Beispiel #1
0
dim clmAssimilate
(  mclx* mx
,  mclx* cl
,  dim   prune_sz
,  mclx** cl_prunedpp
,  dim*  sjd_left
,  dim*  sjd_right
)
   {  dim dist_this_pru = 0, dist_pru_this = 0
   ;  mclx* cl_pru = NULL
   ;  const char* me = "clmAssimilate"

   ;  dim o, m, e, n_source, n_sink

   ;  dim sum_pruned = clm_clm_prune
      (mx, cl, prune_sz, &cl_pru, &n_source, &n_sink)

   ;  *cl_prunedpp = NULL

   ;  if (sum_pruned)
      {  mcxLog
         (  MCX_LOG_AGGR
         ,  me
         ,  "funneling %lu nodes from %lu sources into %lu targets"
         ,  (ulong) sum_pruned
         ,  (ulong) n_source
         ,  (ulong) n_sink
         )

      ;  clmEnstrict(cl_pru, &o, &m, &e, 0)
      ;  *cl_prunedpp = cl_pru

      ;  clmSJDistance
         (cl, cl_pru, NULL, NULL, &dist_this_pru, &dist_pru_this)
      ;  if (sjd_left)
            *sjd_left  = dist_this_pru
         ,  *sjd_right = dist_pru_this
   ;  }
      else if (sjd_left)
         *sjd_left = 0
      ,  *sjd_right = 0

   ;  mcxLog
      (  MCX_LOG_AGGR
      ,  me
      ,  "dim %lu pruned %lu distance %lu|%lu"
      ,  (ulong) N_COLS(mx)
      ,  (ulong) sum_pruned 
      ,  (ulong) dist_this_pru
      ,  (ulong) dist_pru_this
      )

   ;  return sum_pruned
;  }
Beispiel #2
0
int main
(  int               argc
,  const char*       argv[]
)
   {  const char* fn_input    =  argc > 1 ? argv[1] : ""
   ;  mclAlgParam* mlp        =  NULL
   ;  const char* me          =  "mcl"
   ;  mcxstatus status        =  STATUS_OK

   ;  srandom(mcxSeed(315))
   ;  signal(SIGALRM, mclSigCatch)
   ;  if (signal(SIGUSR1, mcxLogSig) == SIG_ERR)
      mcxErr(me, "cannot catch SIGUSR1!")

   ;  mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  mclx_app_init(stderr)

   ;  if (argc < 2)
      {  mcxTell
         (  me
         ,  "usage: mcl <-|file name> [options],"
            " do 'mcl -h' or 'man mcl' for help"
         )
      ;  mcxExit(0)
   ;  }

      status
      =  mclAlgInterface
         (&mlp, (char**) (argv+2), argc-2, fn_input, NULL, ALG_DO_IO)

   ;  if (status == ALG_INIT_DONE)
      return 0
   ;  else if (status)
      mcxDie(STATUS_FAIL, me, "no tango")

   ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
      mcxDie(STATUS_FAIL, me, "failed")

   ;  if (mlp->n_assimilated)
      mcxLog(MCX_LOG_MODULE, me, "%lu nodes will assimilate", (ulong) mlp->n_assimilated)

   ;  if (mlp->mx_start)
      mcxLog(MCX_LOG_MODULE, me, "cached matrix with %lu columns", (ulong) N_COLS(mlp->mx_start))

   ;  mclAlgParamFree(&mlp, TRUE)
   ;  helpful_reminder()
   ;  return STATUS_OK
;  }
Beispiel #3
0
static mclx* control_test
(  mclx* clnext
,  const mclx* clctrl
)
   {  if (!clctrl)
      return clnext

   ;  {  mclx* meet = clmMeet(clctrl, clnext)
      ;  dim dist_ctrl_curr, dist_curr_ctrl
      ;  clmSJDistance
         (clnext, clctrl, NULL, NULL, &dist_curr_ctrl, &dist_ctrl_curr)
      ;  mcxLog
         (  MCX_LOG_APP
         ,  me
         ,  "distance to control: %lu %lu %lu"
         ,  (ulong) (dist_curr_ctrl + dist_ctrl_curr)
         ,  (ulong) dist_curr_ctrl
         ,  (ulong) dist_ctrl_curr
         )
      ;  if (dist_curr_ctrl <= dist_ctrl_curr)
         {  mclxFree(&clnext)
         ;  clnext = meet
      ;  }
         else
         mclxFree(&meet)
   ;  }
      return clnext
;  }
Beispiel #4
0
static mclx* get_base
(  const char* fn_input
,  mclx*       mx_input
,  const char* b1opts
,  const char* b2opts
)
   {  mclAlgParam* mlp =   NULL
   ;  mcxstatus status =   STATUS_FAIL
   ;  mclx* mxbase     =   NULL  

   ;  get_interface
      (  &mlp
      ,  fn_input
      ,  b2opts ? b2opts : b1opts
      ,  NULL
      ,  mx_input
      ,  b2opts ? ALG_CACHE_EXPANDED : ALG_CACHE_START
      ,  EXIT_ON_FAIL
      )

   ;  if (b2opts)
      {  mlp->mpp->mainLoopLength = 1
      ;  mlp->mpp->mainInflation = 1.0
      ;  mlp->expand_only = TRUE

      ;  mcxLog(MCX_LOG_APP, me, "computing expanded matrix")
      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed")
         ;  mcxExit(1)
      ;  }
         mcxLog(MCX_LOG_APP, me, "done computing expanded matrix")
      ;  mxbase = mclAlgParamRelease(mlp, mlp->mx_expanded)
   ;  }
      else
      {  if (mclAlgorithmStart(mlp, FALSE))
         mcxDie(1, me, "-b1 option start-up failed")
      ;  mxbase = mclAlgParamRelease(mlp, mlp->mx_start)
      ;  start_col_sums_g = mclvClone(mlp->mx_start_sums)
   ;  }
      mclAlgParamFree(&mlp, TRUE)
   ;  return mxbase
;  }
Beispiel #5
0
static dim clm_clm_prune
(  mclx*    mx
,  mclx*    cl
,  dim      prune_sz
,  mclx**   cl_adjustedpp
,  dim*     n_sink
,  dim*     n_source
)
   {  dim d, n_adjusted = 0
   ;  mclx* cl_adj = mclxCopy(cl)
   ;  mclv* cid_affected = mclvClone(cl->dom_cols)
   ;  const char* me = "clmAssimilate"

   ;  double bar_affected = 1.5

   ;  mclx *el_to_cl = NULL
   ;  mclx *el_on_cl = NULL
   ;  mclx *cl_on_cl = NULL
   ;  mclx *cl_on_el = NULL

   ;  *n_sink = 0
   ;  *n_source = 0

   ;  mclvMakeConstant(cid_affected, 1.0)
   ;  mclxColumnsRealign(cl_adj, mclvSizeCmp)

   ;  *cl_adjustedpp = NULL

   ;  clmCastActors
      (&mx, &cl_adj, &el_to_cl, &el_on_cl, &cl_on_cl, &cl_on_el, 0.95)
   ;  mclxFree(&cl_on_el)

   ;  for (d=0;d<N_COLS(cl_on_cl);d++)
      {  mclv* clthis   =  cl_adj->cols+d
      ;  mclv* cllist   =  cl_on_cl->cols+d
      ;  mclp* pself    =  mclvGetIvp(cllist, clthis->vid, NULL)
      ;  double self_val = -1.0
      
      ;  if (pself)
            self_val = pself->val
         ,  pself->val *= 1.001  /* to push it up in case of equal weights */

;if(0)fprintf(stderr, "test size %d\n", (int) clthis->n_ivps)
      ;  if (prune_sz && clthis->n_ivps > prune_sz)
         continue

      ;  while (1)
         {  mclv* clthat
         ;  dim e
         ;  if (cllist->n_ivps < 2)
            break
         ;  mclvSort(cllist, mclpValRevCmp)

                     /* now get biggest mass provided that cluster
                      * ranks higher (has at least as many entries)
                      *
                      * fixme/todo: we probably have a slight order
                      * dependency for some fringe cases. If provable
                      * then either solve or document it.
                     */
         ;  for (e=0;e<cllist->n_ivps;e++)
            if (cllist->ivps[e].idx >= clthis->vid)
            break

                     /* found none or itself */
         ;  if (e == cllist->n_ivps || cllist->ivps[e].idx == clthis->vid)
            break

         ;  if       /* Should Not Happen */
            (!(clthat
            =  mclxGetVector(cl_adj, cllist->ivps[e].idx, RETURN_ON_FAIL, NULL)
            ) )
            break

                     /*    works for special case prune_sz == 0               */
                     /*    if (clthat->n_ivps + clthis->n_ivps > prune_sz)    */
                     /*    ^iced. inconsistent behaviour as k grows.          */
         ;  {  mcxLog
               (  MCX_LOG_LIST
               ,  me
               ,  "source %ld|%lu|%.3f absorbed by %ld|%lu|%.3f"
               ,  clthis->vid, (ulong) clthis->n_ivps, self_val
               ,  clthat->vid, (ulong) clthat->n_ivps, cllist->ivps[0].val
               )
            ;  n_adjusted += clthis->n_ivps
            ;  (*n_sink)++
                     /* note: we could from our precomputed cl_on_cl
                      * obtain that A is absorbed in B, B is absorbed in C.
                      * below we see that A will be merged with B,
                      * and the result will then be merged with C.
                      * This depends on the fact that cl_adj is ordered
                      * on increasing cluster size.
                     */
            ;  mcldMerge(cl_adj->cols+d, clthat, clthat)
            ;  mclvResize(cl_adj->cols+d, 0)
            ;  mclvInsertIdx(cid_affected, clthat->vid, 2.0)
         ;  }
            break
      ;  }
         mclvSort(cllist, mclpIdxCmp)
   ;  }

      mclxFree(&cl_on_cl)
   ;  mclxFree(&el_on_cl)
   ;  mclxFree(&el_to_cl)

   ;  mclxMakeCharacteristic(cl)

   ;  mclvUnary(cid_affected, fltxGT, &bar_affected)
   ;  *n_source = cid_affected->n_ivps
   ;  mclvFree(&cid_affected)

   ;  mclxColumnsRealign(cl_adj, mclvSizeRevCmp)

   ;  if (!n_adjusted)
      {  mclxFree(&cl_adj)
      ;  return 0
   ;  }

      mclxUnary(cl_adj, fltxCopy, NULL)
   ;  mclxMakeCharacteristic(cl_adj)   

   ;  *cl_adjustedpp  =  cl_adj
   ;  return n_adjusted
;  }
Beispiel #6
0
dim clmAdjust
(  mclx* mx
,  mclx* cl
,  dim cls_size_max
,  mclx** cl_adjustedpp
,  mclv** ls_adjustedpp    /* nodes that moved around */
,  dim*  sjd_left
,  dim*  sjd_right
)
   {  dim sum_adjusted = 0, n_ite = 0
   ;  dim dist_curr_adj = 0, dist_adj_curr = 0
   ;  mclx* cl_adj = NULL
   ;  mclx* cl_curr = cl
   ;  mclv* ls_adjusted = mclvInit(NULL)
   ;  clmXScore score_curr, score_adj
   ;  const char* me = "clmAdjust"

   ;  *cl_adjustedpp = NULL
   ;  *ls_adjustedpp = NULL

   ;  while (1)
      {  dim n_adjusted
      ;  double cov_curr, cov_adj, frac_curr = 0.0, frac_adj = 0.0
      ;  mclv* cid_affected = NULL, *nid_affected = NULL
      ;  dim o, m, e

      ;  if (n_ite++ >= 100)
         break

      ;  mclxColumnsRealign(cl_curr, mclvSizeCmp)

      ;  if
         ( !(n_adjusted
         =   clm_clm_adjust
             (mx, cl_curr, cls_size_max, &cl_adj, &cid_affected, &nid_affected)
            )
         )
         break

      ;  mcxTell
         (  me
         ,  "assembled %lu nodes with %lu clusters affected"
         ,  (ulong) n_adjusted
         ,  (ulong) cid_affected->n_ivps
         )

      ;  clmXScanInit(&score_curr)
      ;  clmXScanInit(&score_adj)

      ;  clmXScanDomainSet(mx, cl_curr,cid_affected, &score_curr)
      ;  clmXScanDomainSet(mx, cl_adj, cid_affected, &score_adj)

      ;  clmXScoreCoverage(&score_curr, &cov_curr, NULL)
      ;  clmXScoreCoverage(&score_adj , &cov_adj , NULL)

      ;  if (score_curr.n_hits && score_adj.n_hits)
            frac_curr = score_curr.sum_i / score_curr.n_hits
         ,  frac_adj  = score_adj.sum_i  / score_adj.n_hits

      ;  mcxLog
         (  MCX_LOG_LIST
         ,  me
         ,  "consider (%.5f|%.5f|%lu) vs (%.5f|%.5f|%lu)"
         ,  cov_adj, frac_adj, (ulong) score_adj.n_hits
         ,  cov_curr, frac_curr, (ulong) score_curr.n_hits
         )
                           /* experience tells us that mcl's funneling
                            * worsens frac
                           */
      ;  if (frac_adj <=  frac_curr)
         {  mclvFree(&cid_affected)
         ;  mclvFree(&nid_affected)
         ;  break
      ;  }
         
         clmEnstrict(cl_adj, &o, &m, &e, 0)
      ;  clmSJDistance(cl_curr, cl_adj, NULL, NULL, &dist_curr_adj, &dist_adj_curr)

      ;  mcxLog
         (  MCX_LOG_AGGR
         ,  me
         ,  "distance %lu|%lu"
         ,  (ulong) dist_curr_adj, (ulong) dist_adj_curr
         )

      ;  mclvAdd(ls_adjusted, nid_affected, ls_adjusted)

      ;  if (cl_curr != cl)
         mclxFree(&cl_curr)

      ;  cl_curr = cl_adj
      ;  sum_adjusted += n_adjusted

      ;  mclvFree(&cid_affected)
      ;  mclvFree(&nid_affected)
   ;  }

      if (cl_curr != cl)            /* fixme free logic */
      {  mclxColumnsRealign(cl_curr, mclvSizeRevCmp)
      ;  *cl_adjustedpp = cl_curr
      ;  *ls_adjustedpp = ls_adjusted
      ;  clmSJDistance
         (cl, cl_curr, NULL, NULL, &dist_curr_adj, &dist_adj_curr)
      ;  if (sjd_left)
            *sjd_left  = dist_curr_adj
         ,  *sjd_right = dist_adj_curr
   ;  }
      else
      {  if (sjd_left)
            *sjd_left = 0
         ,  *sjd_right = 0
      ;  mclvFree(&ls_adjusted)
   ;  }

      mcxLog
      (  MCX_LOG_AGGR
      ,  me
      ,  "total adjusted %lu, final distance %lu|%lu"
      ,  (ulong) sum_adjusted 
      ,  (ulong) dist_curr_adj
      ,  (ulong) dist_adj_curr
      )

   ;  mclxColumnsRealign(cl, mclvSizeRevCmp)
   ;  return sum_adjusted
;  }
Beispiel #7
0
static dim clm_clm_adjust
(  mclx* mx
,  mclx* cl
,  dim cls_size_max
,  mclx** cl_adjustedpp
,  mclv** cid_affectedpp
,  mclv** nid_affectedpp
)
   {  dim i, j, n_adjusted = 0
   ;  mclx* cl_adj = mclxCopy(cl)

   ;  mclv* cid_affected = mclvClone(cl->dom_cols)
   ;  mclv* nid_affected = mclvClone(mx->dom_cols)
   ;  double bar_affected = 1.5

   ;  const char* e1 = getenv("MCL_ADJ_FMAX")
   ;  const char* e2 = getenv("MCL_ADJ_EMASS")
   
   ;  double f1 = e1 ? atof(e1) : 2
   ;  double f2 = e2 ? atof(e2) : 3

   ;  mcxbool loggit = mcxLogGet( MCX_LOG_CELL | MCX_LOG_INFO )

   ;  clmVScore sc

   ;  mclx *el_to_cl = NULL
   ;  mclx *el_on_cl = NULL
   ;  mclx *cl_on_cl = NULL
   ;  mclx *cl_on_el = NULL

   ;  *cl_adjustedpp = NULL
   ;  *cid_affectedpp = NULL
   ;  *nid_affectedpp = NULL

   ;  clmCastActors
      (&mx, &cl, &el_to_cl, &el_on_cl, &cl_on_cl, &cl_on_el, 0.95)

   ;  mclxFree(&cl_on_cl)
   ;  mclxFree(&cl_on_el)

   ;  mclvMakeConstant(cid_affected, 1.0)
   ;  mclvMakeConstant(nid_affected, 1.0)


   ;  for (i=0;i<N_COLS(cl_adj);i++)
      cl_adj->cols[i].val = 0.5

                     /*    Proceed with smallest clusters first.
                      *    Caller has to take care of mclxColumnsRealign
                     */
   ;  for (i=0;i<N_COLS(cl);i++)
      {  mclv* clself = cl->cols+i

                     /*    Only consider nodes in clusters of
                      *    size <= cls_size_max
                     */
      ;  if (cls_size_max && clself->n_ivps > cls_size_max)
         break
                     /*    Clusters that have been marked for inclusion
                      *    cannot play.
                     */
      ;  if (cl_adj->cols[i].val > 1)
         continue

      ;  for (j=0;j<clself->n_ivps;j++)
         {  long nid  = clself->ivps[j].idx
         ;  long nos  = mclvGetIvpOffset(mx->dom_cols, nid, -1)
         ;  mclv* clidvec  =  mclxGetVector(el_on_cl, nid, RETURN_ON_FAIL, NULL)

         ;  double eff_alien_bsf = 0.0, eff_alien_max_bsf = 0.0 /* best so far*/
         ;  double eff_self = 0.0, eff_self_max = 0.0
         ;  long cid_alien  = -1, cid_self = -1
         ;  clmVScore sc_self = { 0 }, sc_alien = { 0 }
         ;  dim f

         ;  if (nos < 0 || !clidvec)
            {  mcxErr
               ("clmDumpNodeScores panic", "node <%ld> does not belong", nid)
            ;  continue
         ;  }

            clmVScanDomain(mx->cols+nos, clself, &sc)
         ;  clmVScoreCoverage(&sc, &eff_self, &eff_self_max)
         ;  cid_self = clself->vid
         ;  sc_self  = sc

         ;  if (loggit)
            mcxLog2
            (  us
            ,  "node %ld in cluster %ld eff %.3f,%.3f sum %.3f"
            ,  nid
            ,  cid_self
            ,  eff_self
            ,  eff_self_max
            ,  sc.sum_i
            )

         ;  for (f=0;f<clidvec->n_ivps;f++)
            {  long cid = clidvec->ivps[f].idx
            ;  mclv* clvec = mclxGetVector(cl, cid, RETURN_ON_FAIL, NULL)
                          /* ^ overdoing: cid == clvec->vid */
            ;  double eff, eff_max
            ;  if (!clvec)
               {  mcxErr
                  (  "clmAdjust panic"
                  ,  "cluster <%ld> node <%ld> mishap"
                  ,  cid
                  ,  nid
                  )
               ;  continue
            ;  }


                        /* fixme: document or remove first condition
                         *
                        */
               if ((0 && clvec->n_ivps <= clself->n_ivps) || clvec->vid == cid_self)
               continue

            ;  clmVScanDomain(mx->cols+nos, clvec, &sc)
            ;  clmVScoreCoverage(&sc, &eff, &eff_max)

#if 0
#  define PIVOT eff > eff_alien_bsf
#else
#  define PIVOT eff_max > eff_alien_max_bsf
#endif

            ;  if
               (  PIVOT
               || sc.sum_i >= 0.5
               )
                  eff_alien_bsf = eff
               ,  eff_alien_max_bsf = eff_max
               ,  cid_alien = clvec->vid
               ,  sc_alien = sc

            ;  if (sc.sum_i >= 0.5)
               break
         ;  }

            if (loggit)
            mcxLog2
            (  us
            ,  " -> best alien %ld eff %.3f,%.3f sum %.3f"
            ,  cid_alien
            ,  eff_alien_bsf
            ,  eff_alien_max_bsf
            ,  sc_alien.sum_i
            )

                  /* below: use sum_i as mass fraction
                   * (clmAdjust framework uses stochastic * matrix)
                  */
         ;  if
            (  cid_alien >= 0
            && cid_self >= 0
            && f1 * sc_alien.max_i >= sc_self.max_i
            && (  (  eff_alien_bsf > eff_self
                  && sc_alien.sum_i > sc_self.sum_i
                  )
               || (  pow(sc_alien.sum_i, f2) >= sc_self.sum_i
                  && pow(eff_self, f2) <= eff_alien_bsf
                  )
               )
                  /* So, if max is reasonable
                   * and efficiency is better and mass is better
                   * or if mass is ridiculously better -> move
                   * Somewhat intricate and contrived, yes.
                  */
            )
            {  mclv* acceptor
               =  mclxGetVector(cl_adj, cid_alien, RETURN_ON_FAIL, NULL)
            ;  mclv* donor
               =  mclxGetVector(cl_adj, cid_self,  RETURN_ON_FAIL, NULL)
            ;  if (!donor || !acceptor || acceptor == donor)
               continue

            ;  mclvInsertIdx(donor, nid, 0.0)
            ;  mclvInsertIdx(acceptor, nid, 1.0)
            ;  acceptor->val = 1.5

            ;  if (mcxLogGet(MCX_LOG_LIST))
               {  mclv* nb = mx->cols+nos
               ;  double mxv = mclvMaxValue(nb)
               ;  double avg = nb->n_ivps ? mclvSum(nb) / nb->n_ivps : -1.0
               ;  mcxLog
                  (  MCX_LOG_LIST
                  ,  us
                  ,  "mov %ld (%ld %.2f %.2f)"
                     " %ld (cv=%.2f cm=%.2f s=%.2f m=%.2f #=%lu)"
                     " to %ld (cv=%.2f cm=%.2f s=%.2f m=%.2f #=%lu)"
                  ,  nid
                  ,     (long) nb->n_ivps, mxv, avg
                  ,  cid_self
                  ,     eff_self, eff_self_max, sc_self.sum_i, sc_self.max_i
                  ,              (ulong) (sc_self.n_meet + sc_self.n_ddif)
                  ,  cid_alien
                  ,     eff_alien_bsf, eff_alien_max_bsf, sc_alien.sum_i, sc_alien.max_i
                  ,              (ulong) (sc_alien.n_meet + sc_alien.n_ddif)
                  )
            ;  }

               n_adjusted++                  
            ;  mclvInsertIdx(cid_affected, cid_alien, 2.0)
            ;  mclvInsertIdx(cid_affected, cid_self, 2.0)
            ;  mclvInsertIdx(nid_affected, nid, 2.0)
         ;  }
         }
      }
      mclxFree(&el_on_cl)
   ;  mclxFree(&el_to_cl)

   ;  for (i=0;i<N_COLS(cl_adj);i++)
      cl_adj->cols[i].val = 0.0

   ;  mclxMakeCharacteristic(cl)

   ;  if (!n_adjusted)
      {  mclxFree(&cl_adj)
      ;  mclvFree(&cid_affected)
      ;  mclvFree(&nid_affected)
      ;  return 0
   ;  }

      mclxUnary(cl_adj, fltxCopy, NULL)
   ;  mclxMakeCharacteristic(cl_adj)   
                     /* FIRST REMOVE ENTRIES set to zero (sssst now .. */
                     /* ...) and THEN make it characteristic again     */

   ;  mclvUnary(cid_affected, fltxGT, &bar_affected)
   ;  mclvUnary(nid_affected, fltxGT, &bar_affected)

   ;  *cl_adjustedpp  =  cl_adj
   ;  *cid_affectedpp =  cid_affected
   ;  *nid_affectedpp =  nid_affected

   ;  return n_adjusted
;  }
Beispiel #8
0
int main
(  int                  argc
,  const char*          argv[]
)  
   {  mcxIO
         *xfcl    =  NULL
      ,  *xfctrl  =  NULL
      ,  *xfcoarse=  NULL
      ,  *xfbase  =  NULL
      ,  *xfcone  =  NULL
      ,  *xfstack =  NULL

   ;  mclx* mxbase, *cl, *cl_coarse, *clprev, *clctrl = NULL

   ;  mcxTing* shared = mcxTingNew("-I 4 -overlap split")
   ;  mcxbool root = TRUE
   ;  mcxbool have_bootstrap = FALSE
   ;  const char* plexprefix = NULL
   ;  const char* stem = "mcl"
   ;  mcxbool same = FALSE
   ;  mcxbool plex = TRUE
   ;  mcxbool add_transpose = FALSE
   ;  const char* b2opts = NULL
   ;  const char* b1opts = NULL
   ;  mcxbits write_modes = 0

   ;  mclAlgParam* mlp        =  NULL
   ;  mcxstatus status        =  STATUS_OK
   ;  mcxstatus parse_status  =  STATUS_OK
   ;  int multiplex_idx = 1
   ;  int N = 0
   ;  int n_ite = 0
   ;  dim n_components = 0, n_cls = 0


   ;  int a =  1, i= 0
   ;  int n_arg_read = 0
   ;  int delta = 0
   ;  mcxOption* opts, *opt
   ;  mcxTing* cline = mcxOptArgLine(argv+1, argc-1, '\'')
   ;  mclgTF* transform  =  NULL
   ;  mcxTing* transform_spec = NULL


   ;  double iaf = 0.84

   ;  mclx_app_init(stderr)

   ;  if (0)
      mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  else
      mcxLogLevelSetByString("xf4g1")

   ;  mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1)

   ;  if (argc == 2 && argv[1][0] == '-' && mcxOptIsInfo(argv[1], options))
      delta = 1
   ;  else if (argc < 2)
      {  help(options, shared)
      ;  exit(0)
   ;  }

      opts = mcxOptExhaust
            (options, (char**) argv, argc, 2-delta, &n_arg_read, &parse_status)

   ;  if (parse_status != STATUS_OK)
      {  mcxErr(me, "initialization failed")
      ;  exit(1)
   ;  }

   ;  for (opt=opts;opt->anch;opt++)
      {  mcxOptAnchor* anch = opt->anch

      ;  switch(anch->id)
         {  case MY_OPT_HELP
         :  help(options, shared)
         ;  exit(0)
         ;

            case MY_OPT_APROPOS
         :  help(options, shared)
         ;  exit(0)
         ;  break
         ;

            case MY_OPT_NMAX
         :  N = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_Z
         :  help(NULL, shared)
         ;  exit(0)
         ;  break
         ;

            case MY_OPT_SHARED
         :  mcxTingPrintAfter(shared, " %s", opt->val)
         ;  break
         ;

            case MY_OPT_TRANSFORM
         :  transform_spec = mcxTingNew(opt->val)
         ;  break
         ;

            case MY_OPT_B1
         :  b1opts = opt->val
         ;  break
         ;

            case MY_OPT_B2
         :  b2opts = opt->val
         ;  break
         ;

            case ALG_OPT_SETENV
         :  mcxSetenv(opt->val)
         ;  break
         ;

            case ALG_OPT_QUIET
         :  mcxLogLevelSetByString(opt->val)
         ;  break
         ;

            case MY_OPT_HDP
         :  hdp_g = atof(opt->val)
         ;  break
         ;

            case MY_OPT_ADDTP
         :  add_transpose = TRUE
         ;  break
         ;

            case MY_OPT_ANNOT       /* only used in command-line copying */
         :  break
         ;

            case MY_OPT_IAF
         :  iaf = atof(opt->val) / 100
         ;  break
         ;

            case MY_OPT_WRITE
         :  if (strstr(opt->val, "stack"))
            write_modes |= OUTPUT_STACK
         ;  if (strstr(opt->val, "cone"))
            write_modes |= OUTPUT_CONE
         ;  if (strstr(opt->val, "levels"))
            write_modes |= OUTPUT_STEPS
         ;  if (strstr(opt->val, "coarse"))
            write_modes |= OUTPUT_COARSE
         ;  if (strstr(opt->val, "base"))
            write_modes |= OUTPUT_BASE
         ;  break
         ;

            case MY_OPT_BASENAME
         :  xfbase = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_COARSE
         :  xfcoarse = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_CONE
         :  xfcone = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_ROOT
         :  root = strchr("1yY", (u8) opt->val[0]) ? TRUE : FALSE
         ;  break
         ;

            case MY_OPT_STACK
         :  xfstack = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_STEM
         :  stem = opt->val
         ;  break
         ;

            case MY_OPT_MULTIPLEX
         :  plex = strchr("yY1", (unsigned char) opt->val[0]) ? TRUE : FALSE
         ;  break
         ;

            case MY_OPT_DISPATCH
         :  dispatch_g = TRUE
         ;  break
         ;

            case MY_OPT_INTEGRATE
         :  integrate_g = TRUE
         ;  break
         ;

            case MY_OPT_CONTRACT
         :  break
         ;

            case MY_OPT_SUBCLUSTERX
         :  subclusterx_g = TRUE,  subcluster_g = TRUE
         ;  break
         ;

            case MY_OPT_SUBCLUSTER
         :  subcluster_g = TRUE
         ;  break
         ;

            case MY_OPT_CONTROL
         :  xfctrl = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_CL
         :  xfcl = mcxIOnew(opt->val, "r")
         ;  have_bootstrap = TRUE
         ;  break
         ;

            case MY_OPT_VERSION
         :  app_report_version(me)
         ;  exit(0)
         ;

            default
         :  mcxExit(1)
         ;
         }
      }

      mcxOptFree(&opts)

   ;  a = 2 + n_arg_read

   ;  if (a < argc)
      {  if (strcmp(argv[a], "--"))
         mcxDie
         (  1
         ,  me
         ,  "trailing %s options require standalone '--' separator (found %s)"
         ,  integrate_g ? "integrate" : "mcl"
         ,  argv[a]
         )
      ;  a++
   ;  }

      if (subcluster_g + dispatch_g + integrate_g > 1)
      mcxDie(1, me, "too many modes!")

   ;  if (N && N < argc-a)
      mcxErr(me, "-n argument leaves spurious option specifications")

   ;  srandom(mcxSeed(89315))
   ;  signal(SIGALRM, mclSigCatch)

   ;  if (dispatch_g)
      plexprefix = "dis"
   ;  else if (!write_modes || (write_modes & OUTPUT_STEPS))
      plexprefix = stem

   ;  {  mcxTing* tg = mcxTingEmpty(NULL, 30)
      ;  if ((write_modes & OUTPUT_COARSE) && !xfcoarse)
            mcxTingPrint(tg, "%s.%s", stem, "coarse")
         ,  xfcoarse = mcxIOnew(tg->str, "w")

      ;  if ((write_modes & OUTPUT_BASE) && !xfbase)
            mcxTingPrint(tg, "%s.%s", stem, "base")
         ,  xfbase = mcxIOnew(tg->str, "w")

      ;  if
         (  (!write_modes || (write_modes & OUTPUT_CONE))
         && !xfcone
         )
         {  mcxTingPrint(tg, "%s.%s", stem, "cone")
         ;  xfcone = mcxIOnew(tg->str, "w")
         ;  mcxIOopen(xfcone, EXIT_ON_FAIL)
         ;  fprintf(xfcone->fp, "# %s %s\n", argv[0], cline->str)
      ;  }

         if ((write_modes & OUTPUT_STACK) && !xfstack)
         {  mcxTingPrint(tg, "%s.%s", stem, "stack")
         ;  xfstack = mcxIOnew(tg->str, "w")
         ;  mcxIOopen(xfstack, EXIT_ON_FAIL)
         ;  fprintf(xfstack->fp, "# %s %s\n", argv[0], cline->str)
      ;  }

         mcxTingFree(&tg)
   ;  }

      if (integrate_g)
      {  for (i=a;i<argc;i++)
         {  mcxIO* xf = mcxIOnew(argv[i], "r")
         ;  mclx* cl = mclxRead(xf, EXIT_ON_FAIL)
         ;  mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-integrate", n_cls++)
      ;  }

         integrate_results(&stck_g)

      ;  if (xfstack)
         mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  if (xfcone)
            mclxCatConify(&stck_g)
         ,  mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  return 0
   ;  }

      for (i=a;i<argc;i++)
      {  if (get_interface(NULL, argv[1], shared->str, argv[i], NULL, 0, RETURN_ON_FAIL))
         mcxDie(1, me, "error while testing mcl options viability (%s)", argv[i])
   ;  }


      mcxLog(MCX_LOG_APP, me, "pid %ld", (long) getpid())

                        /* make sure clusters align with this cluster
                         * status: does not seem promising.
                        */
   ;  if (xfctrl)
      clctrl = mclxRead(xfctrl, EXIT_ON_FAIL)
   ;

                        /*
                         * Below: compute cl and mxbase.
                        */
   ;  if (xfcl)
      {  cl = mclxRead(xfcl, EXIT_ON_FAIL)
      ;  write_clustering
         (cl, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)

      ;  if (subcluster_g || dispatch_g)
         mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)

      ;  mcxIOfree(&xfcl)
      ;  if (!b1opts && !b2opts)
         b1opts = ""
      ;  mxbase = get_base(argv[1], NULL, b1opts, b2opts)
   ;  }
      else
      {  mcxbits CACHE  =     b1opts || b2opts
                           ?  ALG_CACHE_INPUT       /* cache, transform later */
                           :  ALG_CACHE_START
      ;  get_interface
         (  &mlp
         ,  argv[1]
         ,  shared->str
         ,  a < argc ? argv[a] : NULL
         ,  NULL
         ,  CACHE
         ,  EXIT_ON_FAIL
         )
      ;  if (a < argc)
         a++

      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed at initial run")
         ;  exit(1)
      ;  }

         cl_coarse =  mclAlgParamRelease(mlp, mlp->cl_result)
      ;  cl_coarse =  control_test(cl_coarse, clctrl)

      ;  write_clustering
         (cl_coarse, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, mlp)

      ;  if (subcluster_g || dispatch_g)
         mclxCatPush(&stck_g, cl_coarse, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)

      ;  cl = cl_coarse
      ;  n_ite++

      ;  if (b1opts || b2opts)
         {  mclx* mx_input =  mclAlgParamRelease(mlp, mlp->mx_input)
         ;  mxbase = get_base(NULL, mx_input, b1opts, b2opts)
                           /* ^ get_base frees mx_input */
      ;  }
         else
         mxbase =  mclAlgParamRelease(mlp, mlp->mx_start)
   ;  }

      clprev = cl

   ;  mclAlgParamFree(&mlp, TRUE)

   ;  if (xfbase)
      {  dim nre = mclxNrofEntries(mxbase)
      ;  mcxLog(MCX_LOG_APP, me, "base has %lu entries", (ulong) nre)
      ;  mclxaWrite(mxbase, xfbase, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
      ;  mcxIOclose(xfbase)
   ;  }

      if (subcluster_g || dispatch_g)
      iaf = iaf ? 1/iaf : 1.414

   ;  while
      (  (!dispatch_g && (!N || n_ite < N))
      || (dispatch_g && a < argc)
      )
      {  mclx* mx_coarse   =  NULL, *clnext = NULL

      ;  dim dist_new_prev = 0, dist_prev_new = 0
      ;  mclx* clnew = NULL
      ;  mcxbool faith = FALSE
      ;  double inflation = -1.0

      ;  if (subcluster_g)
         mx_coarse
         =     subclusterx_g
            ?  mclxBlockPartition(mxbase, clprev, 50)
            :  mclxBlockUnion(mxbase, clprev)

                  /* have to copy mxbase as mx_coarse is freed.
                   * Even if it were not freed, it is probably transformed.
                  */
      ;  else if (dispatch_g)
         mx_coarse = mclxCopy(mxbase)

      ;  else
         {  mx_coarse = get_coarse(mxbase, clprev, add_transpose)

         ;  if (n_ite == 1)
            {  mclx* cc = clmUGraphComponents(mx_coarse, NULL)   /* fixme; mx_coarse garantueed UD ? */
            ;  n_components = N_COLS(cc)
            ;  mclxFree(&cc)
         ;  }
         }

         if (xfcoarse)
         write_coarse(xfcoarse, mx_coarse)

      ;  get_interface
         (  &mlp
         ,  NULL
         ,  shared->str
         ,  a < argc ? argv[a] : NULL
         ,  mx_coarse
         ,  ALG_CACHE_START
         ,  EXIT_ON_FAIL
         )

      ;  inflation = mlp->mpp->mainInflation
      ;  BIT_OFF(mlp->modes, ALG_DO_SHOW_PID | ALG_DO_SHOW_JURY)

      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed")
         ;  mcxExit(1)
      ;  }

         cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result)

      ;  if (xfcoarse)
         mclxaWrite(cl_coarse, xfcoarse, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  if (dispatch_g || subcluster_g)
         clnext = cl_coarse
      ;  else
            clnext = mclxCompose(clprev, cl_coarse, 0)
         ,  clnext = control_test(clnext, clctrl)
         ,  mclxFree(&cl_coarse)

      ;  clmSJDistance
         (clprev, clnext, NULL, NULL, &dist_prev_new, &dist_new_prev)

      ;  if (dist_prev_new + dist_new_prev)
         {  write_clustering
            (clnext, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, mlp)
         ;  clnew = clnext

         ;  if (subcluster_g || dispatch_g)
            mclxCatPush(&stck_g, clnext, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)
         ;  else
            mclxFree(&clprev)

         ;  clprev = clnew
      ;  }
         else if
         (  N_COLS(clnext) > n_components
         && inflation * iaf > 1.2
         && inflation * iaf < 10
         )
         {  mclxFree(&clnext)
         ;  inflation *= iaf
         ;  mcxTingPrintAfter(shared, " -I %.2f", inflation)
         ;  mcxLog(MCX_LOG_APP, me, "setting inflation to %.2f", inflation)
         ;  faith = TRUE
      ;  }
                                       /* i.e. vanilla mode, contraction */
         else if (!subcluster_g && !dispatch_g)
         {  mclx* cc
         ;  mclxFree(&clnext)

         ;  mclxAddTranspose(mx_coarse, 1.0)
         ;  cc = clmUGraphComponents(mx_coarse, NULL)  

         ;  if (N_COLS(cc) < N_COLS(clprev))
            {  mclx* ccback = mclxCompose(clprev, cc, 0)
            ;  write_clustering
               (ccback, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)
            ;  mclxFree(&clprev)
            ;  clprev = ccback
            ;  mcxTell(me, "connected components added as root clustering")
         ;  }

            if (root && N_COLS(cc) > 1)
            {  mclx* root =   mclxCartesian
                              (  mclvCanonical(NULL, 1, 0)
                              ,  mclvCopy(NULL, mxbase->dom_cols)
                              ,  1.0
                              )
            ;  write_clustering
               (root, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)

            ;  mclxFree(&clprev)

            ;  mcxTell(me, "universe added as root clustering")
            ;  clprev = root
            ;  clnew = NULL
         ;  }

            mclxFree(&cc)
      ;  }
         else if (subcluster_g || dispatch_g)
         mclxFree(&clnext)

      ;  mclAlgParamFree(&mlp, TRUE)                        /* frees mx_coarse */

      ;  if (!clnew && !faith)
         {  same = TRUE
         ;  break
      ;  }

         a++

      ;  if (dispatch_g && a == argc)
         break

      ;  n_ite++
   ;  }

      if (same)
      mcxLog(MCX_LOG_MODULE, me, "no further contraction: halting")

   ;  if (dispatch_g)
      integrate_results(&stck_g)
   ;  else if (subcluster_g)
      mclxCatReverse(&stck_g)

   ;  if (dispatch_g || subcluster_g)
      {  dim j
      ;  if (xfstack)
         mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  if (xfcone && ! mclxCatConify(&stck_g))
         mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  for (j=0;j<stck_g.n_level;j++)
         {  mclxAnnot* an = stck_g.level+j
         ;  mclxFree(&an->mx)
      ;  }
         mcxFree(stck_g.level)
   ;  }

      mcxIOfree(&xfcoarse)
   ;  mcxIOfree(&xfbase)
   ;  mcxIOfree(&xfcone)
   ;  mcxIOfree(&xfstack)

   ;  mcxTingFree(&shared)

   ;  if (!dispatch_g && !subcluster_g)          /* fixme fixme fixme */
      mclxFree(&clprev)

   ;  mclxFree(&mxbase)
   ;  mclvFree(&start_col_sums_g)
   ;  mcxTingFree(&cline)
   ;  helpful_reminder()
   ;  return STATUS_OK
;  }