y );
    return y_mean;
}
Beispiel #9
0
void stepwise_estimate( stepwise_type * stepwise , double deltaR2_limit , int CV_blocks) {
    int nvar          = matrix_get_columns( stepwise->X0 );
    int nsample       = matrix_get_rows( stepwise->X0 );
    double currentR2 = -1;
    bool_vector_type * active_rows = bool_vector_alloc( nsample , true );


    /*Reset beta*/
    for (int i = 0; i < nvar; i++) {
        matrix_iset(stepwise->beta, i , 0 , 0.0);
    }



    bool_vector_set_all( stepwise->active_set , false );

    double MSE_min = 10000000;
    double Prev_MSE_min = MSE_min;
    double minR2    = -1;

    while (true) {
        int    best_var = 0;
        Prev_MSE_min = MSE_min;

        /*
          Go through all the inactive variables, and calculate the
          resulting prediction error IF this particular variable is added;
          keep track of the variable which gives the lowest prediction error.
        */
        for (int ivar = 0; ivar < nvar; ivar++) {
            if (!bool_vector_iget( stepwise->active_set , ivar)) {
                double newR2 = stepwise_test_var(stepwise , ivar , CV_blocks);
                if ((minR2 < 0) || (newR2 < minR2)) {
                    minR2 = newR2;
                    best_var = ivar;
                }
            }
        }

        /*
          If the best relative improvement in prediction error is better
          than @deltaR2_limit, the corresponding variable is added to the
          active set, and we return to repeat the loop one more
          time. Otherwise we just exit.
        */

        {
            MSE_min = minR2;
            double deltaR2 = MSE_min / Prev_MSE_min;

            if (( currentR2 < 0) || deltaR2 < deltaR2_limit) {
                bool_vector_iset( stepwise->active_set , best_var , true );
                currentR2 = minR2;
                bool_vector_set_all(active_rows, true);
                stepwise_estimate__( stepwise , active_rows );
            } else {
                /* The gain in prediction error is so small that we just leave the building. */
                /* NB! Need one final compuation of beta (since the test_var function does not reset the last tested beta value !) */
                bool_vector_set_all(active_rows, true);
                stepwise_estimate__( stepwise , active_rows );
                break;
            }

            if (bool_vector_count_equal( stepwise->active_set , true) == matrix_get_columns( stepwise->X0 )) {
                stepwise_estimate__( stepwise , active_rows );
                break;   /* All variables are active. */
            }
        }
    }

    stepwise_set_R2(stepwise, currentR2);
    bool_vector_free( active_rows );
}
Beispiel #10
0
void lars_isetX( lars_type * lars, int sample, int var , double value) {
  matrix_iset( lars->X , sample , var , value );
}
Beispiel #11
0
void lars_estimate(lars_type * lars , int max_vars , double max_beta , bool verbose) {
  int nvars       = matrix_get_columns( lars->X );
  int nsample     = matrix_get_rows( lars->X );
  matrix_type * X = matrix_alloc( nsample, nvars );    // Allocate local X and Y variables
  matrix_type * Y = matrix_alloc( nsample, 1 );        // which will hold the normalized data 
  lars_estimate_init( lars , X , Y);                   // during the estimation process.
  {
    matrix_type * G                = matrix_alloc_gram( X , true );
    matrix_type * mu               = matrix_alloc( nsample , 1 );
    matrix_type * C                = matrix_alloc( nvars , 1 );
    matrix_type * Y_mu             = matrix_alloc_copy( Y ); 
    int_vector_type * active_set   = int_vector_alloc(0,0);
    int_vector_type * inactive_set = int_vector_alloc(0,0);
    int    active_size;

    
    if ((max_vars <= 0) || (max_vars > nvars))
      max_vars = nvars;
    
    {
      int i;
      for (i=0; i < nvars; i++)
        int_vector_iset( inactive_set , i , i );
    }
    matrix_set( mu , 0 );

    while (true) {
      double maxC = 0;

      /*
        The first step is to calculate the correlations between the
        covariates, and the current residual. All the currently inactive
        covariates are searched; the covariate with the greatest
        correlation with (Y - mu) is selected and added to the active set.
      */
      matrix_sub( Y_mu , Y , mu );                            // Y_mu = Y - mu 
      matrix_dgemm( C , X , Y_mu , true , false , 1.0 , 0);   // C    = X' * Y_mu
      { 
        int i;
        int max_set_index = 0;

        for (i=0; i < int_vector_size( inactive_set ); i++) {
          int    set_index = i;
          int    var_index = int_vector_iget( inactive_set , set_index );
          double value     = fabs( matrix_iget(C ,  var_index , 0) );
          if (value > maxC) {
            maxC          = value;
            max_set_index = set_index;
          }
        }
        /* 
           Remove element corresponding to max_set_index from the
           inactive set and add it to the active set:
        */
        int_vector_append( active_set , int_vector_idel( inactive_set , max_set_index ));
      }
      active_size = int_vector_size( active_set );
      /*
        Now we have calculated the correlations between all the
        covariates and the current residual @Y_mu. The correlations are
        stored in the matrix @C. The value of the maximum correlation is
        stored in @maxC.
      
        Based on the value of @maxC we have added one new covariate to
        the model, technically by moving the index from @inactive_set to
        @active_set.
      */

      /*****************************************************************/


      {
        matrix_type * weights     = matrix_alloc( active_size , 1);
        double scale;

        /*****************************************************************/
        /* This scope should compute and initialize the variables
           @weights and @scale. */
        {
          matrix_type * subG        = matrix_alloc( active_size , active_size );
          matrix_type * STS         = matrix_alloc( active_size , active_size );
          matrix_type * sign_vector = matrix_alloc( active_size , 1);
          int i , j;

          /*
            STS = S' o S where 'o' is the Schur product and S is given
            by:

            [  s1   s2   s3   s4 ]  
        S = [  s1   s2   s3   s4 ]
            [  s1   s2   s3   s4 ]
            [  s1   s2   s3   s4 ]

            Where si is the sign of the correlation between (active)
            variable 'i' and Y_mu.
          */

                
          for (i=0; i < active_size ; i++) {
            int     vari  = int_vector_iget( active_set , i );
            double  signi = sgn( matrix_iget( C , vari , 0));
            matrix_iset( sign_vector , i , 0 , signi );
            for (j=0; j < active_size; j++) {
              int     varj  = int_vector_iget( active_set , j );
              double  signj = sgn( matrix_iget( C , varj , 0));
            
              matrix_iset( STS , i , j , signi * signj );
            }
          }
        
          // Extract the elements from G corresponding to active indices and
          // copy to the matrix subG:
          for (i=0; i < active_size ; i++) {
            int ii = int_vector_iget( active_set , i );
            for (j=0; j < active_size; j++) {
              int jj = int_vector_iget( active_set , j );
            
              matrix_iset( subG , i , j , matrix_iget(G , ii , jj));
            }
          }
      
          // Weights 
          matrix_inplace_mul( subG , STS );  
          matrix_inv( subG );
        
          {
            matrix_type * ones = matrix_alloc( active_size , 1 );
            matrix_type * GA1  = matrix_alloc( active_size , 1 );
          
            matrix_set( ones , 1.0 );
            matrix_matmul( GA1 , subG , ones );
            scale = 1.0 / sqrt( matrix_get_column_sum( GA1 , 0 ));
          
            matrix_mul( weights , GA1 , sign_vector );
            matrix_scale( weights , scale );
          
            matrix_free( GA1 );
            matrix_free( ones );
          }
        
          matrix_free( sign_vector );
          matrix_free( subG );
          matrix_free( STS );
        }
      
        /******************************************************************/
        /* The variables weight and scale have been calculated, proceed
           to calculate the step length @gamma. */ 
        {
          int i;
          double  gamma;
        
          {
            matrix_type * u = matrix_alloc( nsample , 1 );
            int j;

            for (i=0; i < nsample; i++) {
              double row_sum = 0;
              for (j =0; j < active_size; j++) 
                row_sum += matrix_iget( X , i , int_vector_iget( active_set , j)) * matrix_iget(weights , j , 0 );
            
              matrix_iset( u , i , 0 , row_sum );
            }
          
            gamma = maxC / scale;
            if (active_size < matrix_get_columns( X )) {
              matrix_type * equi_corr = matrix_alloc( nvars , 1 );
              matrix_dgemm( equi_corr , X , u , true , false , 1.0 , 0);     // equi_corr = X'·u
              for (i=0; i < (nvars - active_size); i++) {
                int var_index  = int_vector_iget( inactive_set , i );
                double gamma1  = (maxC - matrix_iget(C , var_index , 0 )) / ( scale - matrix_iget( equi_corr , var_index , 0));
                double gamma2  = (maxC + matrix_iget(C , var_index , 0 )) / ( scale + matrix_iget( equi_corr , var_index , 0));
              
                if ((gamma1 > 0) && (gamma1 < gamma))
                  gamma = gamma1;
              
                if ((gamma2 > 0) && (gamma2 < gamma))
                  gamma = gamma2;
              
              }
              matrix_free( equi_corr );
            }
            /* Update the current estimated 'location' mu. */
            matrix_scale( u , gamma );
            matrix_inplace_add( mu , u );
            matrix_free( u );
          } 
      
          /* 
             We have calculated the step length @gamma, and the @weights. Update the @beta matrix.
          */
          for (i=0; i < active_size; i++) 
            matrix_iset( lars->beta , int_vector_iget( active_set , i ) , active_size - 1 , gamma * matrix_iget( weights , i , 0));
      
          if (active_size > 1) 
            for (i=0; i < nvars; i++)
              matrix_iadd( lars->beta , i , active_size - 1 , matrix_iget( lars->beta , i , active_size - 2)); 
        
          matrix_free( weights );
        }
      }
    
      if (active_size == max_vars)
        break;
      
      if (max_beta > 0) {
        double beta_norm2 = matrix_get_column_abssum( lars->beta , active_size - 1 );
        if (beta_norm2 > max_beta) {
          // We stop - we will use an interpolation between this beta estimate and
          // the previous, to ensure that the |beta| = max_beta criteria is satisfied.
          if (active_size >= 2) {
            double beta_norm1 = matrix_get_column_abssum( lars->beta , active_size - 2 );
            double s = (max_beta - beta_norm1)/(beta_norm2 - beta_norm1);
            {
              int j;
              for (j=0; j < nvars; j++) {
                double beta1 = matrix_iget( lars->beta , j , active_size - 2 );
                double beta2 = matrix_iget( lars->beta , j , active_size - 1 );
                matrix_iset( lars->beta , j , active_size - 1 , beta1 + s*(beta2 - beta1));
              }
            }
          }
          break;
        }
      }
    }
    matrix_free( G );
    matrix_free( mu );
    matrix_free( C );
    matrix_free( Y_mu );
    int_vector_free( active_set );
    int_vector_free( inactive_set );
    matrix_resize( lars->beta , nvars , active_size , true );
    if (verbose) 
      matrix_pretty_fprint( lars->beta , "beta" , "%12.5f" , stdout );
    lars_select_beta( lars , active_size - 1);
  }
  matrix_free( X );
  matrix_free( Y );
}
Beispiel #12
0
void lars_isetY( lars_type * lars, int sample, double value) {
  matrix_iset( lars->Y , sample , 0 , value );
}