Beispiel #1
0
/* R = X mod M

   Using Barrett reduction.  Before using this function
   _gcry_mpi_barrett_init must have been called to do the
   precalculations.  CTX is the context created by this precalculation
   and also conveys M.  If the Barret reduction could no be done a
   straightforward reduction method is used.

   We assume that these conditions are met:
   Input:  x =(x_2k-1 ...x_0)_b
 	   m =(m_k-1 ....m_0)_b	  with m_k-1 != 0
   Output: r = x mod m
 */
void
_gcry_mpi_mod_barrett (gcry_mpi_t r, gcry_mpi_t x, mpi_barrett_t ctx)
{
  gcry_mpi_t m = ctx->m;
  int k = ctx->k;
  gcry_mpi_t y = ctx->y;
  gcry_mpi_t r1 = ctx->r1;
  gcry_mpi_t r2 = ctx->r2;
  int sign;

  mpi_normalize (x);
  if (mpi_get_nlimbs (x) > 2*k )
    {
      mpi_mod (r, x, m);
      return;
    }

  sign = x->sign;
  x->sign = 0;

  /* 1. q1 = floor( x / b^k-1)
   *    q2 = q1 * y
   *    q3 = floor( q2 / b^k+1 )
   * Actually, we don't need qx, we can work direct on r2
   */
  mpi_set ( r2, x );
  mpi_rshift_limbs ( r2, k-1 );
  mpi_mul ( r2, r2, y );
  mpi_rshift_limbs ( r2, k+1 );

  /* 2. r1 = x mod b^k+1
   *	r2 = q3 * m mod b^k+1
   *	r  = r1 - r2
   * 3. if r < 0 then  r = r + b^k+1
   */
  mpi_set ( r1, x );
  if ( r1->nlimbs > k+1 ) /* Quick modulo operation.  */
    r1->nlimbs = k+1;
  mpi_mul ( r2, r2, m );
  if ( r2->nlimbs > k+1 ) /* Quick modulo operation. */
    r2->nlimbs = k+1;
  mpi_sub ( r, r1, r2 );

  if ( mpi_has_sign ( r ) )
    {
      if (!ctx->r3)
        {
          ctx->r3 = mpi_alloc ( k + 2 );
          mpi_set_ui (ctx->r3, 1);
          mpi_lshift_limbs (ctx->r3, k + 1 );
        }
      mpi_add ( r, r, ctx->r3 );
    }

  /* 4. while r >= m do r = r - m */
  while ( mpi_cmp( r, m ) >= 0 )
    mpi_sub ( r, r, m );

  x->sign = sign;
}
Beispiel #2
0
/* Set the value from S into D.  */
static void
point_set (mpi_point_t d, mpi_point_t s)
{
  mpi_set (d->x, s->x);
  mpi_set (d->y, s->y);
  mpi_set (d->z, s->z);
}
Beispiel #3
0
/****************
 * Find the greatest common divisor G of A and B.
 * Return: true if this 1, false in all other cases
 */
int
mpi_gcd( MPI g, const MPI xa, const MPI xb )
{
    MPI a = NULL, b = NULL;

    if (mpi_copy(&a, xa) < 0)
	    goto nomem;

    if (mpi_copy(&b, xb) < 0)
	    goto nomem;

    /* TAOCP Vol II, 4.5.2, Algorithm A */
    a->sign = 0;
    b->sign = 0;
    while( mpi_cmp_ui( b, 0 ) ) {
	    if (mpi_fdiv_r( g, a, b ) < 0) /* g used as temorary variable */
		    goto nomem;
	    if (mpi_set(a,b) < 0)
		    goto nomem;
	    if (mpi_set(b,g) < 0)
		    goto nomem;
    }
    if (mpi_set(g, a) < 0)
	    goto nomem;

    mpi_free(a);
    mpi_free(b);
    return !mpi_cmp_ui( g, 1);

 nomem:
    mpi_free(a);
    mpi_free(b);
    return -ENOMEM;
}
Beispiel #4
0
Datei: mpr.c Projekt: aosm/X11
void
mpr_set(mpr *rop, mpr *op)
{
    if (rop != op) {
	mpi_set(mpr_num(rop), mpr_num(op));
	mpi_set(mpr_den(rop), mpr_den(op));
    }
}
Beispiel #5
0
Datei: mpr.c Projekt: aosm/X11
void
mpr_inv(mpr *rop, mpr *op)
{
    if (rop == op)
	mpi_swap(mpr_num(op), mpr_den(op));
    else {
	mpi_set(mpr_num(rop), mpr_den(op));
	mpi_set(mpr_den(rop), mpr_num(op));
    }
}
Beispiel #6
0
/* RESULT must have been initialized and is set on success to the
   point given by VALUE.  */
static gcry_error_t
os2ec (mpi_point_t *result, gcry_mpi_t value)
{
  gcry_error_t err;
  size_t n;
  unsigned char *buf;
  gcry_mpi_t x, y;

  n = (mpi_get_nbits (value)+7)/8;
  buf = gcry_xmalloc (n);
  err = gcry_mpi_print (GCRYMPI_FMT_USG, buf, n, &n, value);
  if (err)
    {
      gcry_free (buf);
      return err;
    }
  if (n < 1) 
    {
      gcry_free (buf);
      return GPG_ERR_INV_OBJ;
    }
  if (*buf != 4)
    {
      gcry_free (buf);
      return GPG_ERR_NOT_IMPLEMENTED; /* No support for point compression.  */
    }
  if ( ((n-1)%2) ) 
    {
      gcry_free (buf);
      return GPG_ERR_INV_OBJ;
    }
  n = (n-1)/2;
  err = gcry_mpi_scan (&x, GCRYMPI_FMT_USG, buf+1, n, NULL);
  if (err)
    {
      gcry_free (buf);
      return err;
    }
  err = gcry_mpi_scan (&y, GCRYMPI_FMT_USG, buf+1+n, n, NULL);
  gcry_free (buf);
  if (err)
    {
      mpi_free (x);
      return err;
    }

  mpi_set (result->x, x);
  mpi_set (result->y, y);
  mpi_set_ui (result->z, 1);

  mpi_free (x);
  mpi_free (y);
  
  return 0;
}
Beispiel #7
0
/* Set the projective coordinates from POINT into X, Y, and Z.  If a
   coordinate is not required, X, Y, or Z may be passed as NULL.  */
void
gcry_mpi_point_get (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z,
                    mpi_point_t point)
{
  if (x)
    mpi_set (x, point->x);
  if (y)
    mpi_set (y, point->y);
  if (z)
    mpi_set (z, point->z);
}
Beispiel #8
0
Datei: mpr.c Projekt: aosm/X11
void
mpr_abs(mpr *rop, mpr *op)
{
    if (mpr_num(op)->sign)
	mpi_neg(mpr_num(rop), mpr_num(op));
    else
	mpi_set(mpr_num(rop), mpr_num(op));

    /* op may not be canonicalized */
    if (mpr_den(op)->sign)
	mpi_neg(mpr_den(rop), mpr_den(op));
    else
	mpi_set(mpr_den(rop), mpr_den(op));
}
Beispiel #9
0
/****************
 * Barrett reduction: We assume that these conditions are met:
 * Given x =(x_2k-1 ...x_0)_b
 *	 m =(m_k-1 ....m_0)_b	  with m_k-1 != 0
 * Output r = x mod m
 * Before using this function init_barret must be used to calucalte y and k.
 * Returns: false = no error
 *	    true = can't perform barret reduction
 */
static int
calc_barrett( gcry_mpi_t r, gcry_mpi_t x, gcry_mpi_t m, gcry_mpi_t y, int k, gcry_mpi_t r1, gcry_mpi_t r2 )
{
    int xx = k > 3 ? k-3:0;

    mpi_normalize( x );
    if( mpi_get_nlimbs(x) > 2*k )
	return 1; /* can't do it */

    /* 1. q1 = floor( x / b^k-1)
     *	  q2 = q1 * y
     *	  q3 = floor( q2 / b^k+1 )
     * Actually, we don't need qx, we can work direct on r2
     */
    mpi_set( r2, x );
    mpi_rshift_limbs( r2, k-1 );
    mpi_mul( r2, r2, y );
    mpi_rshift_limbs( r2, k+1 );

    /* 2. r1 = x mod b^k+1
     *	  r2 = q3 * m mod b^k+1
     *	  r  = r1 - r2
     * 3. if r < 0 then  r = r + b^k+1
     */
    mpi_set( r1, x );
    if( r1->nlimbs > k+1 ) /* quick modulo operation */
	r1->nlimbs = k+1;
    mpi_mul( r2, r2, m );
    if( r2->nlimbs > k+1 ) /* quick modulo operation */
	r2->nlimbs = k+1;
    mpi_sub( r, r1, r2 );

    if( mpi_has_sign (r) ) {
	gcry_mpi_t tmp;

	tmp = mpi_alloc( k + 2 );
	mpi_set_ui( tmp, 1 );
	mpi_lshift_limbs( tmp, k+1 );
	mpi_add( r, r, tmp );
	mpi_free(tmp);
    }

    /* 4. while r >= m do r = r - m */
    while( mpi_cmp( r, m ) >= 0 )
	mpi_sub( r, r, m );

    return 0;
}
Beispiel #10
0
static void
do_gcd(void)
{
    MPI a = mpi_alloc(40);
    if( stackidx < 2 ) {
	fputs("stack underflow\n", stderr);
	return;
    }
    mpi_gcd( a, stack[stackidx-2], stack[stackidx-1] );
    mpi_set(stack[stackidx-2],a);
    mpi_free(a);
    stackidx--;
}
Beispiel #11
0
/* W = - U */
void
_gcry_mpi_neg (gcry_mpi_t w, gcry_mpi_t u)
{
  if (w != u)
    mpi_set (w, u);
  else if (mpi_is_immutable (w))
    {
      mpi_immutable_failed ();
      return;
    }

  w->sign = !u->sign;
}
Beispiel #12
0
/* Set the projective coordinates from X, Y, and Z into POINT.  If a
   coordinate is given as NULL, the value 0 is stored into point.  If
   POINT is given as NULL a new point object is allocated.  Returns
   POINT or the newly allocated point object. */
mpi_point_t
gcry_mpi_point_set (mpi_point_t point,
                    gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t z)
{
  if (!point)
    point = gcry_mpi_point_new (0);

  if (x)
    mpi_set (point->x, x);
  else
    mpi_clear (point->x);
  if (y)
    mpi_set (point->y, y);
  else
    mpi_clear (point->y);
  if (z)
    mpi_set (point->z, z);
  else
    mpi_clear (point->z);

  return point;
}
/****************
 * Find the greatest common divisor G of A and B.
 * Return: true if this 1, false in all other cases
 */
int
mpi_gcd( MPI g, MPI xa, MPI xb )
{
    MPI a, b;

    a = mpi_copy(xa);
    b = mpi_copy(xb);

    /* TAOCP Vol II, 4.5.2, Algorithm A */
    a->sign = 0;
    b->sign = 0;
    while( mpi_cmp_ui( b, 0 ) ) {
	mpi_fdiv_r( g, a, b ); /* g used as temorary variable */
	mpi_set(a,b);
	mpi_set(b,g);
    }
    mpi_set(g, a);

    mpi_free(a);
    mpi_free(b);
    return !mpi_cmp_ui( g, 1);
}
Beispiel #14
0
static int
scan_mpi (gcry_mpi_t retval, const char *string)
{
  gpg_error_t err;
  gcry_mpi_t val;

  err = gcry_mpi_scan (&val, GCRYMPI_FMT_HEX, string, 0, NULL);
  if (err)
    {
      fprintf (stderr, "scanning input failed: %s\n", gpg_strerror (err));
      return -1;
    }
  mpi_set (retval, val);
  mpi_release (val);
  return 0;
}
Beispiel #15
0
static void
do_gcd (void)
{
  gcry_mpi_t a;

  if (stackidx < 2)
    {
      fputs ("stack underflow\n", stderr);
      return;
    }
  a = mpi_new (0);
  mpi_gcd (a, stack[stackidx - 2], stack[stackidx - 1]);
  mpi_set (stack[stackidx - 2], a);
  mpi_release (a);
  stackidx--;
}
Beispiel #16
0
Datei: mpr.c Projekt: aosm/X11
void
mpr_div(mpr *rop, mpr *op1, mpr *op2)
{
    /* check if temporary storage is required */
    if (op1 == op2 && rop == op1) {
	mpi prod;

	memset(&prod, '\0', sizeof(mpi));

	mpi_mul(&prod, mpr_num(op1), mpr_den(op2));
	mpi_mul(mpr_den(rop), mpr_num(op2), mpr_den(op1));
	mpi_set(mpr_num(rop), &prod);

	mpi_clear(&prod);
    }
    else {
	mpi_mul(mpr_num(rop), mpr_num(op1), mpr_den(op2));
	mpi_mul(mpr_den(rop), mpr_num(op2), mpr_den(op1));
    }
}
Beispiel #17
0
/* Scalar point multiplication - the main function for ECC.  If takes
   an integer SCALAR and a POINT as well as the usual context CTX.
   RESULT will be set to the resulting point. */
void
_gcry_mpi_ec_mul_point (mpi_point_t result,
                        gcry_mpi_t scalar, mpi_point_t point,
                        mpi_ec_t ctx)
{
#if 0
  /* Simple left to right binary method.  GECC Algorithm 3.27 */
  unsigned int nbits;
  int i;

  nbits = mpi_get_nbits (scalar);
  mpi_set_ui (result->x, 1);
  mpi_set_ui (result->y, 1);
  mpi_set_ui (result->z, 0);

  for (i=nbits-1; i >= 0; i--)
    {
      _gcry_mpi_ec_dup_point (result, result, ctx);
      if (mpi_test_bit (scalar, i) == 1)
        _gcry_mpi_ec_add_points (result, result, point, ctx);
    }

#else
  gcry_mpi_t x1, y1, z1, k, h, yy;
  unsigned int i, loops;
  mpi_point_struct p1, p2, p1inv;

  x1 = mpi_alloc_like (ctx->p);
  y1 = mpi_alloc_like (ctx->p);
  h  = mpi_alloc_like (ctx->p);
  k  = mpi_copy (scalar);
  yy = mpi_copy (point->y);

  if ( mpi_is_neg (k) )
    {
      k->sign = 0;
      ec_invm (yy, yy, ctx);
    }

  if (!mpi_cmp_ui (point->z, 1))
    {
      mpi_set (x1, point->x);
      mpi_set (y1, yy);
    }
  else
    {
      gcry_mpi_t z2, z3;

      z2 = mpi_alloc_like (ctx->p);
      z3 = mpi_alloc_like (ctx->p);
      ec_mulm (z2, point->z, point->z, ctx);
      ec_mulm (z3, point->z, z2, ctx);
      ec_invm (z2, z2, ctx);
      ec_mulm (x1, point->x, z2, ctx);
      ec_invm (z3, z3, ctx);
      ec_mulm (y1, yy, z3, ctx);
      mpi_free (z2);
      mpi_free (z3);
    }
  z1 = mpi_copy (mpi_const (MPI_C_ONE));

  mpi_mul (h, k, mpi_const (MPI_C_THREE)); /* h = 3k */
  loops = mpi_get_nbits (h);
  if (loops < 2)
    {
      /* If SCALAR is zero, the above mpi_mul sets H to zero and thus
         LOOPs will be zero.  To avoid an underflow of I in the main
         loop we set LOOP to 2 and the result to (0,0,0).  */
      loops = 2;
      mpi_clear (result->x);
      mpi_clear (result->y);
      mpi_clear (result->z);
    }
  else
    {
      mpi_set (result->x, point->x);
      mpi_set (result->y, yy);
      mpi_set (result->z, point->z);
    }
  mpi_free (yy); yy = NULL;

  p1.x = x1; x1 = NULL;
  p1.y = y1; y1 = NULL;
  p1.z = z1; z1 = NULL;
  point_init (&p2);
  point_init (&p1inv);

  for (i=loops-2; i > 0; i--)
    {
      _gcry_mpi_ec_dup_point (result, result, ctx);
      if (mpi_test_bit (h, i) == 1 && mpi_test_bit (k, i) == 0)
        {
          point_set (&p2, result);
          _gcry_mpi_ec_add_points (result, &p2, &p1, ctx);
        }
      if (mpi_test_bit (h, i) == 0 && mpi_test_bit (k, i) == 1)
        {
          point_set (&p2, result);
          /* Invert point: y = p - y mod p  */
          point_set (&p1inv, &p1);
          ec_subm (p1inv.y, ctx->p, p1inv.y, ctx);
          _gcry_mpi_ec_add_points (result, &p2, &p1inv, ctx);
        }
    }

  point_free (&p1);
  point_free (&p2);
  point_free (&p1inv);
  mpi_free (h);
  mpi_free (k);
#endif
}
Beispiel #18
0
/* RESULT must have been initialized and is set on success to the
   point given by VALUE.  */
gcry_err_code_t
_gcry_ecc_os2ec (mpi_point_t result, gcry_mpi_t value)
{
  gcry_err_code_t rc;
  size_t n;
  const unsigned char *buf;
  unsigned char *buf_memory;
  gcry_mpi_t x, y;

  if (mpi_is_opaque (value))
    {
      unsigned int nbits;

      buf = mpi_get_opaque (value, &nbits);
      if (!buf)
        return GPG_ERR_INV_OBJ;
      n = (nbits + 7)/8;
      buf_memory = NULL;
    }
  else
    {
      n = (mpi_get_nbits (value)+7)/8;
      buf_memory = xmalloc (n);
      rc = _gcry_mpi_print (GCRYMPI_FMT_USG, buf_memory, n, &n, value);
      if (rc)
        {
          xfree (buf_memory);
          return rc;
        }
      buf = buf_memory;
    }

  if (n < 1)
    {
      xfree (buf_memory);
      return GPG_ERR_INV_OBJ;
    }
  if (*buf != 4)
    {
      xfree (buf_memory);
      return GPG_ERR_NOT_IMPLEMENTED; /* No support for point compression.  */
    }
  if ( ((n-1)%2) )
    {
      xfree (buf_memory);
      return GPG_ERR_INV_OBJ;
    }
  n = (n-1)/2;
  rc = _gcry_mpi_scan (&x, GCRYMPI_FMT_USG, buf+1, n, NULL);
  if (rc)
    {
      xfree (buf_memory);
      return rc;
    }
  rc = _gcry_mpi_scan (&y, GCRYMPI_FMT_USG, buf+1+n, n, NULL);
  xfree (buf_memory);
  if (rc)
    {
      mpi_free (x);
      return rc;
    }

  mpi_set (result->x, x);
  mpi_set (result->y, y);
  mpi_set_ui (result->z, 1);

  mpi_free (x);
  mpi_free (y);

  return 0;
}
Beispiel #19
0
/* RESULT = P1 + P2 */
void
_gcry_mpi_ec_add_points (mpi_point_t result,
                         mpi_point_t p1, mpi_point_t p2,
                         mpi_ec_t ctx)
{
#define x1 (p1->x    )
#define y1 (p1->y    )
#define z1 (p1->z    )
#define x2 (p2->x    )
#define y2 (p2->y    )
#define z2 (p2->z    )
#define x3 (result->x)
#define y3 (result->y)
#define z3 (result->z)
#define l1 (ctx->t.scratch[0])
#define l2 (ctx->t.scratch[1])
#define l3 (ctx->t.scratch[2])
#define l4 (ctx->t.scratch[3])
#define l5 (ctx->t.scratch[4])
#define l6 (ctx->t.scratch[5])
#define l7 (ctx->t.scratch[6])
#define l8 (ctx->t.scratch[7])
#define l9 (ctx->t.scratch[8])
#define t1 (ctx->t.scratch[9])
#define t2 (ctx->t.scratch[10])

  if ( (!mpi_cmp (x1, x2)) && (!mpi_cmp (y1, y2)) && (!mpi_cmp (z1, z2)) )
    {
      /* Same point; need to call the duplicate function.  */
      _gcry_mpi_ec_dup_point (result, p1, ctx);
    }
  else if (!mpi_cmp_ui (z1, 0))
    {
      /* P1 is at infinity.  */
      mpi_set (x3, p2->x);
      mpi_set (y3, p2->y);
      mpi_set (z3, p2->z);
    }
  else if (!mpi_cmp_ui (z2, 0))
    {
      /* P2 is at infinity.  */
      mpi_set (x3, p1->x);
      mpi_set (y3, p1->y);
      mpi_set (z3, p1->z);
    }
  else
    {
      int z1_is_one = !mpi_cmp_ui (z1, 1);
      int z2_is_one = !mpi_cmp_ui (z2, 1);

      /* l1 = x1 z2^2  */
      /* l2 = x2 z1^2  */
      if (z2_is_one)
        mpi_set (l1, x1);
      else
        {
          ec_powm (l1, z2, mpi_const (MPI_C_TWO), ctx);
          ec_mulm (l1, l1, x1, ctx);
        }
      if (z1_is_one)
        mpi_set (l2, x2);
      else
        {
          ec_powm (l2, z1, mpi_const (MPI_C_TWO), ctx);
          ec_mulm (l2, l2, x2, ctx);
        }
      /* l3 = l1 - l2 */
      ec_subm (l3, l1, l2, ctx);
      /* l4 = y1 z2^3  */
      ec_powm (l4, z2, mpi_const (MPI_C_THREE), ctx);
      ec_mulm (l4, l4, y1, ctx);
      /* l5 = y2 z1^3  */
      ec_powm (l5, z1, mpi_const (MPI_C_THREE), ctx);
      ec_mulm (l5, l5, y2, ctx);
      /* l6 = l4 - l5  */
      ec_subm (l6, l4, l5, ctx);

      if (!mpi_cmp_ui (l3, 0))
        {
          if (!mpi_cmp_ui (l6, 0))
            {
              /* P1 and P2 are the same - use duplicate function.  */
              _gcry_mpi_ec_dup_point (result, p1, ctx);
            }
          else
            {
              /* P1 is the inverse of P2.  */
              mpi_set_ui (x3, 1);
              mpi_set_ui (y3, 1);
              mpi_set_ui (z3, 0);
            }
        }
      else
        {
          /* l7 = l1 + l2  */
          ec_addm (l7, l1, l2, ctx);
          /* l8 = l4 + l5  */
          ec_addm (l8, l4, l5, ctx);
          /* z3 = z1 z2 l3  */
          ec_mulm (z3, z1, z2, ctx);
          ec_mulm (z3, z3, l3, ctx);
          /* x3 = l6^2 - l7 l3^2  */
          ec_powm (t1, l6, mpi_const (MPI_C_TWO), ctx);
          ec_powm (t2, l3, mpi_const (MPI_C_TWO), ctx);
          ec_mulm (t2, t2, l7, ctx);
          ec_subm (x3, t1, t2, ctx);
          /* l9 = l7 l3^2 - 2 x3  */
          ec_mulm (t1, x3, mpi_const (MPI_C_TWO), ctx);
          ec_subm (l9, t2, t1, ctx);
          /* y3 = (l9 l6 - l8 l3^3)/2  */
          ec_mulm (l9, l9, l6, ctx);
          ec_powm (t1, l3, mpi_const (MPI_C_THREE), ctx); /* fixme: Use saved value*/
          ec_mulm (t1, t1, l8, ctx);
          ec_subm (y3, l9, t1, ctx);
          ec_mulm (y3, y3, ec_get_two_inv_p (ctx), ctx);
        }
    }

#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef l1
#undef l2
#undef l3
#undef l4
#undef l5
#undef l6
#undef l7
#undef l8
#undef l9
#undef t1
#undef t2
}
Beispiel #20
0
static void
ec_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, mpi_ec_t ctx)
{
#if 0
  /* NOTE: This code works only for limb sizes of 32 bit.  */
  mpi_limb_t *wp, *sp;

  if (ctx->nist_nbits == 192)
    {
      mpi_mul (w, u, v);
      mpi_resize (w, 12);
      wp = w->d;

      sp = ctx->s[0]->d;
      sp[0*2+0] = wp[0*2+0];
      sp[0*2+1] = wp[0*2+1];
      sp[1*2+0] = wp[1*2+0];
      sp[1*2+1] = wp[1*2+1];
      sp[2*2+0] = wp[2*2+0];
      sp[2*2+1] = wp[2*2+1];

      sp = ctx->s[1]->d;
      sp[0*2+0] = wp[3*2+0];
      sp[0*2+1] = wp[3*2+1];
      sp[1*2+0] = wp[3*2+0];
      sp[1*2+1] = wp[3*2+1];
      sp[2*2+0] = 0;
      sp[2*2+1] = 0;

      sp = ctx->s[2]->d;
      sp[0*2+0] = 0;
      sp[0*2+1] = 0;
      sp[1*2+0] = wp[4*2+0];
      sp[1*2+1] = wp[4*2+1];
      sp[2*2+0] = wp[4*2+0];
      sp[2*2+1] = wp[4*2+1];

      sp = ctx->s[3]->d;
      sp[0*2+0] = wp[5*2+0];
      sp[0*2+1] = wp[5*2+1];
      sp[1*2+0] = wp[5*2+0];
      sp[1*2+1] = wp[5*2+1];
      sp[2*2+0] = wp[5*2+0];
      sp[2*2+1] = wp[5*2+1];

      ctx->s[0]->nlimbs = 6;
      ctx->s[1]->nlimbs = 6;
      ctx->s[2]->nlimbs = 6;
      ctx->s[3]->nlimbs = 6;

      mpi_add (ctx->c, ctx->s[0], ctx->s[1]);
      mpi_add (ctx->c, ctx->c, ctx->s[2]);
      mpi_add (ctx->c, ctx->c, ctx->s[3]);

      while ( mpi_cmp (ctx->c, ctx->p ) >= 0 )
        mpi_sub ( ctx->c, ctx->c, ctx->p );
      mpi_set (w, ctx->c);
    }
  else if (ctx->nist_nbits == 384)
    {
      int i;
      mpi_mul (w, u, v);
      mpi_resize (w, 24);
      wp = w->d;

#define NEXT(a) do { ctx->s[(a)]->nlimbs = 12; \
                     sp = ctx->s[(a)]->d; \
                     i = 0; } while (0)
#define X(a) do { sp[i++] = wp[(a)];} while (0)
#define X0(a) do { sp[i++] = 0; } while (0)
      NEXT(0);
      X(0);X(1);X(2);X(3);X(4);X(5);X(6);X(7);X(8);X(9);X(10);X(11);
      NEXT(1);
      X0();X0();X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();
      NEXT(2);
      X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);X(23);
      NEXT(3);
      X(21);X(22);X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);
      NEXT(4);
      X0();X(23);X0();X(20);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);
      NEXT(5);
      X0();X0();X0();X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();
      NEXT(6);
      X(20);X0();X0();X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();
      NEXT(7);
      X(23);X(12);X(13);X(14);X(15);X(16);X(17);X(18);X(19);X(20);X(21);X(22);
      NEXT(8);
      X0();X(20);X(21);X(22);X(23);X0();X0();X0();X0();X0();X0();X0();
      NEXT(9);
      X0();X0();X0();X(23);X(23);X0();X0();X0();X0();X0();X0();X0();
#undef X0
#undef X
#undef NEXT
      mpi_add (ctx->c, ctx->s[0], ctx->s[1]);
      mpi_add (ctx->c, ctx->c, ctx->s[1]);
      mpi_add (ctx->c, ctx->c, ctx->s[2]);
      mpi_add (ctx->c, ctx->c, ctx->s[3]);
      mpi_add (ctx->c, ctx->c, ctx->s[4]);
      mpi_add (ctx->c, ctx->c, ctx->s[5]);
      mpi_add (ctx->c, ctx->c, ctx->s[6]);
      mpi_sub (ctx->c, ctx->c, ctx->s[7]);
      mpi_sub (ctx->c, ctx->c, ctx->s[8]);
      mpi_sub (ctx->c, ctx->c, ctx->s[9]);

      while ( mpi_cmp (ctx->c, ctx->p ) >= 0 )
        mpi_sub ( ctx->c, ctx->c, ctx->p );
      while ( ctx->c->sign )
        mpi_add ( ctx->c, ctx->c, ctx->p );
      mpi_set (w, ctx->c);
    }
  else
#endif /*0*/
    mpi_mulm (w, u, v, ctx->p);
}
Beispiel #21
0
/****************
 * We do not need to use the strongest RNG because we gain no extra
 * security from it - The prime number is public and we could also
 * offer the factors for those who are willing to check that it is
 * indeed a strong prime.
 *
 * mode 0: Standard
 *	1: Make sure that at least one factor is of size qbits.
 */
MPI
generate_elg_prime( int mode, unsigned pbits, unsigned qbits,
		    MPI g, MPI **ret_factors )
{
    int n;  /* number of factors */
    int m;  /* number of primes in pool */
    unsigned fbits; /* length of prime factors */
    MPI *factors; /* current factors */
    MPI *pool;	/* pool of primes */
    MPI q;	/* first prime factor (variable)*/
    MPI prime;	/* prime test value */
    MPI q_factor; /* used for mode 1 */
    byte *perms = NULL;
    int i, j;
    int count1, count2;
    unsigned nprime;
    unsigned req_qbits = qbits; /* the requested q bits size */
    MPI val_2  = mpi_alloc_set_ui( 2 );

    /* find number of needed prime factors */
    for(n=1; (pbits - qbits - 1) / n  >= qbits; n++ )
	;
    n--;
    if( !n || (mode==1 && n < 2) )
	log_fatal("can't gen prime with pbits=%u qbits=%u\n", pbits, qbits );
    if( mode == 1 ) {
	n--;
	fbits = (pbits - 2*req_qbits -1) / n;
	qbits =  pbits - req_qbits - n*fbits;
    }
    else {
	fbits = (pbits - req_qbits -1) / n;
	qbits = pbits - n*fbits;
    }
    if( DBG_CIPHER )
	log_debug("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n",
		    pbits, req_qbits, qbits, fbits, n  );
    prime = mpi_alloc( (pbits + BITS_PER_MPI_LIMB - 1) /  BITS_PER_MPI_LIMB );
    q = gen_prime( qbits, 0, 0 );
    q_factor = mode==1? gen_prime( req_qbits, 0, 0 ) : NULL;

    /* allocate an array to hold the factors + 2 for later usage */
    factors = m_alloc_clear( (n+2) * sizeof *factors );

    /* make a pool of 3n+5 primes (this is an arbitrary value) */
    m = n*3+5;
    if( mode == 1 )
	m += 5; /* need some more for DSA */
    if( m < 25 )
	m = 25;
    pool = m_alloc_clear( m * sizeof *pool );

    /* permutate over the pool of primes */
    count1=count2=0;
    do {
      next_try:
	if( !perms ) {
	    /* allocate new primes */
	    for(i=0; i < m; i++ ) {
		mpi_free(pool[i]);
		pool[i] = NULL;
	    }
	    /* init m_out_of_n() */
	    perms = m_alloc_clear( m );
	    for(i=0; i < n; i++ ) {
		perms[i] = 1;
		pool[i] = gen_prime( fbits, 0, 0 );
		factors[i] = pool[i];
	    }
	}
	else {
	    m_out_of_n( perms, n, m );
	    for(i=j=0; i < m && j < n ; i++ )
		if( perms[i] ) {
		    if( !pool[i] )
			pool[i] = gen_prime( fbits, 0, 0 );
		    factors[j++] = pool[i];
		}
	    if( i == n ) {
		m_free(perms); perms = NULL;
		progress('!');
		goto next_try;	/* allocate new primes */
	    }
	}

	mpi_set( prime, q );
	mpi_mul_ui( prime, prime, 2 );
	if( mode == 1 )
	    mpi_mul( prime, prime, q_factor );
	for(i=0; i < n; i++ )
	    mpi_mul( prime, prime, factors[i] );
	mpi_add_ui( prime, prime, 1 );
	nprime = mpi_get_nbits(prime);
	if( nprime < pbits ) {
	    if( ++count1 > 20 ) {
		count1 = 0;
		qbits++;
		progress('>');
                mpi_free (q);
		q = gen_prime( qbits, 0, 0 );
		goto next_try;
	    }
	}
	else
	    count1 = 0;
	if( nprime > pbits ) {
	    if( ++count2 > 20 ) {
		count2 = 0;
		qbits--;
		progress('<');
                mpi_free (q);
		q = gen_prime( qbits, 0, 0 );
		goto next_try;
	    }
	}
	else
	    count2 = 0;
    } while( !(nprime == pbits && check_prime( prime, val_2 )) );

    if( DBG_CIPHER ) {
	progress('\n');
	log_mpidump( "prime    : ", prime );
	log_mpidump( "factor  q: ", q );
	if( mode == 1 )
	    log_mpidump( "factor q0: ", q_factor );
	for(i=0; i < n; i++ )
	    log_mpidump( "factor pi: ", factors[i] );
	log_debug("bit sizes: prime=%u, q=%u", mpi_get_nbits(prime), mpi_get_nbits(q) );
	if( mode == 1 )
	    fprintf(stderr, ", q0=%u", mpi_get_nbits(q_factor) );
	for(i=0; i < n; i++ )
	    fprintf(stderr, ", p%d=%u", i, mpi_get_nbits(factors[i]) );
	progress('\n');
    }

    if( ret_factors ) { /* caller wants the factors */
	*ret_factors = m_alloc_clear( (n+2) * sizeof **ret_factors);
        i = 0;
	if( mode == 1 ) {
	    (*ret_factors)[i++] = mpi_copy( q_factor );
	    for(; i <= n; i++ )
		(*ret_factors)[i] = mpi_copy( factors[i] );
	}
	else {
	    for(; i < n; i++ )
		(*ret_factors)[i] = mpi_copy( factors[i] );
	}
    }

    if( g ) { /* create a generator (start with 3)*/
	MPI tmp   = mpi_alloc( mpi_get_nlimbs(prime) );
	MPI b	  = mpi_alloc( mpi_get_nlimbs(prime) );
	MPI pmin1 = mpi_alloc( mpi_get_nlimbs(prime) );

	if( mode == 1 )
	    BUG(); /* not yet implemented */
	factors[n] = q;
	factors[n+1] = mpi_alloc_set_ui(2);
	mpi_sub_ui( pmin1, prime, 1 );
	mpi_set_ui(g,2);
	do {
	    mpi_add_ui(g, g, 1);
	    if( DBG_CIPHER ) {
		log_debug("checking g: ");
		mpi_print( stderr, g, 1 );
	    }
	    else
		progress('^');
	    for(i=0; i < n+2; i++ ) {
		/*fputc('~', stderr);*/
		mpi_fdiv_q(tmp, pmin1, factors[i] );
		/* (no mpi_pow(), but it is okay to use this with mod prime) */
		mpi_powm(b, g, tmp, prime );
		if( !mpi_cmp_ui(b, 1) )
		    break;
	    }
	    if( DBG_CIPHER )
		progress('\n');
	} while( i < n+2 );
	mpi_free(factors[n+1]);
	mpi_free(tmp);
	mpi_free(b);
	mpi_free(pmin1);
    }
    if( !DBG_CIPHER )
	progress('\n');

    m_free( factors );	/* (factors are shallow copies) */
    for(i=0; i < m; i++ )
	mpi_free( pool[i] );
    m_free( pool );
    m_free(perms);
    mpi_free(val_2);
    mpi_free(q);
    return prime;
}
Beispiel #22
0
/****************
 * We do not need to use the strongest RNG because we gain no extra
 * security from it - The prime number is public and we could also
 * offer the factors for those who are willing to check that it is
 * indeed a strong prime.  With ALL_FACTORS set to true all afcors of
 * prime-1 are returned in FACTORS.
 *
 * mode 0: Standard
 *	1: Make sure that at least one factor is of size qbits.
 */
static gcry_err_code_t
prime_generate_internal (int mode,
			 gcry_mpi_t *prime_generated, unsigned int pbits,
			 unsigned int qbits, gcry_mpi_t g,
			 gcry_mpi_t **ret_factors,
			 gcry_random_level_t randomlevel, unsigned int flags,
                         int all_factors,
                         gcry_prime_check_func_t cb_func, void *cb_arg)
{
  gcry_err_code_t err = 0;
  gcry_mpi_t *factors_new = NULL; /* Factors to return to the
				     caller.  */
  gcry_mpi_t *factors = NULL;	/* Current factors.  */
  gcry_mpi_t *pool = NULL;	/* Pool of primes.  */
  unsigned char *perms = NULL;	/* Permutations of POOL.  */
  gcry_mpi_t q_factor = NULL;	/* Used if QBITS is non-zero.  */
  unsigned int fbits = 0;	/* Length of prime factors.  */
  unsigned int n = 0;		/* Number of factors.  */
  unsigned int m = 0;		/* Number of primes in pool.  */
  gcry_mpi_t q = NULL;		/* First prime factor.  */
  gcry_mpi_t prime = NULL;	/* Prime candidate.  */
  unsigned int nprime = 0;	/* Bits of PRIME.  */
  unsigned int req_qbits;       /* The original QBITS value.  */
  gcry_mpi_t val_2;             /* For check_prime().  */
  unsigned int is_secret = (flags & GCRY_PRIME_FLAG_SECRET);
  unsigned int count1 = 0, count2 = 0;
  unsigned int i = 0, j = 0;

  if (pbits < 48)
    return GPG_ERR_INV_ARG;

  /* If QBITS is not given, assume a reasonable value. */
  if (!qbits)
    qbits = pbits / 3;

  req_qbits = qbits;

  /* Find number of needed prime factors.  */
  for (n = 1; (pbits - qbits - 1) / n  >= qbits; n++)
    ;
  n--;

  val_2 = mpi_alloc_set_ui (2);

  if ((! n) || ((mode == 1) && (n < 2)))
    {
      err = GPG_ERR_INV_ARG;
      goto leave;
    }

  if (mode == 1)
    {
      n--;
      fbits = (pbits - 2 * req_qbits -1) / n;
      qbits =  pbits - req_qbits - n * fbits;
    }
  else
    {
      fbits = (pbits - req_qbits -1) / n;
      qbits = pbits - n * fbits;
    }
  
  if (DBG_CIPHER)
    log_debug ("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n",
               pbits, req_qbits, qbits, fbits, n);

  prime = gcry_mpi_new (pbits);

  /* Generate first prime factor.  */
  q = gen_prime (qbits, is_secret, randomlevel, NULL, NULL);
  
  if (mode == 1)
    q_factor = gen_prime (req_qbits, is_secret, randomlevel, NULL, NULL);
  
  /* Allocate an array to hold the factors + 2 for later usage.  */
  factors = gcry_calloc (n + 2, sizeof (*factors));
  if (!factors)
    {
      err = gpg_err_code_from_errno (errno);
      goto leave;
    }
      
  /* Make a pool of 3n+5 primes (this is an arbitrary value).  */
  m = n * 3 + 5;
  if (mode == 1) /* Need some more (for e.g. DSA).  */
    m += 5;
  if (m < 25)
    m = 25;
  pool = gcry_calloc (m , sizeof (*pool));
  if (! pool)
    {
      err = gpg_err_code_from_errno (errno);
      goto leave;
    }

  /* Permutate over the pool of primes.  */
  do
    {
    next_try:
      if (! perms)
        {
          /* Allocate new primes.  */
          for(i = 0; i < m; i++)
            {
              mpi_free (pool[i]);
              pool[i] = NULL;
            }

          /* Init m_out_of_n().  */
          perms = gcry_calloc (1, m);
          if (! perms)
            {
              err = gpg_err_code_from_errno (errno);
              goto leave;
            }
          for(i = 0; i < n; i++)
            {
              perms[i] = 1;
              pool[i] = gen_prime (fbits, is_secret,
                                   randomlevel, NULL, NULL);
              factors[i] = pool[i];
            }
        }
      else
        {
          m_out_of_n ((char*)perms, n, m);
          for (i = j = 0; (i < m) && (j < n); i++)
            if (perms[i])
              {
                if(! pool[i])
                  pool[i] = gen_prime (fbits, 0, 1, NULL, NULL);
                factors[j++] = pool[i];
              }
          if (i == n)
            {
              gcry_free (perms);
              perms = NULL;
              progress ('!');
              goto next_try;	/* Allocate new primes.  */
            }
        }

	/* Generate next prime candidate:
	   p = 2 * q [ * q_factor] * factor_0 * factor_1 * ... * factor_n + 1. 
        */
	mpi_set (prime, q);
	mpi_mul_ui (prime, prime, 2);
	if (mode == 1)
	  mpi_mul (prime, prime, q_factor);
	for(i = 0; i < n; i++)
	  mpi_mul (prime, prime, factors[i]);
	mpi_add_ui (prime, prime, 1);
	nprime = mpi_get_nbits (prime);

	if (nprime < pbits)
	  {
	    if (++count1 > 20)
	      {
		count1 = 0;
		qbits++;
		progress('>');
		mpi_free (q);
		q = gen_prime (qbits, 0, 0, NULL, NULL);
		goto next_try;
	      }
	  }
	else
	  count1 = 0;
        
	if (nprime > pbits)
	  {
	    if (++count2 > 20)
	      {
		count2 = 0;
		qbits--;
		progress('<');
		mpi_free (q);
		q = gen_prime (qbits, 0, 0, NULL, NULL);
		goto next_try;
	      }
	  }
	else
	  count2 = 0;
    }
  while (! ((nprime == pbits) && check_prime (prime, val_2, cb_func, cb_arg)));

  if (DBG_CIPHER)
    {
      progress ('\n');
      log_mpidump ("prime    : ", prime);
      log_mpidump ("factor  q: ", q);
      if (mode == 1)
        log_mpidump ("factor q0: ", q_factor);
      for (i = 0; i < n; i++)
        log_mpidump ("factor pi: ", factors[i]);
      log_debug ("bit sizes: prime=%u, q=%u",
                 mpi_get_nbits (prime), mpi_get_nbits (q));
      if (mode == 1)
        log_debug (", q0=%u", mpi_get_nbits (q_factor));
      for (i = 0; i < n; i++)
        log_debug (", p%d=%u", i, mpi_get_nbits (factors[i]));
      progress('\n');
    }

  if (ret_factors)
    {
      /* Caller wants the factors.  */
      factors_new = gcry_calloc (n + 4, sizeof (*factors_new));
      if (! factors_new)
        {
          err = gpg_err_code_from_errno (errno);
          goto leave;
        }

      if (all_factors)
        {
          i = 0;
          factors_new[i++] = gcry_mpi_set_ui (NULL, 2);
          factors_new[i++] = mpi_copy (q);
          if (mode == 1)
            factors_new[i++] = mpi_copy (q_factor);
          for(j=0; j < n; j++)
            factors_new[i++] = mpi_copy (factors[j]);
        }
      else
        {
          i = 0;
          if (mode == 1)
            {
              factors_new[i++] = mpi_copy (q_factor);
              for (; i <= n; i++)
                factors_new[i] = mpi_copy (factors[i]);
            }
          else
            for (; i < n; i++ )
              factors_new[i] = mpi_copy (factors[i]);
        }
    }
  
  if (g)
    {
      /* Create a generator (start with 3).  */
      gcry_mpi_t tmp = mpi_alloc (mpi_get_nlimbs (prime));
      gcry_mpi_t b = mpi_alloc (mpi_get_nlimbs (prime));
      gcry_mpi_t pmin1 = mpi_alloc (mpi_get_nlimbs (prime));
      
      if (mode == 1)
        err = GPG_ERR_NOT_IMPLEMENTED;
      else
        {
          factors[n] = q;
          factors[n + 1] = mpi_alloc_set_ui (2);
          mpi_sub_ui (pmin1, prime, 1);
          mpi_set_ui (g, 2);
          do
            {
              mpi_add_ui (g, g, 1);
              if (DBG_CIPHER)
                {
                  log_debug ("checking g:");
                  gcry_mpi_dump (g);
                  log_printf ("\n");
                }
              else
                progress('^');
              for (i = 0; i < n + 2; i++)
                {
                  mpi_fdiv_q (tmp, pmin1, factors[i]);
                  /* No mpi_pow(), but it is okay to use this with mod
                     prime.  */
                  gcry_mpi_powm (b, g, tmp, prime);
                  if (! mpi_cmp_ui (b, 1))
                    break;
                }
              if (DBG_CIPHER)
                progress('\n');
            } 
          while (i < n + 2);

          mpi_free (factors[n+1]);
          mpi_free (tmp);
          mpi_free (b);
          mpi_free (pmin1);
        }
    }
  
  if (! DBG_CIPHER)
    progress ('\n');


 leave:
  if (pool)
    {
      for(i = 0; i < m; i++)
	mpi_free (pool[i]);
      gcry_free (pool);
    }
  if (factors)
    gcry_free (factors);  /* Factors are shallow copies.  */
  if (perms)
    gcry_free (perms);

  mpi_free (val_2);
  mpi_free (q);
  mpi_free (q_factor);

  if (! err)
    {
      *prime_generated = prime;
      if (ret_factors)
	*ret_factors = factors_new;
    }
  else
    {
      if (factors_new)
	{
	  for (i = 0; factors_new[i]; i++)
	    mpi_free (factors_new[i]);
	  gcry_free (factors_new);
	}
      mpi_free (prime);
    }

  return err;
}
Beispiel #23
0
/****************
 * Calculate the multiplicative inverse X of A mod N
 * That is: Find the solution x for
 *		1 = (a*x) mod n
 */
int
_gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t n)
{
#if 0
    gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3;
    gcry_mpi_t ta, tb, tc;

    u = mpi_copy(a);
    v = mpi_copy(n);
    u1 = mpi_alloc_set_ui(1);
    u2 = mpi_alloc_set_ui(0);
    u3 = mpi_copy(u);
    v1 = mpi_alloc_set_ui(0);
    v2 = mpi_alloc_set_ui(1);
    v3 = mpi_copy(v);
    q  = mpi_alloc( mpi_get_nlimbs(u)+1 );
    t1 = mpi_alloc( mpi_get_nlimbs(u)+1 );
    t2 = mpi_alloc( mpi_get_nlimbs(u)+1 );
    t3 = mpi_alloc( mpi_get_nlimbs(u)+1 );
    while( mpi_cmp_ui( v3, 0 ) ) {
	mpi_fdiv_q( q, u3, v3 );
	mpi_mul(t1, v1, q); mpi_mul(t2, v2, q); mpi_mul(t3, v3, q);
	mpi_sub(t1, u1, t1); mpi_sub(t2, u2, t2); mpi_sub(t3, u3, t3);
	mpi_set(u1, v1); mpi_set(u2, v2); mpi_set(u3, v3);
	mpi_set(v1, t1); mpi_set(v2, t2); mpi_set(v3, t3);
    }
    /*	log_debug("result:\n");
	log_mpidump("q =", q );
	log_mpidump("u1=", u1);
	log_mpidump("u2=", u2);
	log_mpidump("u3=", u3);
	log_mpidump("v1=", v1);
	log_mpidump("v2=", v2); */
    mpi_set(x, u1);

    mpi_free(u1);
    mpi_free(u2);
    mpi_free(u3);
    mpi_free(v1);
    mpi_free(v2);
    mpi_free(v3);
    mpi_free(q);
    mpi_free(t1);
    mpi_free(t2);
    mpi_free(t3);
    mpi_free(u);
    mpi_free(v);
#elif 0
    /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
     * modified according to Michael Penk's solution for Exercise 35 */

    /* FIXME: we can simplify this in most cases (see Knuth) */
    gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3;
    unsigned k;
    int sign;

    u = mpi_copy(a);
    v = mpi_copy(n);
    for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
	mpi_rshift(u, u, 1);
	mpi_rshift(v, v, 1);
    }


    u1 = mpi_alloc_set_ui(1);
    u2 = mpi_alloc_set_ui(0);
    u3 = mpi_copy(u);
    v1 = mpi_copy(v);				   /* !-- used as const 1 */
    v2 = mpi_alloc( mpi_get_nlimbs(u) ); mpi_sub( v2, u1, u );
    v3 = mpi_copy(v);
    if( mpi_test_bit(u, 0) ) { /* u is odd */
	t1 = mpi_alloc_set_ui(0);
	t2 = mpi_alloc_set_ui(1); t2->sign = 1;
	t3 = mpi_copy(v); t3->sign = !t3->sign;
	goto Y4;
    }
    else {
	t1 = mpi_alloc_set_ui(1);
	t2 = mpi_alloc_set_ui(0);
	t3 = mpi_copy(u);
    }
    do {
	do {
	    if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
		mpi_add(t1, t1, v);
		mpi_sub(t2, t2, u);
	    }
	    mpi_rshift(t1, t1, 1);
	    mpi_rshift(t2, t2, 1);
	    mpi_rshift(t3, t3, 1);
	  Y4:
	    ;
	} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */

	if( !t3->sign ) {
	    mpi_set(u1, t1);
	    mpi_set(u2, t2);
	    mpi_set(u3, t3);
	}
	else {
	    mpi_sub(v1, v, t1);
	    sign = u->sign; u->sign = !u->sign;
	    mpi_sub(v2, u, t2);
	    u->sign = sign;
	    sign = t3->sign; t3->sign = !t3->sign;
	    mpi_set(v3, t3);
	    t3->sign = sign;
	}
	mpi_sub(t1, u1, v1);
	mpi_sub(t2, u2, v2);
	mpi_sub(t3, u3, v3);
	if( t1->sign ) {
	    mpi_add(t1, t1, v);
	    mpi_sub(t2, t2, u);
	}
    } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
    /* mpi_lshift( u3, k ); */
    mpi_set(x, u1);

    mpi_free(u1);
    mpi_free(u2);
    mpi_free(u3);
    mpi_free(v1);
    mpi_free(v2);
    mpi_free(v3);
    mpi_free(t1);
    mpi_free(t2);
    mpi_free(t3);
#else
    /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
     * modified according to Michael Penk's solution for Exercise 35
     * with further enhancement */
    gcry_mpi_t u, v, u1, u2=NULL, u3, v1, v2=NULL, v3, t1, t2=NULL, t3;
    unsigned k;
    int sign;
    int odd ;

    if (!mpi_cmp_ui (a, 0))
        return 0; /* Inverse does not exists.  */
    if (!mpi_cmp_ui (n, 1))
        return 0; /* Inverse does not exists.  */

    u = mpi_copy(a);
    v = mpi_copy(n);

    for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
	mpi_rshift(u, u, 1);
	mpi_rshift(v, v, 1);
    }
    odd = mpi_test_bit(v,0);

    u1 = mpi_alloc_set_ui(1);
    if( !odd )
	u2 = mpi_alloc_set_ui(0);
    u3 = mpi_copy(u);
    v1 = mpi_copy(v);
    if( !odd ) {
	v2 = mpi_alloc( mpi_get_nlimbs(u) );
	mpi_sub( v2, u1, u ); /* U is used as const 1 */
    }
    v3 = mpi_copy(v);
    if( mpi_test_bit(u, 0) ) { /* u is odd */
	t1 = mpi_alloc_set_ui(0);
	if( !odd ) {
	    t2 = mpi_alloc_set_ui(1); t2->sign = 1;
	}
	t3 = mpi_copy(v); t3->sign = !t3->sign;
	goto Y4;
    }
    else {
	t1 = mpi_alloc_set_ui(1);
	if( !odd )
	    t2 = mpi_alloc_set_ui(0);
	t3 = mpi_copy(u);
    }
    do {
	do {
	    if( !odd ) {
		if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
		    mpi_add(t1, t1, v);
		    mpi_sub(t2, t2, u);
		}
		mpi_rshift(t1, t1, 1);
		mpi_rshift(t2, t2, 1);
		mpi_rshift(t3, t3, 1);
	    }
	    else {
		if( mpi_test_bit(t1, 0) )
		    mpi_add(t1, t1, v);
		mpi_rshift(t1, t1, 1);
		mpi_rshift(t3, t3, 1);
	    }
	  Y4:
	    ;
	} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */

	if( !t3->sign ) {
	    mpi_set(u1, t1);
	    if( !odd )
		mpi_set(u2, t2);
	    mpi_set(u3, t3);
	}
	else {
	    mpi_sub(v1, v, t1);
	    sign = u->sign; u->sign = !u->sign;
	    if( !odd )
		mpi_sub(v2, u, t2);
	    u->sign = sign;
	    sign = t3->sign; t3->sign = !t3->sign;
	    mpi_set(v3, t3);
	    t3->sign = sign;
	}
	mpi_sub(t1, u1, v1);
	if( !odd )
	    mpi_sub(t2, u2, v2);
	mpi_sub(t3, u3, v3);
	if( t1->sign ) {
	    mpi_add(t1, t1, v);
	    if( !odd )
		mpi_sub(t2, t2, u);
	}
    } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
    /* mpi_lshift( u3, k ); */
    mpi_set(x, u1);

    mpi_free(u1);
    mpi_free(v1);
    mpi_free(t1);
    if( !odd ) {
	mpi_free(u2);
	mpi_free(v2);
	mpi_free(t2);
    }
    mpi_free(u3);
    mpi_free(v3);
    mpi_free(t3);

    mpi_free(u);
    mpi_free(v);
#endif
    return 1;
}
Beispiel #24
0
Datei: mpr.c Projekt: aosm/X11
void
mpr_neg(mpr *rop, mpr *op)
{
    mpi_neg(mpr_num(rop), mpr_num(op));
    mpi_set(mpr_den(rop), mpr_den(op));
}
/****************
 * Calculate the multiplicative inverse X of A mod N
 * That is: Find the solution x for
 *		1 = (a*x) mod n
 */
int mpi_invm(MPI x, const MPI a, const MPI n)
{
	/* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
	 * modified according to Michael Penk's solution for Exercice 35
	 * with further enhancement */
	MPI u = NULL, v = NULL;
	MPI u1 = NULL, u2 = NULL, u3 = NULL;
	MPI v1 = NULL, v2 = NULL, v3 = NULL;
	MPI t1 = NULL, t2 = NULL, t3 = NULL;
	unsigned k;
	int sign;
	int odd = 0;
	int rc = -ENOMEM;

	if (mpi_copy(&u, a) < 0)
		goto cleanup;
	if (mpi_copy(&v, n) < 0)
		goto cleanup;

	for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) {
		if (mpi_rshift(u, u, 1) < 0)
			goto cleanup;
		if (mpi_rshift(v, v, 1) < 0)
			goto cleanup;
	}
	odd = mpi_test_bit(v, 0);

	u1 = mpi_alloc_set_ui(1);
	if (!u1)
		goto cleanup;
	if (!odd) {
		u2 = mpi_alloc_set_ui(0);
		if (!u2)
			goto cleanup;
	}
	if (mpi_copy(&u3, u) < 0)
		goto cleanup;
	if (mpi_copy(&v1, v) < 0)
		goto cleanup;
	if (!odd) {
		v2 = mpi_alloc(mpi_get_nlimbs(u));
		if (!v2)
			goto cleanup;
		if (mpi_sub(v2, u1, u) < 0)
			goto cleanup;	/* U is used as const 1 */
	}
	if (mpi_copy(&v3, v) < 0)
		goto cleanup;
	if (mpi_test_bit(u, 0)) {	/* u is odd */
		t1 = mpi_alloc_set_ui(0);
		if (!t1)
			goto cleanup;
		if (!odd) {
			t2 = mpi_alloc_set_ui(1);
			if (!t2)
				goto cleanup;
			t2->sign = 1;
		}
		if (mpi_copy(&t3, v) < 0)
			goto cleanup;
		t3->sign = !t3->sign;
		goto Y4;
	} else {
		t1 = mpi_alloc_set_ui(1);
		if (!t1)
			goto cleanup;
		if (!odd) {
			t2 = mpi_alloc_set_ui(0);
			if (!t2)
				goto cleanup;
		}
		if (mpi_copy(&t3, u) < 0)
			goto cleanup;
	}
	do {
		do {
			if (!odd) {
				if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) {	/* one is odd */
					if (mpi_add(t1, t1, v) < 0)
						goto cleanup;
					if (mpi_sub(t2, t2, u) < 0)
						goto cleanup;
				}
				if (mpi_rshift(t1, t1, 1) < 0)
					goto cleanup;
				if (mpi_rshift(t2, t2, 1) < 0)
					goto cleanup;
				if (mpi_rshift(t3, t3, 1) < 0)
					goto cleanup;
			} else {
				if (mpi_test_bit(t1, 0))
					if (mpi_add(t1, t1, v) < 0)
						goto cleanup;
				if (mpi_rshift(t1, t1, 1) < 0)
					goto cleanup;
				if (mpi_rshift(t3, t3, 1) < 0)
					goto cleanup;
			}
Y4:
			;
		} while (!mpi_test_bit(t3, 0));	/* while t3 is even */

		if (!t3->sign) {
			if (mpi_set(u1, t1) < 0)
				goto cleanup;
			if (!odd)
				if (mpi_set(u2, t2) < 0)
					goto cleanup;
			if (mpi_set(u3, t3) < 0)
				goto cleanup;
		} else {
			if (mpi_sub(v1, v, t1) < 0)
				goto cleanup;
			sign = u->sign;
			u->sign = !u->sign;
			if (!odd)
				if (mpi_sub(v2, u, t2) < 0)
					goto cleanup;
			u->sign = sign;
			sign = t3->sign;
			t3->sign = !t3->sign;
			if (mpi_set(v3, t3) < 0)
				goto cleanup;
			t3->sign = sign;
		}
		if (mpi_sub(t1, u1, v1) < 0)
			goto cleanup;
		if (!odd)
			if (mpi_sub(t2, u2, v2) < 0)
				goto cleanup;
		if (mpi_sub(t3, u3, v3) < 0)
			goto cleanup;
		if (t1->sign) {
			if (mpi_add(t1, t1, v) < 0)
				goto cleanup;
			if (!odd)
				if (mpi_sub(t2, t2, u) < 0)
					goto cleanup;
		}
	} while (mpi_cmp_ui(t3, 0));	/* while t3 != 0 */
	/* mpi_lshift( u3, k ); */
	rc = mpi_set(x, u1);

cleanup:
	mpi_free(u1);
	mpi_free(v1);
	mpi_free(t1);
	if (!odd) {
		mpi_free(u2);
		mpi_free(v2);
		mpi_free(t2);
	}
	mpi_free(u3);
	mpi_free(v3);
	mpi_free(t3);

	mpi_free(u);
	mpi_free(v);
	return rc;
}