float snoise(vec3 v) { const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0); const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); vec3 i = floor(v + dot(v, C.yyy)); vec3 x0 = v - i + dot(i, C.xxx); vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min(g.xyz, l.zxy); vec3 i2 = max(g.xyz, l.zxy); vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; vec3 x3 = x0 - D.yyy; i = mod289(i); vec4 p = permute(permute(permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y + vec4(0.0, i1.y, i2.y, 1.0)) + i.x + vec4(0.0, i1.x, i2.x, 1.0)); float n_ = 0.142857142857; vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_); vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4(x.xy, y.xy); vec4 b1 = vec4(x.zw, y.zw); vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww; vec3 p0 = vec3(a0.xy, h.x); vec3 p1 = vec3(a0.zw, h.y); vec3 p2 = vec3(a1.xy, h.z); vec3 p3 = vec3(a1.zw, h.w); vec4 norm = taylorInvSqrt(vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0); m = m * m; return 42.0 * dot(m*m, vec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); }
float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 //i1.y = 1.0 - i1.x; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); // x0 = x0 - 0.0 + 0.0 * C.xx ; // x1 = x0 - i1 + 1.0 * C.xx ; // x2 = x0 - 1.0 + 2.0 * C.xx ; vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + i.x + vec3(0.0, i1.x, 1.0 )); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); m = m*m ; m = m*m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); }
GLM_FUNC_QUALIFIER tvec4<T, P> permute(tvec4<T, P> const & x) { return mod289(((x * static_cast<T>(34)) + static_cast<T>(1)) * x); }
GLM_FUNC_QUALIFIER T permute(T const & x) { return mod289(((x * static_cast<T>(34)) + static_cast<T>(1)) * x); }
GLM_FUNC_QUALIFIER tvec4<T, P> permute(tvec4<T, P> const & x) { return mod289(((x * T(34)) + T(1)) * x); }
GLM_FUNC_QUALIFIER T permute(T const & x) { return mod289(((x * T(34)) + T(1)) * x); }
float permute(float x) { return mod289(((x*34.0)+1.0)*x); }
vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); }
float snoise(vec4 v) { const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 -0.447213595499958); // -1 + 4 * G4 // First corner vec4 i = floor(v + dot(v, vec4(F4)) ); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) vec4 i0; vec3 isX = step( x0.yzw, x0.xxx ); vec3 isYZ = step( x0.zww, x0.yyz ); // i0.x = dot( isX, vec3( 1.0 ) ); i0.x = isX.x + isX.y + isX.z; i0.yzw = 1.0 - isX; // i0.y += dot( isYZ.xy, vec2( 1.0 ) ); i0.y += isYZ.x + isYZ.y; i0.zw += 1.0 - isYZ.xy; i0.z += isYZ.z; i0.w += 1.0 - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel vec4 i3 = clamp( i0, 0.0, 1.0 ); vec4 i2 = clamp( i0-1.0, 0.0, 1.0 ); vec4 i1 = clamp( i0-2.0, 0.0, 1.0 ); // x0 = x0 - 0.0 + 0.0 * C.xxxx // x1 = x0 - i1 + 1.0 * C.xxxx // x2 = x0 - i2 + 2.0 * C.xxxx // x3 = x0 - i3 + 3.0 * C.xxxx // x4 = x0 - 1.0 + 4.0 * C.xxxx vec4 x1 = x0 - i1 + C.xxxx; vec4 x2 = x0 - i2 + C.yyyy; vec4 x3 = x0 - i3 + C.zzzz; vec4 x4 = x0 + C.wwww; // Permutations i = mod289(i); float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x); vec4 j1 = permute( permute( permute( permute ( i.w + vec4(i1.w, i2.w, i3.w, 1.0 )) + i.z + vec4(i1.z, i2.z, i3.z, 1.0 )) + i.y + vec4(i1.y, i2.y, i3.y, 1.0 )) + i.x + vec4(i1.x, i2.x, i3.x, 1.0 )); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ; vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; p4 *= taylorInvSqrt(dot(p4,p4)); // Mix contributions from the five corners vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0); vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0); m0 = m0 * m0; m1 = m1 * m1; return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 ))) + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ; }
float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); }
// Vectorized 2d simplex noise. float noise2d(float v1, float v2) { const float C[] = { 0.211324865405187f, 0.366025403784439f, -0.577350269189626f, 0.024390243902439f }; // First corner float i[2]; i[0] = floorf(v1 + v1*C[1] + v2*C[1]); i[1] = floorf(v2 + v1*C[1] + v2*C[1]); float x0[2]; x0[0] = v1 - i[0] + i[0]*C[0] + i[1]*C[0]; x0[1] = v2 - i[1] + i[0]*C[0] + i[1]*C[0]; // Other corners float i1[2]; if (x0[0] > x0[1]) { i1[0] = 1; i1[1] = 0; } else { i1[0] = 0; i1[1] = 1; } float x12[4]; x12[0] = x0[0] + C[0] - i1[0]; x12[1] = x0[1] + C[0] - i1[1]; x12[2] = x0[0] + C[2]; x12[3] = x0[1] + C[2]; // Permutations i[0] = mod289(i[0]); i[1] = mod289(i[1]); float p[3]; p[0] = permute(permute(i[1]) + i[0]); p[1] = permute(permute(i[1] + i1[1]) + i[0] + i1[0]); p[2] = permute(permute(i[1] + 1) + i[0] + 1); float m[3]; m[0] = std::max<float>(0.5f - x0[0]*x0[0] - x0[1]*x0[1], 0); m[1] = std::max<float>(0.5f - x12[0]*x12[0] - x12[1]*x12[1], 0); m[2] = std::max<float>(0.5f - x12[2]*x12[2] - x12[3]*x12[3], 0); m[0] = m[0] * m[0] * m[0] * m[0]; m[1] = m[1] * m[1] * m[1] * m[1]; m[2] = m[2] * m[2] * m[2] * m[2]; // Gradients float tmp; float x[3]; x[0] = 2 * modff(p[0] * C[3], &tmp) - 1; x[1] = 2 * modff(p[1] * C[3], &tmp) - 1; x[2] = 2 * modff(p[2] * C[3], &tmp) - 1; float h[3]; h[0] = fabsf(x[0]) - 0.5f; h[1] = fabsf(x[1]) - 0.5f; h[2] = fabsf(x[2]) - 0.5f; float ox[3]; ox[0] = floorf(x[0] + 0.5f); ox[1] = floorf(x[1] + 0.5f); ox[2] = floorf(x[2] + 0.5f); float a0[3]; a0[0] = x[0] - ox[0]; a0[1] = x[1] - ox[1]; a0[2] = x[2] - ox[2]; // Normalize m[0] *= 1.79284291400159f - 0.85373472095314f * (a0[0]*a0[0] + h[0]*h[0]); m[1] *= 1.79284291400159f - 0.85373472095314f * (a0[1]*a0[1] + h[1]*h[1]); m[2] *= 1.79284291400159f - 0.85373472095314f * (a0[2]*a0[2] + h[2]*h[2]); // Compute final value float g[3]; g[0] = a0[0] * x0[0] + h[0] * x0[1]; g[1] = a0[1] * x12[0] + h[1] * x12[1]; g[2] = a0[2] * x12[2] + h[2] * x12[3]; return 130 * (m[0] * g[0] + m[1] * g[1] + m[2] * g[2]); }
static inline float permute(float x) { return mod289(((x*34.0f)+1.0f)*x); }