Beispiel #1
0
static int transition_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the b frame from the stack
	mlt_frame b_frame = mlt_frame_pop_audio( frame );

	// Get the effect
	mlt_transition effect = mlt_frame_pop_audio( frame );

	// Get the properties of the b frame
	mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );

	// We can only mix s16
	*format = mlt_audio_s16;

	if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( effect ), "combine" ) == 0 )
	{
		double mix_start = 0.5, mix_end = 0.5;
		if ( mlt_properties_get( b_props, "audio.previous_mix" ) != NULL )
			mix_start = mlt_properties_get_double( b_props, "audio.previous_mix" );
		if ( mlt_properties_get( b_props, "audio.mix" ) != NULL )
			mix_end = mlt_properties_get_double( b_props, "audio.mix" );
		if ( mlt_properties_get_int( b_props, "audio.reverse" ) )
		{
			mix_start = 1 - mix_start;
			mix_end = 1 - mix_end;
		}

		mix_audio( frame, b_frame, mix_start, mix_end, buffer, format, frequency, channels, samples );
	}
	else
	{
		combine_audio( frame, b_frame, buffer, format, frequency, channels, samples );
	}

	return 0;
}
Beispiel #2
0
static int ladspa_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter service
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the filter properties
	mlt_properties filter_properties = MLT_FILTER_PROPERTIES( filter );

	// Get the producer's audio
	*format = mlt_audio_float;
	mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
	
	// Initialise LADSPA if needed
	jack_rack_t *jackrack = mlt_properties_get_data( filter_properties, "jackrack", NULL );
	if ( jackrack == NULL )
	{
		sample_rate = *frequency; // global inside jack_rack
		jackrack = initialise_jack_rack( filter_properties, *channels );
	}
		
	// Get the filter-specific properties
	LADSPA_Data **input_buffers  = mlt_pool_alloc( sizeof( LADSPA_Data* ) * *channels );
	LADSPA_Data **output_buffers = mlt_pool_alloc( sizeof( LADSPA_Data* ) * *channels );

	int i;
	for ( i = 0; i < *channels; i++ )
	{
		input_buffers[i]  = (LADSPA_Data*) *buffer + i * *samples;
		output_buffers[i] = (LADSPA_Data*) *buffer + i * *samples;
	}

	// Do LADSPA processing
	int error = jackrack && process_ladspa( jackrack->procinfo, *samples, input_buffers, output_buffers );

	mlt_pool_release( input_buffers );
	mlt_pool_release( output_buffers );

	return error;
}
Beispiel #3
0
static int resample_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter service
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the filter properties
	mlt_properties filter_properties = MLT_FILTER_PROPERTIES( filter );

	// Get the resample information
	int output_rate = mlt_properties_get_int( filter_properties, "frequency" );

	// If no resample frequency is specified, default to requested value
	if ( output_rate == 0 )
		output_rate = *frequency;

	// Get the producer's audio
	int error = mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
	if ( error ) return error;

	// Return now if no work to do
	if ( output_rate != *frequency && *frequency > 0 && *channels > 0 )
	{
		mlt_log_debug( MLT_FILTER_SERVICE(filter), "channels %d samples %d frequency %d -> %d\n",
			*channels, *samples, *frequency, output_rate );

		// Do not convert to float unless we need to change the rate
		if ( *format != mlt_audio_f32le )
			frame->convert_audio( frame, buffer, format, mlt_audio_f32le );

		mlt_service_lock( MLT_FILTER_SERVICE(filter) );

		SRC_DATA data;
		data.data_in = *buffer;
		data.data_out = mlt_properties_get_data( filter_properties, "output_buffer", NULL );
		data.src_ratio = ( float ) output_rate / ( float ) *frequency;
		data.input_frames = *samples;
		data.output_frames = BUFFER_LEN / *channels;
		data.end_of_input = 0;

		SRC_STATE *state = mlt_properties_get_data( filter_properties, "state", NULL );
		if ( !state || mlt_properties_get_int( filter_properties, "channels" ) != *channels )
		{
			// Recreate the resampler if the number of channels changed
			state = src_new( RESAMPLE_TYPE, *channels, &error );
			mlt_properties_set_data( filter_properties, "state", state, 0, (mlt_destructor) src_delete, NULL );
			mlt_properties_set_int( filter_properties, "channels", *channels );
		}

		// Resample the audio
		error = src_process( state, &data );
		if ( !error )
		{
			// Update output variables
			*samples = data.output_frames_gen;
			*frequency = output_rate;
			*buffer = data.data_out;
		}
		else
		{
			mlt_log_error( MLT_FILTER_SERVICE( filter ), "%s %d,%d,%d\n", src_strerror( error ), *frequency, *samples, output_rate );
		}
		mlt_service_unlock( MLT_FILTER_SERVICE(filter) );
	}

	return error;
}
Beispiel #4
0
static int transition_get_audio( mlt_frame frame_a, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	int error = 0;

	// Get the b frame from the stack
	mlt_frame frame_b = mlt_frame_pop_audio( frame_a );

	// Get the effect
	mlt_transition transition = mlt_frame_pop_audio( frame_a );

	// Get the properties of the b frame
	mlt_properties b_props = MLT_FRAME_PROPERTIES( frame_b );

	transition_mix self = transition->child;
	int16_t *buffer_b, *buffer_a;
	int frequency_b = *frequency, frequency_a = *frequency;
	int channels_b = *channels, channels_a = *channels;
	int samples_b = *samples, samples_a = *samples;

	// We can only mix s16
	*format = mlt_audio_s16;
	mlt_frame_get_audio( frame_b, (void**) &buffer_b, format, &frequency_b, &channels_b, &samples_b );
	mlt_frame_get_audio( frame_a, (void**) &buffer_a, format, &frequency_a, &channels_a, &samples_a );

	if ( buffer_b == buffer_a )
	{
		*samples = samples_b;
		*channels = channels_b;
		*buffer = buffer_b;
		*frequency = frequency_b;
		return error;
	}

	int silent = mlt_properties_get_int( MLT_FRAME_PROPERTIES( frame_a ), "silent_audio" );
	mlt_properties_set_int( MLT_FRAME_PROPERTIES( frame_a ), "silent_audio", 0 );
	if ( silent )
		memset( buffer_a, 0, samples_a * channels_a * sizeof( int16_t ) );

	silent = mlt_properties_get_int( b_props, "silent_audio" );
	mlt_properties_set_int( b_props, "silent_audio", 0 );
	if ( silent )
		memset( buffer_b, 0, samples_b * channels_b * sizeof( int16_t ) );

	// determine number of samples to process
	*samples = MIN( self->src_buffer_count + samples_b, self->dest_buffer_count + samples_a );
	*channels = MIN( MIN( channels_b, channels_a ), MAX_CHANNELS );
	*frequency = frequency_a;

	// Prevent src buffer overflow by discarding oldest samples.
	samples_b = MIN( samples_b, MAX_SAMPLES * MAX_CHANNELS / channels_b );
	size_t bytes = PCM16_BYTES( samples_b, channels_b );
	if ( PCM16_BYTES( self->src_buffer_count + samples_b, channels_b ) > MAX_BYTES ) {
		mlt_log_verbose( MLT_TRANSITION_SERVICE(transition), "buffer overflow: src_buffer_count %d\n",
					  self->src_buffer_count );
		self->src_buffer_count = MAX_SAMPLES * MAX_CHANNELS / channels_b - samples_b;
		memmove( self->src_buffer, &self->src_buffer[MAX_SAMPLES * MAX_CHANNELS - samples_b * channels_b],
				 PCM16_BYTES( samples_b, channels_b ) );
	}
	// Buffer new src samples.
	memcpy( &self->src_buffer[self->src_buffer_count * channels_b], buffer_b, bytes );
	self->src_buffer_count += samples_b;
	buffer_b = self->src_buffer;

	// Prevent dest buffer overflow by discarding oldest samples.
	samples_a = MIN( samples_a, MAX_SAMPLES * MAX_CHANNELS / channels_a );
	bytes = PCM16_BYTES( samples_a, channels_a );
	if ( PCM16_BYTES( self->dest_buffer_count + samples_a, channels_a ) > MAX_BYTES ) {
		mlt_log_verbose( MLT_TRANSITION_SERVICE(transition), "buffer overflow: dest_buffer_count %d\n",
					  self->dest_buffer_count );
		self->dest_buffer_count = MAX_SAMPLES * MAX_CHANNELS / channels_a - samples_a;
		memmove( self->dest_buffer, &self->dest_buffer[MAX_SAMPLES * MAX_CHANNELS - samples_a * channels_a],
				 PCM16_BYTES( samples_a, channels_a ) );
	}
	// Buffer the new dest samples.
	memcpy( &self->dest_buffer[self->dest_buffer_count * channels_a], buffer_a, bytes );
	self->dest_buffer_count += samples_a;
	buffer_a = self->dest_buffer;

	// Do the mixing.
	if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES(transition), "combine" ) )
	{
		double weight = 1.0;
		if ( mlt_properties_get_int( MLT_FRAME_PROPERTIES( frame_a ), "meta.mixdown" ) )
			weight = 1.0 - mlt_properties_get_double( MLT_FRAME_PROPERTIES( frame_a ), "meta.volume" );
		combine_audio( weight, buffer_a, buffer_b, channels_a, channels_b, *channels, *samples );
	}
	else
	{
		double mix_start = 0.5, mix_end = 0.5;
		if ( mlt_properties_get( b_props, "audio.previous_mix" ) )
			mix_start = mlt_properties_get_double( b_props, "audio.previous_mix" );
		if ( mlt_properties_get( b_props, "audio.mix" ) )
			mix_end = mlt_properties_get_double( b_props, "audio.mix" );
		if ( mlt_properties_get_int( b_props, "audio.reverse" ) )
		{
			mix_start = 1.0 - mix_start;
			mix_end = 1.0 - mix_end;
		}
		mix_audio( mix_start, mix_end, buffer_a, buffer_b, channels_a, channels_b, *channels, *samples );
	}

	// Copy the audio into the frame.
	bytes = PCM16_BYTES( *samples, *channels );
	*buffer = mlt_pool_alloc( bytes );
	memcpy( *buffer, buffer_a, bytes );
	mlt_frame_set_audio( frame_a, *buffer, *format, bytes, mlt_pool_release );

	if ( mlt_properties_get_int( b_props, "_speed" ) == 0 )
	{
		// Flush the buffer when paused and scrubbing.
		samples_b = self->src_buffer_count;
		samples_a = self->dest_buffer_count;
	}
	else
	{
		// Determine the maximum amount of latency permitted in the buffer.
		int max_latency = CLAMP( *frequency / 1000, 0, MAX_SAMPLES ); // samples in 1ms
		// samples_b becomes the new target src buffer count.
		samples_b = CLAMP( self->src_buffer_count - *samples, 0, max_latency );
		// samples_b becomes the number of samples to consume: difference between actual and the target.
		samples_b = self->src_buffer_count - samples_b;
		// samples_a becomes the new target dest buffer count.
		samples_a = CLAMP( self->dest_buffer_count - *samples, 0, max_latency );
		// samples_a becomes the number of samples to consume: difference between actual and the target.
		samples_a = self->dest_buffer_count - samples_a;
	}

	// Consume the src buffer.
	self->src_buffer_count -= samples_b;
	if ( self->src_buffer_count ) {
		memmove( self->src_buffer, &self->src_buffer[samples_b * channels_b],
			PCM16_BYTES( self->src_buffer_count, channels_b ));
	}
	// Consume the dest buffer.
	self->dest_buffer_count -= samples_a;
	if ( self->dest_buffer_count ) {
		memmove( self->dest_buffer, &self->dest_buffer[samples_a * channels_a],
			PCM16_BYTES( self->dest_buffer_count, channels_a ));
	}

	return error;
}
Beispiel #5
0
static int filter_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter from the frame
	mlt_filter this = mlt_frame_pop_audio( frame );

	// Get the properties from the filter
	mlt_properties filter_props = MLT_FILTER_PROPERTIES( this );

	// Get the frame's filter instance properties
	mlt_properties instance_props = mlt_frame_unique_properties( frame, MLT_FILTER_SERVICE( this ) );

	// Get the parameters
	double gain = mlt_properties_get_double( instance_props, "gain" );
	double max_gain = mlt_properties_get_double( instance_props, "max_gain" );
	double limiter_level = 0.5; /* -6 dBFS */
	int normalise =  mlt_properties_get_int( instance_props, "normalise" );
	double amplitude =  mlt_properties_get_double( instance_props, "amplitude" );
	int i, j;
	double sample;
	int16_t peak;

	if ( mlt_properties_get( instance_props, "limiter" ) != NULL )
		limiter_level = mlt_properties_get_double( instance_props, "limiter" );
	
	// Get the producer's audio
	*format = mlt_audio_s16;
	mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
//	fprintf( stderr, "filter_volume: frequency %d\n", *frequency );

	// Determine numeric limits
	int bytes_per_samp = (samp_width - 1) / 8 + 1;
	int samplemax = (1 << (bytes_per_samp * 8 - 1)) - 1;
	int samplemin = -samplemax - 1;

	mlt_service_lock( MLT_FILTER_SERVICE( this ) );

	if ( normalise )
	{
		int window = mlt_properties_get_int( filter_props, "window" );
		double *smooth_buffer = mlt_properties_get_data( filter_props, "smooth_buffer", NULL );

		if ( window > 0 && smooth_buffer != NULL )
		{
			int smooth_index = mlt_properties_get_int( filter_props, "_smooth_index" );
			
			// Compute the signal power and put into smoothing buffer
			smooth_buffer[ smooth_index ] = signal_max_power( *buffer, *channels, *samples, &peak );
//			fprintf( stderr, "filter_volume: raw power %f ", smooth_buffer[ smooth_index ] );
			if ( smooth_buffer[ smooth_index ] > EPSILON )
			{
				mlt_properties_set_int( filter_props, "_smooth_index", ( smooth_index + 1 ) % window );

				// Smooth the data and compute the gain
//				fprintf( stderr, "smoothed %f over %d frames\n", get_smoothed_data( smooth_buffer, window ), window );
				gain *= amplitude / get_smoothed_data( smooth_buffer, window );
			}
		}
		else
		{
			gain *= amplitude / signal_max_power( (int16_t*) *buffer, *channels, *samples, &peak );
		}
	}
	
//	if ( gain > 1.0 && normalise )
//		fprintf(stderr, "filter_volume: limiter level %f gain %f\n", limiter_level, gain );

	if ( max_gain > 0 && gain > max_gain )
		gain = max_gain;

	// Initialise filter's previous gain value to prevent an inadvertant jump from 0
	mlt_position last_position = mlt_properties_get_position( filter_props, "_last_position" );
	mlt_position current_position = mlt_frame_get_position( frame );
	if ( mlt_properties_get( filter_props, "_previous_gain" ) == NULL
	     || current_position != last_position + 1 )
		mlt_properties_set_double( filter_props, "_previous_gain", gain );

	// Start the gain out at the previous
	double previous_gain = mlt_properties_get_double( filter_props, "_previous_gain" );

	// Determine ramp increment
	double gain_step = ( gain - previous_gain ) / *samples;
//	fprintf( stderr, "filter_volume: previous gain %f current gain %f step %f\n", previous_gain, gain, gain_step );

	// Save the current gain for the next iteration
	mlt_properties_set_double( filter_props, "_previous_gain", gain );
	mlt_properties_set_position( filter_props, "_last_position", current_position );

	mlt_service_unlock( MLT_FILTER_SERVICE( this ) );

	// Ramp from the previous gain to the current
	gain = previous_gain;

	int16_t *p = (int16_t*) *buffer;

	// Apply the gain
	for ( i = 0; i < *samples; i++ )
	{
		for ( j = 0; j < *channels; j++ )
		{
			sample = *p * gain;
			*p = ROUND( sample );
		
			if ( gain > 1.0 )
			{
				/* use limiter function instead of clipping */
				if ( normalise )
					*p = ROUND( samplemax * limiter( sample / (double) samplemax, limiter_level ) );
				
				/* perform clipping */
				else if ( sample > samplemax )
					*p = samplemax;
				else if ( sample < samplemin )
					*p = samplemin;
			}
			p++;
		}
		gain += gain_step;
	}
	
	return 0;
}
Beispiel #6
0
static int filter_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the properties of the a frame
	mlt_properties properties = MLT_FRAME_PROPERTIES( frame );

	// Get the filter service
	mlt_filter filter = mlt_frame_pop_audio( frame );

	int from = mlt_properties_get_int( properties, "channelcopy.from" );
	int to = mlt_properties_get_int( properties, "channelcopy.to" );
	int swap = mlt_properties_get_int( properties, "channelcopy.swap" );

	// Get the producer's audio
	mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );

	// Copy channels as necessary
	if ( from != to)
	switch ( *format )
	{
		case mlt_audio_u8:
		{
			uint8_t *f = (uint8_t*) *buffer + from;
			uint8_t *t = (uint8_t*) *buffer + to;
			uint8_t x;
			int i;

			if ( swap )
				for ( i = 0; i < *samples; i++, f += *channels, t += *channels )
				{
					x = *t;
					*t = *f;
					*f = x;
				}
			else
				for ( i = 0; i < *samples; i++, f += *channels, t += *channels )
					*t = *f;
			break;
		}
		case mlt_audio_s16:
		{
			int16_t *f = (int16_t*) *buffer + from;
			int16_t *t = (int16_t*) *buffer + to;
			int16_t x;
			int i;

			if ( swap )
				for ( i = 0; i < *samples; i++, f += *channels, t += *channels )
				{
					x = *t;
					*t = *f;
					*f = x;
				}
			else
				for ( i = 0; i < *samples; i++, f += *channels, t += *channels )
					*t = *f;
			break;
		}
		case mlt_audio_s32:
		{
			int32_t *f = (int32_t*) *buffer + from * *samples;
			int32_t *t = (int32_t*) *buffer + to * *samples;

			if ( swap )
			{
				int32_t *x = malloc( *samples * sizeof(int32_t) );
				memcpy( x, t, *samples * sizeof(int32_t) );
				memcpy( t, f, *samples * sizeof(int32_t) );
				memcpy( f, x, *samples * sizeof(int32_t) );
				free( x );
			}
			else
			{
				memcpy( t, f, *samples * sizeof(int32_t) );
			}
			break;
		}
		case mlt_audio_s32le:
		case mlt_audio_f32le:
		{
			int32_t *f = (int32_t*) *buffer + from;
			int32_t *t = (int32_t*) *buffer + to;
			int32_t x;
			int i;

			if ( swap )
				for ( i = 0; i < *samples; i++, f += *channels, t += *channels )
				{
					x = *t;
					*t = *f;
					*f = x;
				}
			else
				for ( i = 0; i < *samples; i++, f += *channels, t += *channels )
					*t = *f;
			break;
		}
		case mlt_audio_float:
		{
			float *f = (float*) *buffer + from * *samples;
			float *t = (float*) *buffer + to * *samples;

			if ( swap )
			{
				float *x = malloc( *samples * sizeof(float) );
				memcpy( x, t, *samples * sizeof(float) );
				memcpy( t, f, *samples * sizeof(float) );
				memcpy( f, x, *samples * sizeof(float) );
				free( x );
			}
			else
			{
				memcpy( t, f, *samples * sizeof(float) );
			}
			break;
		}
		default:
			mlt_log_error( MLT_FILTER_SERVICE( filter ), "Invalid audio format\n" );
			break;
	}

	return 0;
}
Beispiel #7
0
static int ladspa_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	int error = 0;

	// Get the filter service
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the filter properties
	mlt_properties filter_properties = MLT_FILTER_PROPERTIES( filter );

	// Check if the channel configuration has changed
	int prev_channels = mlt_properties_get_int( filter_properties, "_prev_channels" );
	if ( prev_channels != *channels )
	{
		if( prev_channels )
		{
			mlt_log_info( MLT_FILTER_SERVICE(filter), "Channel configuration changed. Old: %d New: %d.\n", prev_channels, *channels );
			mlt_properties_set_data( filter_properties, "jackrack", NULL, 0, (mlt_destructor) NULL, NULL );
		}
		mlt_properties_set_int( filter_properties, "_prev_channels", *channels );
	}

	// Initialise LADSPA if needed
	jack_rack_t *jackrack = mlt_properties_get_data( filter_properties, "jackrack", NULL );
	if ( jackrack == NULL )
	{
		sample_rate = *frequency; // global inside jack_rack
		jackrack = initialise_jack_rack( filter_properties, *channels );
	}

	if ( jackrack && jackrack->procinfo && jackrack->procinfo->chain &&
		 mlt_properties_get_int64( filter_properties, "_pluginid" ) )
	{
		plugin_t *plugin = jackrack->procinfo->chain;
		LADSPA_Data value;
		int i, c;
		mlt_position position = mlt_filter_get_position( filter, frame );
		mlt_position length = mlt_filter_get_length2( filter, frame );

		// Get the producer's audio
		*format = mlt_audio_float;
		mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );

		// Resize the buffer if necessary.
		if ( *channels < jackrack->channels )
		{
			// Add extra channels to satisfy the plugin.
			// Extra channels in the buffer will be ignored by downstream services.
			int old_size = mlt_audio_format_size( *format, *samples, *channels );
			int new_size = mlt_audio_format_size( *format, *samples, jackrack->channels );
			uint8_t* new_buffer = mlt_pool_alloc( new_size );
			memcpy( new_buffer, *buffer, old_size );
			// Put silence in extra channels.
			memset( new_buffer + old_size, 0, new_size - old_size );
			mlt_frame_set_audio( frame, new_buffer, *format, new_size, mlt_pool_release );
			*buffer = new_buffer;
		}

		for ( i = 0; i < plugin->desc->control_port_count; i++ )
		{
			// Apply the control port values
			char key[20];
			value = plugin_desc_get_default_control_value( plugin->desc, i, sample_rate );
			snprintf( key, sizeof(key), "%d", i );
			if ( mlt_properties_get( filter_properties, key ) )
				value = mlt_properties_anim_get_double( filter_properties, key, position, length );
			for ( c = 0; c < plugin->copies; c++ )
				plugin->holders[c].control_memory[i] = value;
		}
		plugin->wet_dry_enabled = mlt_properties_get( filter_properties, "wetness" ) != NULL;
		if ( plugin->wet_dry_enabled )
		{
			value = mlt_properties_anim_get_double( filter_properties, "wetness", position, length );
			for ( c = 0; c < jackrack->channels; c++ )
				plugin->wet_dry_values[c] = value;
		}

		// Configure the buffers
		LADSPA_Data **input_buffers  = mlt_pool_alloc( sizeof( LADSPA_Data* ) * jackrack->channels );
		LADSPA_Data **output_buffers = mlt_pool_alloc( sizeof( LADSPA_Data* ) * jackrack->channels );
		
		// Some plugins crash with too many frames (samples).
		// So, feed the plugin with N samples per loop iteration.
		int samples_offset = 0;
		int sample_count = MIN(*samples, MAX_SAMPLE_COUNT);
		for (i = 0; samples_offset < *samples; i++) {
			int j = 0;
			for (; j < jackrack->channels; j++)
				output_buffers[j] = input_buffers[j] = (LADSPA_Data*) *buffer + j * (*samples) + samples_offset;
			sample_count = MIN(*samples - samples_offset, MAX_SAMPLE_COUNT);
			// Do LADSPA processing
			error = process_ladspa( jackrack->procinfo, sample_count, input_buffers, output_buffers );
			samples_offset += MAX_SAMPLE_COUNT;
		}

		mlt_pool_release( input_buffers );
		mlt_pool_release( output_buffers );

		// read the status port values
		for ( i = 0; i < plugin->desc->status_port_count; i++ )
		{
			char key[20];
			int p = plugin->desc->status_port_indicies[i];
			for ( c = 0; c < plugin->copies; c++ )
			{
				snprintf( key, sizeof(key), "%d[%d]", p, c );
				value = plugin->holders[c].status_memory[i];
				mlt_properties_set_double( filter_properties, key, value );
			}
		}
	}
	else
	{
		// Nothing to do.
		error = mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
	}

	return error;
}
Beispiel #8
0
int mlt_frame_get_audio( mlt_frame self, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	mlt_get_audio get_audio = mlt_frame_pop_audio( self );
	mlt_properties properties = MLT_FRAME_PROPERTIES( self );
	int hide = mlt_properties_get_int( properties, "test_audio" );
	mlt_audio_format requested_format = *format;

	if ( hide == 0 && get_audio != NULL )
	{
		get_audio( self, buffer, format, frequency, channels, samples );
		mlt_properties_set_int( properties, "audio_frequency", *frequency );
		mlt_properties_set_int( properties, "audio_channels", *channels );
		mlt_properties_set_int( properties, "audio_samples", *samples );
		mlt_properties_set_int( properties, "audio_format", *format );
		if ( self->convert_audio && *buffer && requested_format != mlt_audio_none )
			self->convert_audio( self, buffer, format, requested_format );
	}
	else if ( mlt_properties_get_data( properties, "audio", NULL ) )
	{
		*buffer = mlt_properties_get_data( properties, "audio", NULL );
		*format = mlt_properties_get_int( properties, "audio_format" );
		*frequency = mlt_properties_get_int( properties, "audio_frequency" );
		*channels = mlt_properties_get_int( properties, "audio_channels" );
		*samples = mlt_properties_get_int( properties, "audio_samples" );
		if ( self->convert_audio && *buffer && requested_format != mlt_audio_none )
			self->convert_audio( self, buffer, format, requested_format );
	}
	else
	{
		int size = 0;
		*samples = *samples <= 0 ? 1920 : *samples;
		*channels = *channels <= 0 ? 2 : *channels;
		*frequency = *frequency <= 0 ? 48000 : *frequency;
		mlt_properties_set_int( properties, "audio_frequency", *frequency );
		mlt_properties_set_int( properties, "audio_channels", *channels );
		mlt_properties_set_int( properties, "audio_samples", *samples );
		mlt_properties_set_int( properties, "audio_format", *format );

		switch( *format )
		{
			case mlt_image_none:
				size = 0;
				*buffer = NULL;
				break;
			case mlt_audio_s16:
				size = *samples * *channels * sizeof( int16_t );
				break;
			case mlt_audio_s32:
				size = *samples * *channels * sizeof( int32_t );
				break;
			case mlt_audio_float:
				size = *samples * *channels * sizeof( float );
				break;
			default:
				break;
		}
		if ( size )
			*buffer = mlt_pool_alloc( size );
		if ( *buffer )
			memset( *buffer, 0, size );
		mlt_properties_set_data( properties, "audio", *buffer, size, ( mlt_destructor )mlt_pool_release, NULL );
		mlt_properties_set_int( properties, "test_audio", 1 );
	}

	// TODO: This does not belong here
	if ( *format == mlt_audio_s16 && mlt_properties_get( properties, "meta.volume" ) )
	{
		double value = mlt_properties_get_double( properties, "meta.volume" );

		if ( value == 0.0 )
		{
			memset( *buffer, 0, *samples * *channels * 2 );
		}
		else if ( value != 1.0 )
		{
			int total = *samples * *channels;
			int16_t *p = *buffer;
			while ( total -- )
			{
				*p = *p * value;
				p ++;
			}
		}

		mlt_properties_set( properties, "meta.volume", NULL );
	}

	return 0;
}
Beispiel #9
0
static int filter_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter from the frame
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the properties from the filter
	mlt_properties filter_props = MLT_FILTER_PROPERTIES( filter );

	// Get the frame's filter instance properties
	mlt_properties instance_props = mlt_frame_unique_properties( frame, MLT_FILTER_SERVICE( filter ) );

	// Get the parameters
	double gain = mlt_properties_get_double( instance_props, "gain" );
	double max_gain = mlt_properties_get_double( instance_props, "max_gain" );
	double limiter_level = 0.5; /* -6 dBFS */
	int normalise =  mlt_properties_get_int( instance_props, "normalise" );
	double amplitude =  mlt_properties_get_double( instance_props, "amplitude" );
	int i, j;
	double sample;
	int16_t peak;

	// Use animated value for gain if "level" property is set 
	char* level_property = mlt_properties_get( filter_props, "level" );
	if ( level_property != NULL )
	{
		mlt_position position = mlt_filter_get_position( filter, frame );
		mlt_position length = mlt_filter_get_length2( filter, frame );
		gain = mlt_properties_anim_get_double( filter_props, "level", position, length );
		gain = DBFSTOAMP( gain );
	}

	if ( mlt_properties_get( instance_props, "limiter" ) != NULL )
		limiter_level = mlt_properties_get_double( instance_props, "limiter" );
	
	// Get the producer's audio
	*format = normalise? mlt_audio_s16 : mlt_audio_f32le;
	mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );

	mlt_service_lock( MLT_FILTER_SERVICE( filter ) );

	if ( normalise )
	{
		int window = mlt_properties_get_int( filter_props, "window" );
		double *smooth_buffer = mlt_properties_get_data( filter_props, "smooth_buffer", NULL );

		if ( window > 0 && smooth_buffer != NULL )
		{
			int smooth_index = mlt_properties_get_int( filter_props, "_smooth_index" );
			
			// Compute the signal power and put into smoothing buffer
			smooth_buffer[ smooth_index ] = signal_max_power( *buffer, *channels, *samples, &peak );

			if ( smooth_buffer[ smooth_index ] > EPSILON )
			{
				mlt_properties_set_int( filter_props, "_smooth_index", ( smooth_index + 1 ) % window );

				// Smooth the data and compute the gain
				gain *= amplitude / get_smoothed_data( smooth_buffer, window );
			}
		}
		else
		{
			gain *= amplitude / signal_max_power( *buffer, *channels, *samples, &peak );
		}
	}

	if ( max_gain > 0 && gain > max_gain )
		gain = max_gain;

	// Initialise filter's previous gain value to prevent an inadvertant jump from 0
	mlt_position last_position = mlt_properties_get_position( filter_props, "_last_position" );
	mlt_position current_position = mlt_frame_get_position( frame );
	if ( mlt_properties_get( filter_props, "_previous_gain" ) == NULL
	     || current_position != last_position + 1 )
		mlt_properties_set_double( filter_props, "_previous_gain", gain );

	// Start the gain out at the previous
	double previous_gain = mlt_properties_get_double( filter_props, "_previous_gain" );

	// Determine ramp increment
	double gain_step = ( gain - previous_gain ) / *samples;

	// Save the current gain for the next iteration
	mlt_properties_set_double( filter_props, "_previous_gain", gain );
	mlt_properties_set_position( filter_props, "_last_position", current_position );

	mlt_service_unlock( MLT_FILTER_SERVICE( filter ) );

	// Ramp from the previous gain to the current
	gain = previous_gain;

	// Apply the gain
	if ( normalise )
	{
		int16_t *p = *buffer;
		// Determine numeric limits
		int bytes_per_samp = (samp_width - 1) / 8 + 1;
		int samplemax = (1 << (bytes_per_samp * 8 - 1)) - 1;

		for ( i = 0; i < *samples; i++, gain += gain_step ) {
			for ( j = 0; j < *channels; j++ ) {
				sample = *p * gain;
				*p = ROUND( sample );
				if ( gain > 1.0 && normalise ) {
					/* use limiter function instead of clipping */
					*p = ROUND( samplemax * limiter( sample / (double) samplemax, limiter_level ) );
				}
				p++;
			}
		}
	}
	else
	{
		float *p = *buffer;
		for ( i = 0; i < *samples; i++, gain += gain_step ) {
			for ( j = 0; j < *channels; j++, p++ ) {
				p[0] *= gain;
			}
		}
	}
	return 0;
}
Beispiel #10
0
static int ladspa_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	int error = 0;

	// Get the filter service
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the filter properties
	mlt_properties filter_properties = MLT_FILTER_PROPERTIES( filter );

	// Initialise LADSPA if needed
	jack_rack_t *jackrack = mlt_properties_get_data( filter_properties, "jackrack", NULL );
	if ( jackrack == NULL )
	{
		sample_rate = *frequency; // global inside jack_rack
		jackrack = initialise_jack_rack( filter_properties, *channels );
	}

	if ( jackrack && jackrack->procinfo && jackrack->procinfo->chain &&
		 mlt_properties_get_int64( filter_properties, "_pluginid" ) )
	{
		plugin_t *plugin = jackrack->procinfo->chain;
		LADSPA_Data value;
		int i, c;
		mlt_position position = mlt_filter_get_position( filter, frame );
		mlt_position length = mlt_filter_get_length2( filter, frame );

		// Get the producer's audio
		*channels = jackrack->channels;
		*format = mlt_audio_float;
		mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );

		for ( i = 0; i < plugin->desc->control_port_count; i++ )
		{
			// Apply the control port values
			char key[20];
			value = plugin_desc_get_default_control_value( plugin->desc, i, sample_rate );
			snprintf( key, sizeof(key), "%d", i );
			if ( mlt_properties_get( filter_properties, key ) )
				value = mlt_properties_anim_get_double( filter_properties, key, position, length );
			for ( c = 0; c < plugin->copies; c++ )
				plugin->holders[c].control_memory[i] = value;
		}
		plugin->wet_dry_enabled = mlt_properties_get( filter_properties, "wetness" ) != NULL;
		if ( plugin->wet_dry_enabled )
		{
			value = mlt_properties_anim_get_double( filter_properties, "wetness", position, length );
			for ( c = 0; c < *channels; c++ )
				plugin->wet_dry_values[c] = value;
		}

		// Configure the buffers
		LADSPA_Data **input_buffers  = mlt_pool_alloc( sizeof( LADSPA_Data* ) * *channels );
		LADSPA_Data **output_buffers = mlt_pool_alloc( sizeof( LADSPA_Data* ) * *channels );

		for ( i = 0; i < *channels; i++ )
		{
			input_buffers[i]  = (LADSPA_Data*) *buffer + i * *samples;
			output_buffers[i] = (LADSPA_Data*) *buffer + i * *samples;
		}

		// Do LADSPA processing
		error = process_ladspa( jackrack->procinfo, *samples, input_buffers, output_buffers );

		mlt_pool_release( input_buffers );
		mlt_pool_release( output_buffers );

		// read the status port values
		for ( i = 0; i < plugin->desc->status_port_count; i++ )
		{
			char key[20];
			int p = plugin->desc->status_port_indicies[i];
			for ( c = 0; c < plugin->copies; c++ )
			{
				snprintf( key, sizeof(key), "%d[%d]", p, c );
				value = plugin->holders[c].status_memory[i];
				mlt_properties_set_double( filter_properties, key, value );
			}
		}
	}
	else
	{
		// Nothing to do.
		error = mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
	}

	return error;
}
Beispiel #11
0
static int resample_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter service
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the filter properties
	mlt_properties filter_properties = MLT_FILTER_PROPERTIES( filter );

	mlt_service_lock( MLT_FILTER_SERVICE( filter ) );

	// Get the resample information
	int output_rate = mlt_properties_get_int( filter_properties, "frequency" );
	int16_t *sample_buffer = mlt_properties_get_data( filter_properties, "buffer", NULL );

	// Obtain the resample context if it exists
	ReSampleContext *resample = mlt_properties_get_data( filter_properties, "audio_resample", NULL );

	// If no resample frequency is specified, default to requested value
	if ( output_rate == 0 )
		output_rate = *frequency;

	// Get the producer's audio
	int error = mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
	if ( error ) return error;

	// Return now if no work to do
	if ( output_rate != *frequency )
	{
		// Will store number of samples created
		int used = 0;

		mlt_log_debug( MLT_FILTER_SERVICE(filter), "channels %d samples %d frequency %d -> %d\n",
			*channels, *samples, *frequency, output_rate );

		// Do not convert to s16 unless we need to change the rate
		if ( *format != mlt_audio_s16 )
		{
			*format = mlt_audio_s16;
			mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
		}

		// Create a resampler if nececessary
		if ( resample == NULL || *frequency != mlt_properties_get_int( filter_properties, "last_frequency" ) )
		{
			// Create the resampler
			resample = av_audio_resample_init( *channels, *channels, output_rate, *frequency,
				AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16, 16, 10, 0, 0.8 );

			// And store it on properties
			mlt_properties_set_data( filter_properties, "audio_resample", resample, 0, ( mlt_destructor )audio_resample_close, NULL );

			// And remember what it was created for
			mlt_properties_set_int( filter_properties, "last_frequency", *frequency );
		}

		mlt_service_unlock( MLT_FILTER_SERVICE( filter ) );

		// Resample the audio
		used = audio_resample( resample, sample_buffer, *buffer, *samples );
		int size = used * *channels * sizeof( int16_t );

		// Resize if necessary
		if ( used > *samples )
		{
			*buffer = mlt_pool_realloc( *buffer, size );
			mlt_frame_set_audio( frame, *buffer, *format, size, mlt_pool_release );
		}

		// Copy samples
		memcpy( *buffer, sample_buffer, size );

		// Update output variables
		*samples = used;
		*frequency = output_rate;
	}
	else
	{
		mlt_service_unlock( MLT_FILTER_SERVICE( filter ) );
	}

	return error;
}
Beispiel #12
0
static int producer_get_audio( mlt_frame frame, int16_t** buffer, mlt_audio_format* format, int* frequency, int* channels, int* samples )
{
	mlt_producer producer = (mlt_producer)mlt_frame_pop_audio( frame );
	mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
	char* sound = mlt_properties_get( producer_properties, "sound" );
	double fps = mlt_producer_get_fps( producer );
	mlt_position position = mlt_frame_original_position( frame );
	int size = 0;
	int do_beep = 0;
	time_info info;

	if( fps == 0 ) fps = 25;

	// Correct the returns if necessary
	*format = mlt_audio_float;
	*frequency = *frequency <= 0 ? 48000 : *frequency;
	*channels = *channels <= 0 ? 2 : *channels;
	*samples = *samples <= 0 ? mlt_sample_calculator( fps, *frequency, position ) : *samples;

	// Allocate the buffer
	size = *samples * *channels * sizeof( float );
	*buffer = mlt_pool_alloc( size );

	mlt_service_lock( MLT_PRODUCER_SERVICE( producer ) );

	get_time_info( producer, frame, &info );

	// Determine if this should be a tone or silence.
	if( strcmp( sound, "none") )
	{
		if( !strcmp( sound, "2pop" ) )
		{
			mlt_position out = mlt_properties_get_int( producer_properties, "out" );
			mlt_position frames = out - position;

			if( frames == ( info.fps * 2 ) )
			{
				do_beep = 1;
			}
		}
		else if( !strcmp( sound, "frame0" ) )
		{
			if( info.frames == 0 )
			{
				do_beep = 1;
			}
		}
	}

	if( do_beep )
	{
		fill_beep( producer_properties, (float*)*buffer, *frequency, *channels, *samples );
	}
	else
	{
		// Fill silence.
		memset( *buffer, 0, size );
	}

	mlt_service_unlock( MLT_PRODUCER_SERVICE( producer ) );

	// Set the buffer for destruction
	mlt_frame_set_audio( frame, *buffer, *format, size, mlt_pool_release );
	return 0;
}
Beispiel #13
0
static int filter_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	mlt_properties properties = mlt_frame_pop_audio( frame );
	mlt_filter filter = mlt_frame_pop_audio( frame );
	mlt_properties filter_props = MLT_FILTER_PROPERTIES( filter );
	mlt_properties frame_props = MLT_FRAME_PROPERTIES( frame );

	// We can only mix s16
	*format = mlt_audio_s16;
	mlt_frame_get_audio( frame, (void**) buffer, format, frequency, channels, samples );

	// Apply silence
	int silent = mlt_properties_get_int( frame_props, "silent_audio" );
	mlt_properties_set_int( frame_props, "silent_audio", 0 );
	if ( silent )
		memset( *buffer, 0, *samples * *channels * sizeof( int16_t ) );

	int src_size = 0;
	int16_t *src = mlt_properties_get_data( filter_props, "scratch_buffer", &src_size );
	int16_t *dest = *buffer;
	double v; // sample accumulator
	int i, out, in;
	double factors[6][6]; // mixing weights [in][out]
	double mix_start = 0.5, mix_end = 0.5;
	if ( mlt_properties_get( properties, "previous_mix" ) != NULL )
		mix_start = mlt_properties_get_double( properties, "previous_mix" );
	if ( mlt_properties_get( properties, "mix" ) != NULL )
		mix_end = mlt_properties_get_double( properties, "mix" );
	double weight = mix_start;
	double weight_step = ( mix_end - mix_start ) / *samples;
	int active_channel = mlt_properties_get_int( properties, "channel" );
	int gang = mlt_properties_get_int( properties, "gang" ) ? 2 : 1;
	// Use an inline low-pass filter to help avoid clipping
	double Fc = 0.5;
	double B = exp(-2.0 * M_PI * Fc);
	double A = 1.0 - B;
	double vp[6];

	// Setup or resize a scratch buffer
	if ( !src || src_size < *samples * *channels * sizeof(int16_t) )
	{
		// We allocate 4 more samples than we need to deal with jitter in the sample count per frame.
		src_size = ( *samples + 4 ) * *channels * sizeof(int16_t);
		src = mlt_pool_alloc( src_size );
		if ( !src )
			return 0;
		mlt_properties_set_data( filter_props, "scratch_buffer", src, src_size, mlt_pool_release, NULL );
	}

	// We must use a pristine copy as the source
	memcpy( src, *buffer, *samples * *channels * sizeof(int16_t) );

	// Initialize the mix factors
	for ( i = 0; i < 6; i++ )
		for ( out = 0; out < 6; out++ )
			factors[i][out] = 0.0;

	for ( out = 0; out < *channels; out++ )
		vp[out] = (double) dest[out];

	for ( i = 0; i < *samples; i++ )
	{
		// Recompute the mix factors
		switch ( active_channel )
		{
			case -1: // Front L/R balance
			case -2: // Rear L/R balance
			{
				// Gang front/rear balance if requested
				int g, active = active_channel;
				for ( g = 0; g < gang; g++, active-- )
				{
					int left = active == -1 ? 0 : 2;
					int right = left + 1;
					if ( weight < 0.0 )
					{
						factors[left][left] = 1.0;
						factors[right][right] = weight + 1.0 < 0.0 ? 0.0 : weight + 1.0;
					}
					else
					{
						factors[left][left] = 1.0 - weight < 0.0 ? 0.0 : 1.0 - weight;
						factors[right][right] = 1.0;
					}
				}
				break;
			}
			case -3: // Left fade
			case -4: // right fade
			{
				// Gang left/right fade if requested
				int g, active = active_channel;
				for ( g = 0; g < gang; g++, active-- )
				{
					int front = active == -3 ? 0 : 1;
					int rear = front + 2;
					if ( weight < 0.0 )
					{
						factors[front][front] = 1.0;
						factors[rear][rear] = weight + 1.0 < 0.0 ? 0.0 : weight + 1.0;
					}
					else
					{
						factors[front][front] = 1.0 - weight < 0.0 ? 0.0 : 1.0 - weight;
						factors[rear][rear] = 1.0;
					}
				}
				break;
			}
			case 0: // left
			case 2:
			{
				int left = active_channel;
				int right = left + 1;
				factors[right][right] = 1.0;
				if ( weight < 0.0 ) // output left toward left
				{
					factors[left][left] = 0.5 - weight * 0.5;
					factors[left][right] = ( 1.0 + weight ) * 0.5;
				}
				else // output left toward right
				{
					factors[left][left] = ( 1.0 - weight ) * 0.5;
					factors[left][right] = 0.5 + weight * 0.5;
				}
				break;
			}
			case 1: // right
			case 3:
			{
				int right = active_channel;
				int left = right - 1;
				factors[left][left] = 1.0;
				if ( weight < 0.0 ) // output right toward left
				{
					factors[right][left] = 0.5 - weight * 0.5;
					factors[right][right] = ( 1.0 + weight ) * 0.5;
				}
				else // output right toward right
				{
					factors[right][left] = ( 1.0 - weight ) * 0.5;
					factors[right][right] = 0.5 + weight * 0.5;
				}
				break;
			}
		}

		// Do the mixing
		for ( out = 0; out < *channels && out < 6; out++ )
		{
			v = 0;
			for ( in = 0; in < *channels && in < 6; in++ )
				v += factors[in][out] * src[ i * *channels + in ];

			v = v < -32767 ? -32767 : v > 32768 ? 32768 : v;
			vp[out] = dest[ i * *channels + out ] = (int16_t) ( v * A + vp[ out ] * B );
		}
		weight += weight_step;
	}

	return 0;
}