long long modPow(int p, int q) {
    if (q == 0) {
        return 1;
    } else if (q == 1) {
        return p;
    }
    long long ret = modPow(p, q/2);
    return ret * ret % MOD * modPow(p, q % 2) % MOD;
}
Beispiel #2
0
void SecretShare::modInv(mpz_t result, mpz_t value){
	mpz_t temp;
	mpz_init(temp);
	mpz_sub_ui(temp, fieldSize, 2);
	modPow(result, value, temp);
	mpz_clear(temp); 
}
void solve() {
    int n, k;
    scanf("%d%d", &n, &k);
    int all = modPow(k, n);
    int ans = mul(mul(all, (all + MOD - 1) % MOD), (all + MOD - 2) % MOD);
    ans = mul(mul(mul(ans, n), n), n);
    printf("%d\n", ans);
}
Beispiel #4
0
void SecretShare::modSqrt(mpz_t result, mpz_t x){
	mpz_t temp;
	mpz_init(temp);
	mpz_add_ui(temp, fieldSize, 1);
	mpz_div_ui(temp, temp, 4);
	modPow(result, x, temp);
	mpz_clear(temp); 
}
Beispiel #5
0
void SecretShare::modSqrt(mpz_t* result, mpz_t* x, int size){
	mpz_t* power = (mpz_t*)malloc(sizeof(mpz_t) * size);
	for(int i = 0; i < size; i++){
		mpz_init(power[i]);
		mpz_add_ui(power[i], fieldSize, 1);
		mpz_div_ui(power[i], power[i], 4);
	}
	modPow(result, x, power, size);
	for(int i = 0; i < size; i++)
		mpz_clear(power[i]); 
}
long long combination(int n, int k) {
    long long upper = 1;
    for (int i = n; i > n - k; --i) {
        upper = upper * i % MOD;
    }
    long long lower = 1;
    for (int i = 1; i <= k; ++i) {
        lower = lower * i % MOD;
    }
    return upper * modPow(lower, MOD - 2) % MOD;
}
// Pre-condition: base^2 < 2^31, n < sqrt(2^31), 0 <= exp < 2^31.
// Post-condition: base raised to the power exp mod n is returned.
int modPow(int base, int exp, int n) {
    
    // Just in case we are passed in a base that is too big.
    base = base%n;
    
    // Everything raised to the 0 power is 1.
    if (exp == 0)
        return 1;
        
    // Anything raised to the 1st power is itself.
    else if (exp == 1)
        return base;
        
    // Utlize the even powered exponent and the rules of exponentiation.
    else if (exp%2 == 0)
        return modPow(base*base%n, exp/2, n);
    
    // If we can't, then just use our regular solution.
    else
        return base*modPow(base, exp-1, n)%n; 
    
}
int main() {
    
    // Very basic, NOT comprensive, tests of the recursive methods.
    
    int vals[4];
    printf("7! = %d\n", fact(7));
    printf("31^2 + 32^2 + ... + 200^2 = %d\n", sumsq(31, 200));
    
    vals[0] = 37; vals[1] = 48; vals[2] = 56; vals[3] = 63;
    printf("vals has %d Odd values.\n", ArrayOdd(vals, 4));
    
    print_reverse("writethisbackwards", 18);
    printf("\n");
    printf("3^10 = %d\n", powerA(3,10));
    printf("3^11 = %d\n", powerB(3,11));
     
    if (Rbinary(33, vals, 0, 3) == -1)
        printf("33 was not found in vals.\n");
        
    dectobin(179);
    printf("\n");
    
    if (check("madamimadam", 11))
        printf("madamimadam is a palindrome.\n");
        
    printf("The 27th Fibonacci number is %d\n", fibonacci(27)); 
    
    // Test of fast exponentiation vs. regular version
    
    int start = time(0);
    int ans1 = slowModPow(6874, 1000000000, 13713);
    int end1 = time(0);
    int ans2 = modPow(6874, 1000000000, 13713);
    int end2 = time(0);
    
    printf("ans1 = %d, ans2 = %d.\n", ans1, ans2);
    printf("slowModExp took %d sec.\n", end1-start);
    printf("modPow took %d sec.\n", end2-end1);
    
    system("PAUSE");
    return 0;
}
Beispiel #9
0
void SecretShare::computeSharingMatrix(){
	// initialize the shairngMatrix
	mpz_t t1, t2; 
	mpz_init(t1); 
	mpz_init(t2); 
	sharingMatrix = (mpz_t**)malloc(sizeof(mpz_t*) * peers);
	for(int i = 0; i < peers; i++)
		sharingMatrix[i] = (mpz_t*)malloc(sizeof(mpz_t) * peers);
	for(int i = 0; i < peers; i++)
		for(int j = 0; j < peers; j++)
			mpz_init(sharingMatrix[i][j]);
	for(int i = 0; i < peers; i++){
		for(int j = 0; j < 2*threshold+1; j++){
			mpz_set_ui(t1,i+1);
			mpz_set_ui(t2,j);
			modPow(sharingMatrix[i][j], t1, t2);
		}
	}
	mpz_clear(t1); 
	mpz_clear(t2);
}
Beispiel #10
0
void GaussianFactorization(void)
{
  BigInteger prime, q, r, M1, M2, Tmp;
  struct sFactors *pstFactor;

  BigIntMultiply(&ReValue, &ReValue, &tofactor);
  BigIntMultiply(&ImValue, &ImValue, &Tmp);
  BigIntAdd(&tofactor, &Tmp, &tofactor);
  NbrFactorsNorm = 0;
#ifdef __EMSCRIPTEN__
  originalTenthSecond = tenths();
#endif
  if (tofactor.nbrLimbs == 1 && tofactor.limbs[0].x == 0)
  {                // Norm is zero.
    w("<ul><li>Any gaussian prime divides this number</li></ul>");
    return;
  }
  w("<ul>");
  if (tofactor.nbrLimbs > 1 || tofactor.limbs[0].x > 1)
  {           // norm greater than 1. Factor norm.
    int index, index2;
    char *ptrFactorDec = tofactorDec;
    NumberLength = tofactor.nbrLimbs;
    CompressBigInteger(nbrToFactor, &tofactor);
    strcpy(ptrFactorDec, "Re&sup2; + Im&sup2; = ");
    ptrFactorDec += strlen(ptrFactorDec);
    Bin2Dec(ReValue.limbs, ptrFactorDec, ReValue.nbrLimbs, groupLen);
    ptrFactorDec += strlen(ptrFactorDec);
    strcpy(ptrFactorDec, "&sup2; + ");
    ptrFactorDec += strlen(ptrFactorDec);
    Bin2Dec(ImValue.limbs, ptrFactorDec, ImValue.nbrLimbs, groupLen);
    ptrFactorDec += strlen(ptrFactorDec);
    strcpy(ptrFactorDec, "&sup2;");
    ptrFactorDec += strlen(ptrFactorDec);
    factor(&tofactor, nbrToFactor, factorsNorm, astFactorsNorm, NULL);
    NbrFactorsNorm = astFactorsNorm[0].multiplicity;
    pstFactor = &astFactorsNorm[1];
    for (index = 0; index < NbrFactorsNorm; index++)
    {
      int *ptrPrime = pstFactor->ptrFactor;
      NumberLength = *ptrPrime;
      UncompressBigInteger(ptrPrime, &prime);
      prime.sign = SIGN_POSITIVE;
      if (prime.nbrLimbs == 1 && prime.limbs[0].x == 2)
      {             // Prime factor is 2.
        for (index2 = 0; index2 < pstFactor->multiplicity; index2++)
        {
          M1.nbrLimbs = M2.nbrLimbs = 1;
          M1.limbs[0].x = M2.limbs[0].x = 1;
          M1.sign = SIGN_POSITIVE;
          M2.sign = SIGN_NEGATIVE;
          DivideGaussian(&M1, &M1);           // Divide by 1+i
          DivideGaussian(&M1, &M2);           // Divide by 1-i
        }
      }
      if ((prime.limbs[0].x & 2) == 0)
      {                               // Prime is congruent to 1 (mod 4)
        CopyBigInt(&q, &prime);
        NumberLength = prime.nbrLimbs;
        memcpy(&TestNbr, prime.limbs, NumberLength * sizeof(limb));
        TestNbr[NumberLength].x = 0;
        GetMontgomeryParms(NumberLength);
        subtractdivide(&q, 1, 4);     // q = (prime-1)/4
        memset(&K, 0, NumberLength * sizeof(limb));
        memset(minusOneMont, 0, NumberLength * sizeof(limb));
        SubtBigNbrModN(minusOneMont, MontgomeryMultR1, minusOneMont, TestNbr, NumberLength);
        K[0].x = 1;
        do
        {    // Loop that finds mult1 = sqrt(-1) mod prime in Montgomery notation.
          K[0].x++;
          modPow(K, q.limbs, q.nbrLimbs, mult1.limbs);
        } while (!memcmp(mult1.limbs, MontgomeryMultR1, NumberLength * sizeof(limb)) ||
                 !memcmp(mult1.limbs, minusOneMont, NumberLength * sizeof(limb)));
        K[0].x = 1;
        modmult(mult1.limbs, K, mult1.limbs);       // Convert mult1 to standard notation.
        UncompressLimbsBigInteger(mult1.limbs, &mult1);  // Convert to Big Integer.
        mult2.nbrLimbs = 1;                // mult2 <- 1
        mult2.limbs[0].x = 1;
        mult2.sign = SIGN_POSITIVE;
        for (;;)
        {
          // norm <- (mult1^2 + mult2^2) / prime
          BigIntMultiply(&mult1, &mult1, &tofactor);
          BigIntMultiply(&mult2, &mult2, &Tmp);
          BigIntAdd(&tofactor, &Tmp, &Tmp);
          BigIntDivide(&Tmp, &prime, &tofactor);
          if (tofactor.nbrLimbs == 1 && tofactor.limbs[0].x == 1)
          {        // norm equals 1.
            break;
          }
          BigIntRemainder(&mult1, &tofactor, &M1);
          BigIntRemainder(&mult2, &tofactor, &M2);
          BigIntAdd(&M1, &M1, &Tmp);
          BigIntSubt(&tofactor, &Tmp, &Tmp);
          if (Tmp.sign == SIGN_NEGATIVE)
          {
            BigIntSubt(&M1, &tofactor, &M1);
          }
          BigIntAdd(&M2, &M2, &Tmp);
          BigIntSubt(&tofactor, &Tmp, &Tmp);
          if (Tmp.sign == SIGN_NEGATIVE)
          {
            BigIntSubt(&M2, &tofactor, &M2);
          }
          // Compute q <- (mult1*M1 + mult2*M2) / norm
          BigIntMultiply(&mult1, &M1, &q);
          BigIntMultiply(&mult2, &M2, &Tmp);
          BigIntAdd(&q, &Tmp, &Tmp);
          BigIntDivide(&Tmp, &tofactor, &q);
          // Compute Mult2 <- (mult1*M2 - mult2*M1) / tofactor
          BigIntMultiply(&mult1, &M2, &r);
          BigIntMultiply(&mult2, &M1, &Tmp);
          BigIntSubt(&r, &Tmp, &Tmp);
          BigIntDivide(&Tmp, &tofactor, &mult2);
          CopyBigInt(&mult1, &q);
          mult1.sign = SIGN_POSITIVE;    // mult1 <- abs(mult1)
          mult2.sign = SIGN_POSITIVE;    // mult2 <- abs(mult2)
        }            /* end while */
        CopyBigInt(&M1, &mult1);
        CopyBigInt(&M2, &mult2);
        BigIntSubt(&M1, &M2, &Tmp);
        if (Tmp.sign == SIGN_NEGATIVE)
        {
          CopyBigInt(&Tmp, &mult1);
          CopyBigInt(&mult1, &mult2);
          CopyBigInt(&mult2, &Tmp);
        }
        for (index2 = 0; index2 < pstFactor->multiplicity; index2++)
        {
          DivideGaussian(&mult1, &mult2);
          BigIntNegate(&mult2, &Tmp);
          DivideGaussian(&mult1, &Tmp);
        }
      }              // end p = 1 (mod 4)
      else
      {              // if p = 3 (mod 4)
        q.nbrLimbs = 1;    // q <- 0
        q.limbs[0].x = 0;
        q.sign = SIGN_POSITIVE;
        for (index2 = 0; index2 < pstFactor->multiplicity; index2++)
        {
          DivideGaussian(&prime, &q);
        }            // end p = 3 (mod 4)
      }
      pstFactor++;
    }
  }
  // Process units: 1, -1, i, -i.
  if (ReValue.nbrLimbs == 1 && ReValue.limbs[0].x == 1)
  {
    if (ReValue.sign == SIGN_POSITIVE)
    {             // Value is 1.
      if (NbrFactorsNorm == 0)
      {
        w("No gaussian prime divides this number");
      }
    }
    else
    {            // Value is -1.
      w("<li>-1</li>");
    }
  }
  else if (ImValue.sign == SIGN_POSITIVE)
  {
    w("<li>i</li>");
  }
  else
  {
    w("<li>-i</li>");
  }
  w("</ul>");
}
Beispiel #11
0
void DiscreteLogarithm(void)
{
  BigInteger groupOrder, subGroupOrder, powSubGroupOrder, powSubGroupOrderBak;
  BigInteger Exponent, runningExp, baseExp, mod;
  BigInteger logar, logarMult, runningExpBase;
  BigInteger currentExp;
  int indexBase, indexExp;
  int index, expon;
  limb addA, addB, addA2, addB2;
  limb mult1, mult2;
  double magnitude, firstLimit, secondLimit;
  long long brentK, brentR;
  unsigned char EndPollardBrentRho;
  int nbrLimbs;
  struct sFactors *pstFactors;
  enum eLogMachineState logMachineState;
  char *ptr;

#ifdef __EMSCRIPTEN__
  lModularMult = 0;
#endif
  NumberLength = modulus.nbrLimbs;
  if (!TestBigNbrEqual(&LastModulus, &modulus))
  {
    CompressBigInteger(nbrToFactor, &modulus);
    Bin2Dec(modulus.limbs, tofactorDec, modulus.nbrLimbs, groupLen);
    factor(&modulus, nbrToFactor, factorsMod, astFactorsMod, NULL);
    NbrFactorsMod = astFactorsMod[0].multiplicity;
  }
  intToBigInteger(&DiscreteLog, 0);       // DiscreteLog <- 0
  intToBigInteger(&DiscreteLogPeriod, 1); // DiscreteLogPeriod <- 1
  for (index = 1; index <= NbrFactorsMod; index++)
  {
    int mostSignificantDword, leastSignificantDword;
    int NbrFactors;
    int *ptrPrime;
    int multiplicity;

    ptrPrime = astFactorsMod[index].ptrFactor;
    NumberLength = *ptrPrime;
    UncompressBigInteger(ptrPrime, &groupOrder);
    groupOrder.sign = SIGN_POSITIVE;
    BigIntRemainder(&base, &groupOrder, &tmpBase);
    if (tmpBase.nbrLimbs == 1 && tmpBase.limbs[0].x == 0)
    {     // modulus and base are not relatively prime.
      int ctr;
      multiplicity = astFactorsMod[index].multiplicity;
      CopyBigInt(&bigNbrA, &power);
      for (ctr = multiplicity; ctr > 0; ctr--)
      {
        BigIntRemainder(&bigNbrA, &groupOrder, &bigNbrB);
        if (bigNbrB.nbrLimbs != 1 || bigNbrB.limbs[0].x != 0)
        {    // Exit loop if integer division cannot be performed
          break;
        }
        BigIntDivide(&bigNbrA, &groupOrder, &bigNbrB);
        CopyBigInt(&bigNbrA, &bigNbrB);
      }
      if (ctr == 0)
      {  // Power is multiple of prime^exp.
        continue;
      }
      // Compute prime^mutliplicity.
      BigIntPowerIntExp(&groupOrder, multiplicity, &tmp2);
      BigIntRemainder(&base, &tmp2, &tmpBase);
      // Get tentative exponent.
      ctr = multiplicity - ctr;
      intToBigInteger(&bigNbrB, ctr);   // Convert exponent to big integer.
      NumberLength = tmp2.nbrLimbs;
      memcpy(TestNbr, tmp2.limbs, (NumberLength + 1) * sizeof(limb));
      GetMontgomeryParms(NumberLength);
      BigIntModularPower(&tmpBase, &bigNbrB, &bigNbrA);
      BigIntRemainder(&power, &tmp2, &bigNbrB);
      BigIntSubt(&bigNbrA, &bigNbrB, &bigNbrA);
      if (bigNbrA.nbrLimbs == 1 && bigNbrA.limbs[0].x == 0)
      {
        intToBigInteger(&DiscreteLog, ctr);     // DiscreteLog <- exponent
        intToBigInteger(&DiscreteLogPeriod, 0); // DiscreteLogPeriod <- 0
        break;
      }
      showText("There is no discrete logarithm");
      DiscreteLogPeriod.sign = SIGN_NEGATIVE;
      return;
    }
    else
    {     // modulus and base are relatively prime.
      BigIntRemainder(&power, &groupOrder, &bigNbrB);
      if (bigNbrB.nbrLimbs == 1 && bigNbrB.limbs[0].x == 0)
      {   // power is multiple of prime. Error.
        showText("There is no discrete logarithm");
        DiscreteLogPeriod.sign = SIGN_NEGATIVE;
        return;
      }
    }
    CompressLimbsBigInteger(baseMontg, &tmpBase);
    BigIntRemainder(&power, &groupOrder, &tmpBase);
    CompressLimbsBigInteger(powerMontg, &tmpBase);
    // Compute group order as the prime minus 1.
    groupOrder.limbs[0].x--;
    showText("Computing discrete logarithm...");
    CompressBigInteger(nbrToFactor, &groupOrder);
    factor(&groupOrder, nbrToFactor, factorsGO, astFactorsGO, NULL);  // factor groupOrder.
    NbrFactors = astFactorsGO[0].multiplicity;
    NumberLength = *ptrPrime;
    UncompressBigInteger(ptrPrime, &mod);
    intToBigInteger(&logar, 0);     // logar <- 0
    intToBigInteger(&logarMult, 1); // logarMult <- 1
    NumberLength = mod.nbrLimbs;
    memcpy(TestNbr, mod.limbs, NumberLength * sizeof(limb));
    TestNbr[NumberLength].x = 0;
    //    yieldFreq = 1000000 / (NumberLength*NumberLength);
    GetMontgomeryParms(NumberLength);
#if 0
    char *ptrText = textExp;
    strcpy(ptrText, "<p>NumberLength (2) = ");
    ptrText = ptrText + strlen(ptrText);
    int2dec(&ptrText, NumberLength);
    strcpy(ptrText, "</p>");
    DiscreteLogPeriod.sign = SIGN_NEGATIVE;
    return;
#endif
    // Convert base and power to Montgomery notation.
    modmult(baseMontg, MontgomeryMultR2, baseMontg);
    modmult(powerMontg, MontgomeryMultR2, powerMontg);
    mostSignificantDword = NumberLength - 1;
    if (NumberLength == 1)
    {
      leastSignificantDword = NumberLength - 1;
      firstLimit = (double)TestNbr[leastSignificantDword].x / 3;
    }
    else
    {
      leastSignificantDword = NumberLength - 2;
      firstLimit = ((double)TestNbr[mostSignificantDword].x * LIMB_RANGE +
        TestNbr[leastSignificantDword].x) / 3;
    }
    secondLimit = firstLimit * 2;
    for (indexBase = 0; indexBase < NbrFactors; indexBase++)
    {
      NumberLength = *astFactorsGO[indexBase + 1].ptrFactor;
      UncompressBigInteger(astFactorsGO[indexBase + 1].ptrFactor, &subGroupOrder);
      subGroupOrder.sign = SIGN_POSITIVE;
      strcpy(textExp, "Computing discrete logarithm in subgroup of ");
      Bin2Dec(subGroupOrder.limbs, textExp + strlen(textExp), subGroupOrder.nbrLimbs, groupLen);
      ptr = textExp + strlen(textExp);
      if (astFactorsGO[indexBase + 1].multiplicity > 1)
      {
        *ptr++ = '<';
        *ptr++ = 's';
        *ptr++ = 'u';
        *ptr++ = 'p';
        *ptr++ = '>';
        int2dec(&ptr, astFactorsGO[indexBase + 1].multiplicity);
        *ptr++ = '<';
        *ptr++ = '/';
        *ptr++ = 's';
        *ptr++ = 'u';
        *ptr++ = 'p';
        *ptr++ = '>';
      }
      strcpy(ptr, " elements.");
      showText(textExp);
      NumberLength = mod.nbrLimbs;
      memcpy(TestNbr, mod.limbs, NumberLength * sizeof(limb));
      NumberLengthOther = subGroupOrder.nbrLimbs;
      memcpy(TestNbrOther, subGroupOrder.limbs, NumberLengthOther * sizeof(limb));
      TestNbr[NumberLength].x = 0;
      GetMontgomeryParms(NumberLength);
      nbrLimbs = subGroupOrder.nbrLimbs;
      dN = (double)subGroupOrder.limbs[nbrLimbs - 1].x;
      if (nbrLimbs > 1)
      {
        dN += (double)subGroupOrder.limbs[nbrLimbs - 2].x / LIMB_RANGE;
        if (nbrLimbs > 2)
        {
          dN += (double)subGroupOrder.limbs[nbrLimbs - 3].x / LIMB_RANGE / LIMB_RANGE;
        }
      }
      CopyBigInt(&baseExp, &groupOrder);
      // Check whether base is primitive root.
      BigIntDivide(&groupOrder, &subGroupOrder, &tmpBase);
      modPow(baseMontg, tmpBase.limbs, tmpBase.nbrLimbs, primRootPwr);
      if (!memcmp(primRootPwr, MontgomeryMultR1, NumberLength * sizeof(limb)))
      {        // Power is one, so it is not a primitive root.
        logMachineState = CALC_LOG_BASE;
        // Find primitive root
        primRoot[0].x = 1;
        if (NumberLength > 1)
        {
          memset(&primRoot[1], 0, (NumberLength - 1) * sizeof(limb));
        }
        do
        {
          primRoot[0].x++;
          modPow(primRoot, tmpBase.limbs, tmpBase.nbrLimbs, primRootPwr);
        } while (!memcmp(primRootPwr, MontgomeryMultR1, NumberLength * sizeof(limb)));
      }
      else
      {           // Power is not 1, so the base is a primitive root.
        logMachineState = BASE_PRIMITIVE_ROOT;
        memcpy(primRoot, baseMontg, NumberLength * sizeof(limb));
      }
      for (;;)
      {                  // Calculate discrete logarithm in subgroup.
        runningExp.nbrLimbs = 1;     // runningExp <- 0
        runningExp.limbs[0].x = 0;
        runningExp.sign = SIGN_POSITIVE;
        powSubGroupOrder.nbrLimbs = 1;     // powSubGroupOrder <- 1
        powSubGroupOrder.limbs[0].x = 1;
        powSubGroupOrder.sign = SIGN_POSITIVE;
        CopyBigInt(&currentExp, &groupOrder);
        if (logMachineState == BASE_PRIMITIVE_ROOT)
        {
          memcpy(basePHMontg, baseMontg, NumberLength * sizeof(limb));
          memcpy(currPowerMontg, powerMontg, NumberLength * sizeof(limb));
        }
        else if (logMachineState == CALC_LOG_BASE)
        {
          memcpy(basePHMontg, primRoot, NumberLength * sizeof(limb));
          memcpy(currPowerMontg, baseMontg, NumberLength * sizeof(limb));
        }
        else
        {           // logMachineState == CALC_LOG_POWER
          memcpy(primRoot, basePHMontg, NumberLength * sizeof(limb));
          memcpy(currPowerMontg, powerMontg, NumberLength * sizeof(limb));
        }
        for (indexExp = 0; indexExp < astFactorsGO[indexBase + 1].multiplicity; indexExp++)
        {
          /* PH below comes from Pohlig-Hellman algorithm */
          BigIntDivide(&currentExp, &subGroupOrder, &currentExp);
          modPow(currPowerMontg, currentExp.limbs, currentExp.nbrLimbs, powerPHMontg);
          BigIntDivide(&baseExp, &subGroupOrder, &baseExp);
          if (subGroupOrder.nbrLimbs == 1 && subGroupOrder.limbs[0].x < 20)
          {       // subGroupOrder less than 20.
            if (!ComputeDLogModSubGroupOrder(indexBase, indexExp, &Exponent, &subGroupOrder))
            {
              return;
            }
          }
          else
          {        // Use Pollard's rho method with Brent's modification
            memcpy(nbrPower, powerPHMontg, NumberLength * sizeof(limb));
            memcpy(nbrBase, primRootPwr, NumberLength * sizeof(limb));
            memcpy(nbrR2, nbrBase, NumberLength * sizeof(limb));
            memset(nbrA2, 0, NumberLength * sizeof(limb));
            memset(nbrB2, 0, NumberLength * sizeof(limb));
            nbrB2[0].x = 1;
            addA2.x = addB2.x = 0;
            mult2.x = 1;
            brentR = 1;
            brentK = 0;
            EndPollardBrentRho = FALSE;
            do
            {
              memcpy(nbrR, nbrR2, NumberLength * sizeof(limb));
              memcpy(nbrA, nbrA2, NumberLength * sizeof(limb));
              memcpy(nbrB, nbrB2, NumberLength * sizeof(limb));
              addA = addA2;
              addB = addB2;
              mult1 = mult2;
              brentR *= 2;
              do
              {
                brentK++;
                if (NumberLength == 1)
                {
                  magnitude = (double)nbrR2[leastSignificantDword].x;
                }
                else
                {
                  magnitude = (double)nbrR2[mostSignificantDword].x * LIMB_RANGE +
                    nbrR2[leastSignificantDword].x;
                }
                if (magnitude < firstLimit)
                {
                  modmult(nbrR2, nbrPower, nbrROther);
                  addA2.x++;
                }
                else if (magnitude < secondLimit)
                {
                  modmult(nbrR2, nbrR2, nbrROther);
                  mult2.x *= 2;
                  addA2.x *= 2;
                  addB2.x *= 2;
                }
                else
                {
                  modmult(nbrR2, nbrBase, nbrROther);
                  addB2.x++;
                }
                // Exchange nbrR2 and nbrROther
                memcpy(nbrTemp, nbrR2, NumberLength * sizeof(limb));
                memcpy(nbrR2, nbrROther, NumberLength * sizeof(limb));
                memcpy(nbrROther, nbrTemp, NumberLength * sizeof(limb));
                if (addA2.x >= (int)(LIMB_RANGE / 2) || addB2.x >= (int)(LIMB_RANGE / 2) ||
                    mult2.x >= (int)(LIMB_RANGE / 2))
                {
                  // nbrA2 <- (nbrA2 * mult2 + addA2) % subGroupOrder
                  AdjustExponent(nbrA2, mult2, addA2, &subGroupOrder);
                  // nbrB2 <- (nbrB2 * mult2 + addB2) % subGroupOrder
                  AdjustExponent(nbrB2, mult2, addB2, &subGroupOrder);
                  mult2.x = 1;
                  addA2.x = addB2.x = 0;
                }
                if (!memcmp(nbrR, nbrR2, NumberLength * sizeof(limb)))
                {
                  EndPollardBrentRho = TRUE;
                  break;
                }
              } while (brentK < brentR);
            } while (EndPollardBrentRho == FALSE);
            ExchangeMods();                  // TestNbr <- subGroupOrder
            // nbrA <- (nbrA * mult1 + addA) % subGroupOrder
            AdjustExponent(nbrA, mult1, addA, &subGroupOrder);
            // nbrB <- (nbrB * mult1 + addB) % subGroupOrder
            AdjustExponent(nbrB, mult1, addB, &subGroupOrder);
            // nbrA2 <- (nbrA * mult2 + addA2) % subGroupOrder
            AdjustExponent(nbrA2, mult2, addA2, &subGroupOrder);
            // nbrB2 <- (nbrA * mult2 + addB2) % subGroupOrder
            AdjustExponent(nbrB2, mult2, addB2, &subGroupOrder);
            // nbrB <- (nbrB2 - nbrB) % subGroupOrder
            SubtBigNbrMod(nbrB2, nbrB, nbrB);
            SubtBigNbrMod(nbrA, nbrA2, nbrA);
            if (BigNbrIsZero(nbrA))
            {     // Denominator is zero, so rho does not work.
              ExchangeMods();           // TestNbr <- modulus
              if (!ComputeDLogModSubGroupOrder(indexBase, indexExp, &Exponent, &subGroupOrder))
              {
                return;   // Cannot compute discrete logarithm.
              }
            }
            else
            {
              // Exponent <- (nbrB / nbrA) (mod subGroupOrder)
              UncompressLimbsBigInteger(nbrA, &bigNbrA);
              UncompressLimbsBigInteger(nbrB, &bigNbrB);
              BigIntModularDivisionSaveTestNbr(&bigNbrB, &bigNbrA, &subGroupOrder, &Exponent);
              Exponent.sign = SIGN_POSITIVE;
              ExchangeMods();           // TestNbr <- modulus
            }
          }
          modPow(primRoot, Exponent.limbs, Exponent.nbrLimbs, tmpBase.limbs);
          ModInvBigNbr(tmpBase.limbs, tmpBase.limbs, TestNbr, NumberLength);
          modmult(tmpBase.limbs, currPowerMontg, currPowerMontg);
          BigIntMultiply(&Exponent, &powSubGroupOrder, &tmpBase);
          BigIntAdd(&runningExp, &tmpBase, &runningExp);
          BigIntMultiply(&powSubGroupOrder, &subGroupOrder, &powSubGroupOrder);
          modPow(primRoot, subGroupOrder.limbs, subGroupOrder.nbrLimbs, tmpBase.limbs);
          memcpy(primRoot, tmpBase.limbs, NumberLength * sizeof(limb));
        }
        if (logMachineState == BASE_PRIMITIVE_ROOT)
        {         // Discrete logarithm was determined for this subgroup.
          ExponentsGOComputed[indexBase] = astFactorsGO[indexBase + 1].multiplicity;
          break;
        }
        if (logMachineState == CALC_LOG_BASE)
        {
          CopyBigInt(&runningExpBase, &runningExp);
          logMachineState = CALC_LOG_POWER;
        }
        else
        {  // Set powSubGroupOrderBak to powSubGroupOrder.
           // if runningExpBase is not multiple of subGroupOrder,
           // discrete logarithm is runningExp/runningExpBase mod powSubGroupOrderBak.
           // Otherwise if runningExp is multiple of subGroupOrder, there is no logarithm.
           // Otherwise, divide runningExp, runnignExpBase and powSubGroupOrderBak by subGroupOrder and repeat.
          ExponentsGOComputed[indexBase] = astFactorsGO[indexBase + 1].multiplicity;
          CopyBigInt(&powSubGroupOrderBak, &powSubGroupOrder);
          do
          {
            BigIntRemainder(&runningExpBase, &subGroupOrder, &tmpBase);
            if (tmpBase.nbrLimbs > 1 || tmpBase.limbs[0].x != 0)
            {    // runningExpBase is not multiple of subGroupOrder
              BigIntModularDivisionSaveTestNbr(&runningExp, &runningExpBase, &powSubGroupOrderBak, &tmpBase);
              CopyBigInt(&runningExp, &tmpBase);
              break;
            }
            BigIntRemainder(&runningExp, &subGroupOrder, &tmpBase);
            if (tmpBase.nbrLimbs > 1 || tmpBase.limbs[0].x != 0)
            {    // runningExpBase is not multiple of subGroupOrder
              showText("There is no discrete logarithm");
              DiscreteLogPeriod.sign = SIGN_NEGATIVE;
              return;
            }
            BigIntDivide(&runningExp, &subGroupOrder, &tmpBase);
            CopyBigInt(&runningExp, &tmpBase);
            BigIntDivide(&runningExpBase, &subGroupOrder, &tmpBase);
            CopyBigInt(&runningExpBase, &tmpBase);
            BigIntDivide(&powSubGroupOrderBak, &subGroupOrder, &tmpBase);
            CopyBigInt(&powSubGroupOrderBak, &tmpBase);
            ExponentsGOComputed[indexBase]--;
            if (tmpBase.nbrLimbs == 1 && tmpBase.limbs[0].x == 1)
            {
              break;
            }
            BigIntRemainder(&runningExpBase, &subGroupOrder, &tmpBase);
          } while (tmpBase.nbrLimbs == 1 && tmpBase.limbs[0].x == 0);
          CopyBigInt(&powSubGroupOrder, &powSubGroupOrderBak);
          // The logarithm is runningExp / runningExpBase mod powSubGroupOrder
          // When powSubGroupOrder is even, we cannot use Montgomery.
          if (powSubGroupOrder.limbs[0].x & 1)
          {          // powSubGroupOrder is odd.
            BigIntModularDivisionSaveTestNbr(&runningExp, &runningExpBase, &powSubGroupOrder, &tmpBase);
            CopyBigInt(&runningExp, &tmpBase);
          }
          else
          {          // powSubGroupOrder is even (power of 2).
            NumberLength = powSubGroupOrder.nbrLimbs;
            CompressLimbsBigInteger(nbrB, &runningExpBase);
            ComputeInversePower2(nbrB, nbrA, nbrB2);  // nbrB2 is auxiliary var.
            CompressLimbsBigInteger(nbrB, &runningExp);
            multiply(nbrA, nbrB, nbrA, NumberLength, NULL);   // nbrA <- quotient.
            UncompressLimbsBigInteger(nbrA, &runningExp);
          }
          break;
        }
      }
      CopyBigInt(&nbrV[indexBase], &runningExp);
      NumberLength = powSubGroupOrder.nbrLimbs;
      memcpy(TestNbr, powSubGroupOrder.limbs, NumberLength * sizeof(limb));
      TestNbr[NumberLength].x = 0;
      GetMontgomeryParms(NumberLength);
      for (indexExp = 0; indexExp < indexBase; indexExp++)
      {
        // nbrV[indexBase] <- (nbrV[indexBase] - nbrV[indexExp])*
        //                     modinv(PrimesGO[indexExp]^(ExponentsGO[indexExp]),
        //                     powSubGroupOrder)
        NumberLength = mod.nbrLimbs;
        BigIntSubt(&nbrV[indexBase], &nbrV[indexExp], &nbrV[indexBase]);
        BigIntRemainder(&nbrV[indexBase], &powSubGroupOrder, &nbrV[indexBase]);
        if (nbrV[indexBase].sign == SIGN_NEGATIVE)
        {
          BigIntAdd(&nbrV[indexBase], &powSubGroupOrder, &nbrV[indexBase]);
        }
        pstFactors = &astFactorsGO[indexExp + 1];
        UncompressBigInteger(pstFactors->ptrFactor, &tmpBase);
        BigIntPowerIntExp(&tmpBase, ExponentsGOComputed[indexExp], &tmpBase);
        BigIntRemainder(&tmpBase, &powSubGroupOrder, &tmpBase);
        NumberLength = powSubGroupOrder.nbrLimbs;
        CompressLimbsBigInteger(tmp2.limbs, &tmpBase);
        modmult(tmp2.limbs, MontgomeryMultR2, tmp2.limbs);
        if (NumberLength > 1 || TestNbr[0].x != 1)
        {           // If TestNbr != 1 ...
          ModInvBigNbr(tmp2.limbs, tmp2.limbs, TestNbr, NumberLength);
        }
        tmpBase.limbs[0].x = 1;
        memset(&tmpBase.limbs[1], 0, (NumberLength - 1) * sizeof(limb));
        modmult(tmpBase.limbs, tmp2.limbs, tmp2.limbs);
        UncompressLimbsBigInteger(tmp2.limbs, &tmpBase);
        BigIntMultiply(&tmpBase, &nbrV[indexBase], &nbrV[indexBase]);
      }
      BigIntRemainder(&nbrV[indexBase], &powSubGroupOrder, &nbrV[indexBase]);
      BigIntMultiply(&nbrV[indexBase], &logarMult, &tmpBase);
      BigIntAdd(&logar, &tmpBase, &logar);
      BigIntMultiply(&logarMult, &powSubGroupOrder, &logarMult);
    }
    multiplicity = astFactorsMod[index].multiplicity;
    UncompressBigInteger(ptrPrime, &bigNbrB);
    expon = 1;
    if (bigNbrB.nbrLimbs == 1 && bigNbrB.limbs[0].x == 2)
    {            // Prime factor is 2. Base and power are odd at this moment.
      int lsbBase = base.limbs[0].x;
      int lsbPower = power.limbs[0].x;
      if (multiplicity > 1)
      {
        int mask = (multiplicity == 2? 3 : 7);
        expon = (multiplicity == 2 ? 2 : 3);
        if ((lsbPower & mask) == 1)
        {
          intToBigInteger(&logar, 0);
          intToBigInteger(&logarMult, (lsbBase == 1 ? 1 : 2));
        }
        else if (((lsbPower - lsbBase) & mask) == 0)
        {
          intToBigInteger(&logar, 1);
          intToBigInteger(&logarMult, 2);
        }
        else
        {
          showText("There is no discrete logarithm");
          DiscreteLogPeriod.sign = SIGN_NEGATIVE;
          return;
        }
      }
    }
    for (; expon < multiplicity; expon++)
    {    // Repeated factor.
      // L = logar, LM = logarMult
      // B = base, P = power, p = prime

      // B^n = P (mod p^(k+1)) -> n = L + m*LM   m = ?
      // B^(L + m*LM) = P
      // (B^LM) ^ m = P*B^(-L)
      // B^LM = r*p^k + 1, P*B^(-L) = s*p^k + 1
      // (r*p^k + 1)^m = s*p^k + 1
      // From binomial theorem: m = s / r (mod p)
      // If r = 0 and s != 0 there is no solution.
      // If r = 0 and s = 0 do not change LM.
      BigIntPowerIntExp(&bigNbrB, expon + 1, &bigNbrA);
      NumberLength = bigNbrA.nbrLimbs;
      memcpy(TestNbr, bigNbrA.limbs, NumberLength * sizeof(limb));
      GetMontgomeryParms(NumberLength);
      BigIntRemainder(&base, &bigNbrA, &tmpBase);
      CompressLimbsBigInteger(baseMontg, &tmpBase);
      modmult(baseMontg, MontgomeryMultR2, baseMontg);
      modPow(baseMontg, logarMult.limbs, logarMult.nbrLimbs, primRootPwr); // B^LM
      tmpBase.limbs[0].x = 1;   // Convert from Montgomery to standard notation.
      memset(&tmpBase.limbs[1], 0, (NumberLength - 1) * sizeof(limb));
      modmult(primRootPwr, tmpBase.limbs, primRootPwr);                    // B^LM
      ModInvBigNbr(baseMontg, tmpBase.limbs, TestNbr, NumberLength);       // B^(-1)
      modPow(tmpBase.limbs, logar.limbs, logar.nbrLimbs, primRoot);        // B^(-L)
      BigIntRemainder(&power, &bigNbrA, &tmpBase);
      CompressLimbsBigInteger(tmp2.limbs, &tmpBase);
      modmult(primRoot, tmp2.limbs, primRoot);                             // P*B^(-L)
      BigIntDivide(&bigNbrA, &bigNbrB, &tmpBase);
      UncompressLimbsBigInteger(primRootPwr, &tmp2);
      BigIntDivide(&tmp2, &tmpBase, &bigNbrA);                             // s
      UncompressLimbsBigInteger(primRoot, &baseModGO);   // Use baseMontGO as temp var.
      BigIntDivide(&baseModGO, &tmpBase, &tmp2);                           // r
      if (bigNbrA.nbrLimbs == 1 && bigNbrA.limbs[0].x == 0)
      {            // r equals zero.
        if (tmp2.nbrLimbs != 1 || tmp2.limbs[0].x != 0)
        {          // s does not equal zero.
          showText("There is no discrete logarithm");
          DiscreteLogPeriod.sign = SIGN_NEGATIVE;
          return;
        }
      }
      else
      {            // r does not equal zero.
        BigIntModularDivisionSaveTestNbr(&tmp2, &bigNbrA, &bigNbrB, &tmpBase);          // m
        BigIntMultiply(&tmpBase, &logarMult, &tmp2);
        BigIntAdd(&logar, &tmp2, &logar);
        BigIntMultiply(&logarMult, &bigNbrB, &logarMult);
      }
    }
    // Based on logar and logarMult, compute DiscreteLog and DiscreteLogPeriod
    // using the following formulas, that can be deduced from the Chinese
    // Remainder Theorem:
    // L = logar, LM = logarMult, DL = DiscreteLog, DLP = DiscreteLogPeriod.
    // The modular implementation does not allow operating with even moduli.
    //
    // g <- gcd(LM, DLP)
    // if (L%g != DL%g) there is no discrete logarithm, so go out.
    // h <- LM / g
    // if h is odd:
    //   t <- (L - DL) / DLP (mod h)
    //   t <- DLP * t + DL
    // else
    //   i <- DLP / g
    //   t <- (DL - L) / LM (mod i)
    //   t <- LM * t + L
    // endif
    //   DLP <- DLP * h
    //   DL <- t % DLP

    BigIntGcd(&logarMult, &DiscreteLogPeriod, &tmpBase);
    BigIntRemainder(&logar, &tmpBase, &bigNbrA);
    BigIntRemainder(&DiscreteLog, &tmpBase, &bigNbrB);
    if (!TestBigNbrEqual(&bigNbrA, &bigNbrB))
    {
      showText("There is no discrete logarithm");
      DiscreteLogPeriod.sign = SIGN_NEGATIVE;
      return;
    }
    BigIntDivide(&logarMult, &tmpBase, &tmp2);
    if (tmp2.limbs[0].x & 1)
    {     // h is odd.
      BigIntSubt(&logar, &DiscreteLog, &tmpBase);
      BigIntModularDivisionSaveTestNbr(&tmpBase, &DiscreteLogPeriod, &tmp2, &bigNbrA);
      BigIntMultiply(&DiscreteLogPeriod, &bigNbrA, &tmpBase);
      BigIntAdd(&tmpBase, &DiscreteLog, &tmpBase);
    }
    else
    {     // h is even.
      BigIntDivide(&DiscreteLogPeriod, &tmpBase, &bigNbrB);
      BigIntSubt(&DiscreteLog, &logar, &tmpBase);
      BigIntModularDivisionSaveTestNbr(&tmpBase, &logarMult, &bigNbrB, &bigNbrA);
      BigIntMultiply(&logarMult, &bigNbrA, &tmpBase);
      BigIntAdd(&tmpBase, &logar, &tmpBase);
    }
    BigIntMultiply(&DiscreteLogPeriod, &tmp2, &DiscreteLogPeriod);
    BigIntRemainder(&tmpBase, &DiscreteLogPeriod, &DiscreteLog);
  }
#if 0
  textExp.setText(DiscreteLog.toString());
  textPeriod.setText(DiscreteLogPeriod.toString());
  long t = OldTimeElapsed / 1000;
  labelStatus.setText("Time elapsed: " +
    t / 86400 + "d " + (t % 86400) / 3600 + "h " + ((t % 3600) / 60) + "m " + (t % 60) +
    "s    mod mult: " + lModularMult);
#endif
}
Beispiel #12
0
int main(){
  int T; scanf("%d", &T);
  int N;

  vi A;
  std::vector<pii> studs;
  std::vector<pii> studs_pairs;
  std::vector<pii> memo;

  while(T--){
    scanf("%d", &N);
    for(int i = 0; i < N; i++){
      int x;
      scanf("%d", &x);
      A.push_back(x);
    }

    for(int i = 0; i < N; i++){
      for(int j = i + 1; j < N; j++){
        int val_1 = modPow(A[i], A[j]);
        int val_2 = modPow(A[j], A[i]);
        int val = min(val_1, val_2);

        studs.push_back(std::make_pair(studs.size(), val));
        studs_pairs.push_back(std::make_pair(A[i], A[j]));
      }
    }

    std::sort(studs.begin(), studs.end(), myfunction);

    bool flag = true;
    while(flag){
      pii& x = studs.back();
      pii& y = studs_pairs[x.first];

      vi list1, list2;

      for(std::vector<pii>::iterator it = memo.begin(); it != memo.end(); it++){
        if(y.first == it->first) list1.push_back(it->second);
        else if(y.first == it->second) list1.push_back(it->first);

        if(y.second == it->first) list2.push_back(it->second);
        else if(y.second == it->second) list2.push_back(it->first);
      }

      for(vi::iterator it = list1.begin(); it != list1.end(); it++){
        for(vi::iterator jt = list2.begin(); jt != list2.end(); jt++){
          if(*it == *jt){
            flag = false;
            break;
          }
        }
      }

      if(flag){
        studs.pop_back();
        memo.push_back(y);
      }
    }

    A.clear();
    memo.clear();
    printf("%d\n", studs.back().second);
  }
}
Beispiel #13
0
void SecretShare::modPow(mpz_t* result, mpz_t* base, long exponent, int size){
	for(int i=0; i<size; ++i)
		modPow(result[i],base[i],exponent);
}
Beispiel #14
0
template <typename Integer> Integer factorQuadratic(Integer N){
    const int FCount = 6; 
    const int TCount = 6; 
    Integer F[FCount] = {-1};
    Integer prime = newPrime<Integer>(true);
    for(int i = 1; i < FCount;){
        if (modPow(N, (prime-Integer(1))/Integer(2), prime) == Integer(1)) F[i++] = prime;
        prime = newPrime<Integer>();
    }

    Integer M = sqrt(N);
    std::vector< std::pair< std::pair<Integer, Integer>, std::pair< std::bitset<FCount>, std::vector<Integer> > > > pairSet;
    Integer X = 0;
    auto Q = [M, N](Integer X){return (X+M)*(X+M)-N;};
    auto nextX = [](Integer X){if (X < 0) return (-X)+1; else if (X > 0) return -X; else return Integer(1);};
    while (pairSet.size() < TCount+1){
        Integer B = Q(X);
        Integer B_ = B;
        std::bitset<FCount> Bfactormod2;
        std::vector<Integer> Bfactor(FCount);
        if (B < Integer(0)) Bfactormod2.flip(0), B = -B, Bfactor[0] = 1;
        for(int i = 1; i < FCount && B != 1; i++){
            while (B % F[i] == 0) Bfactormod2.flip(i), B/=F[i], Bfactor[i]++;
        }
        if (B == 1){
            pairSet.push_back(std::make_pair(std::make_pair(X+M, B_), std::make_pair(Bfactormod2, Bfactor)));
        }
        X = nextX(X);
    }

    for(int i = 1; i < 1<<(TCount+1); i++){
        std::bitset<FCount> res;
        std::bitset<TCount+1> mask(i);
        for(int j = 0; j < TCount+1; j++){
            if (mask[j]) res ^= pairSet[j].second.first;
        }
        if (res == 0){
            Integer x(1);
            for(int j = 0; j < TCount+1; j++) if (mask[j]) x = (x * pairSet[j].first.first) % N;
            std::vector<Integer> l(FCount);
            for(int i = 0; i < FCount; i++){
                for(int j = 0; j < TCount+1; j++){
                    if (mask[j]) l[i] += pairSet[j].second.second[i];
                }
                l[i] /= 2;
            }

            Integer y = 1;
            for(int i = 0; i < FCount; i++) y = (y * modPow(F[i], l[i], N))%N;

            if (x != y && x != -y){
                Integer T = x-y;
                Integer res = GCD(x-y, N);
                if (res == Integer(1) || res == N || res == Integer(-1)) continue;
                return res;
            }
        }
    }

    return Integer(1);
}
Beispiel #15
0
template <typename Integer> static Integer modPow(Integer val, Integer deg, Integer mod){
    if (deg == Integer(0)) return Integer(1);
    else if (deg%2 == 0) return (modPow(val, deg/Integer(2), mod) * modPow(val, deg/Integer(2), mod)) % mod;
    else return (((modPow(val, deg/Integer(2), mod)*modPow(val, deg/Integer(2), mod))%mod)*val) % mod;
}